
Cardinality-Regularized Hawkes-Granger Model

Tsuyoshi Idé
IBM Research, T. J. Watson Research Center

tide@us.ibm.com

Georgios Kollias
IBM Research, T. J. Watson Research Center

gkollias@us.ibm.com

Dzung T. Phan
IBM Research, T. J. Watson Research Center

phandu@us.ibm.com

Naoki Abe
IBM Research, T. J. Watson Research Center

nabe@us.ibm.com

Appendix / supplementary material

A Solutions for Baseline Intensity and Decay Parameters

This section provides parameter estimation equations in the MM procedure Eq. (13) for the baseline
intensity µ and the decay parameter β, which were omitted in the main text due to space limitations.
Our goal is to find the maximizer of the objective function

L(µ,β) , L1 −
1

2

(
νµ‖µ‖22 + νβ‖β‖22

)
, (A.1)

where L1 has been defined by Eq. (11) in the main text.

For the baseline intensity, by collecting all the related terms in L, the objective function to be
maximized is given by

L =

N∑
n=1

{
qn,n ln

µdn
qn,n

− µdn∆n,n−1

}
− 1

2
νµ‖µ‖22 + const., (A.2)

where ∆n,n−1 , tn − tn−1. By differentiating w.r.t. µk, the maximizer can be straightforwardly
obtained as

µk =
1

2νµ

(
−Dµ

k +
√

(Dµ
k)2 + 4νµN

µ
k

)
, (A.3)

where

Dµ
k =

N∑
n=1

δdn,k∆n,n−1, Nµ
k =

N∑
n=1

δdn,kqn,n (A.4)

with δdn,k being Kronecker’s delta.

For the decay parameter, the objective function becomes

L =

N∑
n=1

n−1∑
i=0

{
qn,i ln

φdn(∆n,i)

qn,i
−Adn,dihn,i

}
− 1

2
νβ‖β‖22 + const, (A.5)

where hn,i ,
∫∆n,i

∆n−1,i
du φdn(u). In this case, the maximizer depends of a specific choice of the

decay function. The general form of the solution is given by

βk =
1

2νβ

(
−Dβ

k +

√
(Dβ

k)2 + 4νβN
β
k

)
, Nβ

k =

N∑
n=1

δdn,k(1− qn,n). (A.6)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Below, we provide results for the exponential and power distributions. For the exponential distribution,
we have

Dβ
k =

N∑
n=1

δdn,k

n−1∑
i=0

[
qn,i∆n,i +Ak,di

∂hn,i
∂βk

]
, (A.7)

∂hn,i
∂βk

= δdn,k
[
∆n,ie

−βk∆n,i −∆n−1,ie
−βk∆n−1,i

]
. (A.8)

For the power distribution, we have

Dβ
k =

N∑
n=1

δdn,k

n−1∑
i=0

[
(η + 1)qn,i∆n,i

1 + βk∆n,i
+Ak,di

∂hn,i
∂βk

]
, (A.9)

∂hn,i
∂βk

= δk,dn

{
η∆n,i

(1 + βk∆n,i)η+1
− η∆n−1,i

(1 + βk∆n−1,i)η+1

}
. (A.10)

B Experimental Details

This section describes the details of the experiments. We have included the Sparse5 and Dense10
data sets and the Python code to generate those as part of the final submission.

B.1 Data generation

Sparse5 The Sparse5 benchmark dataset is designed to have a simplest but nontrivial kind
of causal structure, which is supposed to be easily reproduced by any Granger-causal learning
algorithms. Using a standard point process simulator tick [1]1, we generated Sparse5 by giving
0.001 to baseline for all the types and

decays =

0.5
0.5
0.1
0.1
0.1

1>5 , adjacency =

0. 0. 0. 0. 0.
1.5 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 1.5 0. 0.
0. 0. 0. 0. 0.75

 , (B.11)

where 15 is the 5-dimensional vector of ones and we employed the exponential distribution as the
decay function. The numbers above were manually adjusted so tick did not produce a “spectral
radius error” and all the event types have roughly the same number of event instances. In tick, we
provided seed = 1, 2, 3, 4, 5, which resulted in five realizations of the 5-dimensional point process
as shown in Fig. B.1. Due to the stochastic nature, the total number of event instances cannot
be controlled. We manually adjusted the duration of simulation so the total number of events is
roughly N ≈ 1 000. In particular, we had N = (966, 991, 978, 960, 1030) for seed = (1, 2, 3, 4, 5),
respectively.

Dense10 The second benchmark dataset Dense10 was generated again with tick [1]. We gen-
erated N = 1 121 random events with D = 10. For parameters, we set decay = 10 (exponential
decay) and baseline = 1 for all event types. For the impact matrix, we first randomly generated a
binary matrix so that about half of the entries get 1 and at least one node is dense. Then, to simulate
real-world noise, we added gamma-distributed noise with the shape and scale both being 1, as shown
in Fig. B.2 (top left). See the attached code for the detail. For each generated event instance pair,
we computed {qn,i} and {hn,i} to eventually get Q and H. Figure B.2 shows what Q,H look like.
Figure B.2 also shows [Qk,l/Hk,l], which corresponds to non-sparse solution (τ → 0) in νA → 0+.
As shown in the figure, except for the scale, the overall pattern of [Qk,l/Hk,l] is quite similar to that
of A.

B.2 Performance metric and contrastive accuracy plot

In the main text, we drew the true positive (TP) and true negative (TN) accuracies as a function of the
logarithmic regularization strength. There are multiple definitions of TP and TN accuracies in the

1https://x-datainitiative.github.io/tick/

2

https://x-datainitiative.github.io/tick/

Figure B.1: Sparse5 dataset corresponding to seed = 1, 2, 3, 4, 5, from top to bottom in the tick
simulator.

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

A

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Q

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

H

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Q/H

0.01

0.02

0.03

0.04

1

2

3

4

5

8

10

12

14

0.1

0.2

0.3

0.4

Figure B.2: Dense10: Randomly generated A with added gamma noise (top left), which was used
to generate temporal events. From the event data, Q (top right), H (bottom left), and [Qk,l/Hk,l]
(bottom right) were computed.

literature. Our definition is as follows:

(TP accuracy) =
(The number of successfully predicted actually positive samples)

(The number of actually positive samples)
(B.12)

(TN accuracy) =
(The number of successfully predicted actually negative samples)

(The number of actually negative samples)
(B.13)

In our setting, we thought of the nonzero off-diagonal elements in the ground truth Granger causal
matrix (Fig. 1 (b)) as the actually positive samples. Similarly, the zero off-diagonal elements in the
ground truth graph are defined as the actually negative samples.

The TP and TN accuracy values depend on the decision threshold to discriminate between positive
and negative. In our setting, regularization strengths play the role of the threshold. We used a plot
showing both the TP and TN accuracies as a function of the threshold parameter to evaluate the
overall performance. Such a plot can be called the contrastive accuracy plot (CAP). We believe that
CAP is more useful than the ROC curve, especially when a significant disproportion exists between
the numbers of samples in positive and negative classes. Specifically, first, unlike ROC, CAP provides
a direct way of choosing the threshold value yielding the best performance. Second, CAP has the
flexibility of applying a transformation to the threshold value for better visualization. In our case, we

3

used a log-transformed regularization strength to make the curves look smoother. Third, unlike the
AUC (area-under-the-curve), which typically requires numerical integration to get the number, CAP
immediately provides the break-even accuracy, the intersection between the TP and TN curves, as an
easy-to-consume overall performance metric. Finally, we note that CAP has the same information as
ROC because they both draw a trajectory of the accuracies over the entire set of the threshold values.

To handle the variability due to the stochastic fluctuations over the five datasets in Sparse5, we used
the Gaussian process regression. Here, the input variable is a regularization strength (symbolically
denoted by λ) and the target variable is the TP or TN accuracy. We used the Gaussian kernel
(a.k.a. RBF (radial basis function)) with a constant shift defined as

k(λi, λj) = C0 + C exp

{
− 1

2L2
(λi − λj)2

}
, (B.14)

where λi, λj are instances of λ. The hyper-parameters C0, C, L are optimized by maximizing the log
marginalized likelihood. Predicted values greater than 1 (smaller than 0) were replaced with 1 (0),
respectively. We used the GaussianProcessRegressor module2 of scikit-learn.

B.3 Running neural Granger methods

The neural Granger learning methods cLSTM and cMLP [3] take real-valued time-series data as the
input. A widely-used approach to converting a marked event sequence to a multivariate time-series in
practice is window-based counting (see, e.g. [2]). Specifically, the number of occurrences within the
sliding window is recorded as a time-series value for each event type. This is a reasonable approach
from the perspective of the point process theory because many event sequences can be modeled
with an inhomogeneous Poisson process to a reasonable approximation and Poisson processes as the
counting process are described with the count as the sufficient statistic.

To determine the window size, we first calculated the mean inter-event arrival time 〈dt〉 from the
original event data, and set up a sliding window of size w = 10〈dt〉 in the main text as well as
w = (2, 5, 10, 20)× 〈dt〉 in what follows. As a result, one realization of the event dataset having N
event instances of D = 5 event types is converted into a 5-dimensional multivariate time-series of N
time points.

In our experimental evaluation, we used the implementation of the original authors [3]3. For
cLSTM, we set the number of hidden units N_hidden = 100, following their set-up [3].
We also set the context length K = 10, the `2 regularization strength lam_ridge = 0.01,
and the learning rate lr = 0.001. The group lasso strength was chosen from 14 val-
ues one by one: lam ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 4, 6, 8}. For cMLP, we
used lag = 10 and chose the (hierarchical) group lasso strength from 12 values one
by one: lam ∈ {0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.4, 0.6, 1, 1.5, 2, 3}. All the other parameters,
N_hidden, lam_ridge, lr, are the same as cLSTM. For both methods, we trained the model with the
train_model_ista function.

B.4 Existing ‘sparse’ Hawkes models

We compared L0Hawkes with two existing sparse Hawkes models. One is `1-regularizatoin based [5]
(‘L1’) and the other `2,1-regularization based [4] (‘L2,1’).

The objective function of L1 is given by
D∑

k,l=1

(Qk,l lnAk,l −Hk,lAk,l)−
νA
2
‖A‖2F − τ

D∑
k=1

D∑
l=1

|Ak,l| (B.15)

where ‖A‖2F =
∑D
k,l=1A

2
k,l. Because the domain of the solution is Ak,l > 0, the `1 term is viewed

as another linear term. The solution can be analytically given by

A∗k,l =
1

2ν

{
−(τ +Hk,l) +

√
(τ +Hk,l)2 + 4νQk,l

}
(B.16)

2https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.
GaussianProcessRegressor.html

3https://github.com/iancovert/Neural-GC

4

https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html
https://github.com/iancovert/Neural-GC

On the other hand, the objective function of L2,1 is given by

D∑
k,l=1

(Qk,l lnAk,l −Hk,lAk,l)−
νA
2
‖A‖2F − τ

D∑
k=1

√√√√ D∑
l=1

A2
k,l, (B.17)

which no longer has an analytic solution. By equating the derivative to zero, we have

Ak,l =
−Hk.l +

√
H2
k,l + 4Qk,l(ν + τ

rk
)

2(ν + τ
rk

)
, where rk =

√√√√ D∑
l′=1

A2
k,l′ . (B.18)

These equations are iteratively computed until convergence to get a solution A∗.

As discussed in the main text, one immediate observation here is that these optimization problems
have a singularity at Ak,l = 0. As Theorem 1 in the main text states, this prohibits Ak,l = 0 from
being a solution.

In the main text we reported on the result with νA = 10−9 not to obfuscate the solution and to focus
on the ability of sparsification. We have confirmed that the result is insensitive to νA in this Dense10
dataset; The resulting solution always has a smooth profile in contrast to that of the `0-constrained
solution.

References

[1] E. Bacry, M. Bompaire, P. Deegan, S. Gaïffas, and S. V. Poulsen. tick: a Python library for
statistical learning, with an emphasis on Hawkes processes and time-dependent models. Journal
of Machine Learning Research, 18(214):1–5, 2018.

[2] A. Ihler, J. Hutchins, and P. Smyth. Adaptive event detection with time-varying Poisson processes.
In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pages 207–216, 2006.

[3] A. Tank, I. Covert, N. Foti, A. Shojaie, and E. B. Fox. Neural Granger causality. IEEE
Transactions on Pattern Analysis & Machine Intelligence, Early Access(01):1–1, 2021.

[4] H. Xu, M. Farajtabar, and H. Zha. Learning Granger causality for Hawkes processes. In
Proceedings of the 33rd International Conference on Machine Learning (ICML), pages 1717–
1726, 2016.

[5] K. Zhou, H. Zha, and L. Song. Learning social infectivity in sparse low-rank networks using
multi-dimensional Hawkes processes. In Proceedings of the Sixteenth International Conference
on Artificial Intelligence and Statistics (AISTATS), pages 641–649, 2013.

5

	Solutions for Baseline Intensity and Decay Parameters
	Experimental Details
	Data generation
	Performance metric and contrastive accuracy plot
	Running neural Granger methods
	Existing `sparse' Hawkes models

