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Abstract

This study aims to develop bandit algorithms that automatically exploit tendencies
of certain environments to improve performance, without any prior knowledge
regarding the environments. We first propose an algorithm for combinatorial
semi-bandits with a hybrid regret bound that includes two main features: a best-
of-three-worlds guarantee and multiple data-dependent regret bounds. The former
means that the algorithm will work nearly optimally in all environments in an
adversarial setting, a stochastic setting, or a stochastic setting with adversarial
corruptions. The latter implies that, even if the environment is far from exhibiting
stochastic behavior, the algorithm will perform better as long as the environment
is "easy" in terms of certain metrics. The metrics w.r.t. the easiness referred to in
this paper include cumulative loss for optimal actions, total quadratic variation of
losses, and path-length of a loss sequence. We also show hybrid data-dependent
regret bounds for adversarial linear bandits, which include a first path-length regret
bound that is tight up to logarithmic factors.

1 Introduction

In this work, we consider two fundamental problem settings w.r.t. online decision problems: combi-
natorial semi-bandits [42, 66, 4] and linear bandits [13, 17, 30]. In both problem settings, a player
is given an action set A ∈ Rd, a compact subset of a d-dimensional vector space. In each round
t, the player chooses an action at ∈ A and then incurs loss `>t at, where `t ∈ Rd is a loss vector
chosen by the environment. The action set in the combinatorial semi-bandit is assumed to be a subset
of {0, 1}d, each element of which corresponds to a subset of [d] = {1, 2, . . . , d}. After choosing
at ∈ A, the player can observe `ti for all i such that ati = 1 in semi-bandits. Linear bandits are
problems with even more limited feedback, ones in which the learner can only observe the incurred
loss `>t at. For combinatorial semi-bandits problems with `t ∈ [0, 1]d, there is a known algorithm with
an O(

√
mdT )-regret bound [4], where m = maxa∈A ‖a‖1. For linear bandits such that |`>t a| ≤ 1

holds for any a ∈ A, algorithms with Õ(d
√
T )-regret (where factors in log T and log d are ignored)

have been developed [13, 17, 30]. These algorithms are optimal in terms of worst-case analysis. In
fact, matching lower bounds of Ω(

√
mdT ) for combinatorial semi-bandits [3, 11] and of Ω(d

√
T )

for linear bandits [22] are known.

The worst-case optimal algorithms, however, tend to be too conservative in actual practice. This
is because true worst-case environments are quite rare in real-world applications. Rather, the
environments may have structures that are convenient for the learner, and it is desirable that the
algorithm takes advantage of such structures to improve performance. To exploit such structures, two
main categories of approaches have been studied: adapting to (nearly) stochastic environments and
developing data-dependent regret bounds.

An example of the first category is in reference to best-of-both-worlds (BOBW) algorithms [12,
62, 5, 61, 68, 70], which means that they work well for both adversarial and stochastic settings.
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These algorithms enjoy Õ(
√
T )-regret bounds in an adversarial setting and, simultaneously, achieve

O( (log T )c

∆ )-regret in a stochastic setting with i.i.d. losses, where c ≥ 1 is a constant and ∆ represents
the suboptimality gap defined by mina∈A\a∗ E[`>t (a− a∗)] for an optimal action a∗ ∈ A. As shown
in Table 1, for combinatorial semi-bandits, Zimmert et al. [71] provide a BOBW algorithm, both
bounds of which are tight up to constant factors as matching lower bounds are known for adversarial
settings [3, 11] as well as for stochastic settings [42].

Studies on the adversarial robustness of stochastic bandit algorithms [48, 27, 70] can be considered
to provide another approach in the first category, in which an adversary can corrupt stochastically-
generated losses subject to the constraint that the total amount of the corruption is at most a parameter
C ≥ 0, referred to as the corruption level. This model includes both adversarial and stochastic
settings and is closely related to studies on BOBW algorithms. In fact, the special cases of C = 0 and
C = Ω(T ) correspond to stochastic and adversarial settings, respectively. For the fundamental multi-
armed bandit problem, Zimmert and Seldin [70] have proposed the Tsallis-INF algorithm, which
achieves BOBW with tight regret bounds up to small constant factors, and which simultaneously is

very robust w.r.t. corruptions; the degradation in the regret is only O(min{C,
√

CK log T
∆ }). Such

algorithms are called best-of-three-worlds (BOTW) algorithms. As shown in Table 1, the semi-bandit
algorithm by Zimmert et al. [71] is also a BOTW algorithm (Sto. +Adv. refers to the stochastic setting
with C-adversarial corruptions).1 For linear bandits, Lee et al. [45] have recently developed a BOTW
algorithm as well.

In studies on data-dependent regret bounds [55, 68, 29, 57, 15, 14, 34] of the other category, we
define measures of the difficulty of problem instances, which we refer to as difficulty indicators, and
aim to develop algorithms so that the regret will be smaller for smaller instance-difficulty indicators.
Examples of difficulty indicators dealt with in this paper include L∗: the cumulative losses for an
optimal action,Qq: the total quadratic variation of losses, and Vq: the path-length of losses, definitions
of which are given in Table 3. Tables 1 and 2 show data-dependent regret bounds, including difficulty
indicators for, respectively, combinatorial semi-bandits and adversarial linear bandits. For example,
the semi-bandit algorithm with an O(

√
dL∗ log T )-regret bound given by Wei and Luo [68] achieves

much smaller regret than the worst-case optimal O(
√
dmT )-bound when L∗ = o(mT ), i.e., when

there exists an action for which the cumulative losses are much smaller than mT .

Given the various algorithms above, a new challenge arises: how, in practice, can we choose an
appropriate algorithm? If the environment is expected to behave in an almost i.i.d. stochastic manner,
either BOBW or BOTW algorithms would work well. If the environment is far from exhibiting
stochastic behavior but is "easy" in terms of some difficulty indicator, algorithms with a corresponding
data-dependent regret bound may work better. In practice, however, it is hard to tell what kind of
environment we are working in until we have actually tried out the algorithm.

1.1 Contributions of this work

This work addresses the above-mentioned issue of algorithm selection by developing hybrid al-
gorithms. Its main contribution is to develop a semi-bandit algorithm (Algorithm 1) that enjoys
multiple data-dependent regret bounds as well. This can be seen as an an extension of the work on
the multi-armed bandit problem by Ito [34] to combinatorial semi-bandits. In addition to this, for
linear bandits, we provide a hybrid data-dependent regret bound.

For combinatorial semi-bandits problems, we propose Algorithm 1 with the regret bounds shown in
Table 1. More explicit statements are provided in Theorem 1, Corollary 1 (for the adversarial setting),
and Corollary 2 (for the stochastic setting with/without adversarial corruption). As can be seen in
the table, the regret bound for the adversarial setting encompasses three different data-dependent
regret bounds. Note that O(

√
dL∗ log T )-bounds imply the nearly worst-case optimal bound of

O(
√
dmT log T ), as L∗ ≤ mT always follows from the model definition. The new regret bound is of

O(R+
√
RCm) for the corrupted stochastic setting, where R stands for the bound for the stochastic

setting. Note that the regret bounds for the stochastic settings (with corruption) can be improved for
some special cases, such as for size-invariant (‖a‖1 = m for all a ∈ A) or for a matroid constraint
(A forms bases of a matroid), as described in Corollary 2. We would also like to stress that the

1This bound is not explicitly stated in their paper, but can be shown via a straightforward modification of the
proof. A proof of this is given in Appendix B of the supplementary material.
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Table 1: Regret bounds for combinatorial semi-bandits.

Reference Regime Regret bound

Audibert et al. [4] Adv. O(
√
dmT )

Kveton et al. [42] Sto. O
(
dm log T

∆

)
Neu [54] Adv. O(m

√
dL∗ log(d/m))

Wei and Luo [68] (Sec. 3.1) Adv. O(
√
dQ2 log T )

Wei and Luo [68] (Sec. 4.1) Adv. O(
√
dV1 log T )

Wei and Luo [68] (Sec. 4.2) Adv. O(
√
dL∗ log T )

Zimmert et al. [71] Adv. O(
√
dmT )

Sto. O
(
dm log T

∆

)
Sto. + Adv. O

(
dm log T

∆ +
√

Cdm2 log T
∆

)
[This work] (Algorithm 1) Adv. O(

√
dmin{L∗, Q2, V1} log T )

Sto. O
(
dm log T

∆

)
Sto. + Adv. O

(
dm log T

∆ +
√

Cdm2 log T
∆

)

Table 2: Regret bounds for adversarial linear bandits. We
assume that ‖a‖p ≤ 1 for all A and ‖`t‖q ≤ 1 for all t, for
some p, q ∈ [1,∞] such that 1/p + 1/q = 1. Õ(·) ignores
factors of (log T )O(1) and (log d)O(1).

Reference Regret bound

Bubeck et al. [13] Õ(d
√
T )

Hazan and Kale [29] Õ(d
√
ϑQ2)

Bubeck et al. [15] (Cor. 4, 8) Õ(d
√
ϑV2)

Bubeck et al. [15] (Cor. 6) Õ(d3/2
√
ϑVq)

Ito et al. [36] Õ(d
√

min{L∗, Qq})
[This work] Õ(d

√
min{L∗, Qq, Vq})

Table 3: Definitions of parameters.

T number of rounds
d dimension of A
m maxa∈A ‖a‖1
ϑ self-concordant parameter
C corruption level
L∗ mina∗

∑T
t=1 `

>
t a
∗

Qq
∑T
t=1 ‖`t − ¯̀‖2q(

¯̀= 1
T

∑T
t=1 `t

)
Vq

∑T−1
t=1 ‖`t − `t+1‖q

∆ mina∈A\{a∗}E[`>t (a− a∗)]

proposed algorithm is parameter-free, i.e., it does not require any prior information w.r.t. parameters
∆, L∗, Q2, V1, and C.

The proposed semi-bandit algorithm is based on a follow-the-regularized-leader (FTRL) frame-
work [70, 71], combined with an optimistic prediction for the losses [58, 57, 68]. More precisely,
it uses a mixture regularizer [14, 55, 71, 24] consisting of the log-barrier in variables xi and the
Shannon entropy in the complement (1 − xi) of xi with entry-wisely adaptive learning rates, by
which BOTW is achieved. The regret analysis for the stochastic setting (with corruption) is based on
self-bounding inequalities for the regret, similarly to what is seen in the analyses by Zimmert et al.
[71], Zimmert and Seldin [70]. In addition to this, by choosing optimistic predictors with simple
gradient descent methods, we can achieve multiple data-dependent regret bounds as well. The most
relevant algorithms are given by Wei and Luo [68] and Zimmert et al. [71]. The proposed algorithm
differs from that of Wei and Luo [68] in that the former employs follow-the-regularized-leader rather
than online mirror descent methods and uses a mixture regularizer. The major differences with the
work by Zimmert et al. [71] are that Algorithm 1 uses a log-barrier rather than Tsallis entropy, and
that it takes advantages of optimistic predictors. As far as we have managed to determine, it appears
difficult to combine Tsallis-entropy-based algorithms with optimistic predictors, as we discuss in
Subsection 4.2. Our work overcomes this difficulty by using a log-barrier regularizer, rather than
Tsallis entropy, in exchange for additional O(

√
log T )-factors in worst-case regret bounds.
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Remark 1. In the previously mentioned study by Wei and Luo [68], the regret bounds for com-
binatorial semi-bandits are not given explicitly. However, as stated just after Corollary 3 in their
paper ("but they can be straightforwardly generalized to the semi-bandit case"), we can obtain the
regret bounds in Table 1 via a simple calculation. To be more precise, their regret bounds in Table 1
dependent on Q2 and V1 can be refined by replacing them with Q2(I∗) :=

∑T
t=1

∑
i∈I∗(`ti − ¯̀

i)
2

and V2(I∗) :=
∑T−1
t=1

∑
i∈I∗ |`ti − `t+1,i|, respectively, where we define I∗ = {i ∈ [d] | a∗i = 1}

for an optimal action a∗. This means that Algorithm 1 is not necessarily superior to their algorithms.
On the other hand, it should be noted that their algorithms require prior knowledge w.r.t. Q2(I∗) and
V2(I∗) to achieve corresponding regret bounds.

For linear bandits problems, we provide the hybrid data-dependent regret bounds shown in Table 2
and in Theorem 3, which holds for p ∈ [2,∞] and q ∈ [1, 2] such that 1/p + 1/q = 1, under the
assumption of ‖a‖p ≤ 1 for all a ∈ A and ‖`t‖q ≤ 1 for all t. The parameter ϑ ≥ 1 is associated
with a self-concordant barrier over the convex hull of A. It is known that any convex set has a
self-concordant barrier with ϑ = O(d) [53], which is tight up to a constant factor. Substituting
ϑ = d and noting L∗ ≤ T , we can see that the new regret bound includes previous bounds. Further,
for the special case of (p, q) = (∞, 1), the new path-length regret bound of Õ(d

√
V1) is tight up

to a logarithmic factor in T , as a matching lower bound of O(d
√
V1) is known [22, 15]. To our

knowledge, this is the first (nearly) tight path-length regret bound for linear bandits. The regret
bounds of Õ(d

√
L∗) and Õ(d

√
Qq) are also nearly tight, as has been noted in the literature [36].

The approach for the new regret bound is quite simple: we combine regret bounds dependent on
optimistic predictors [57, 36] and the algorithm of tracking the best linear predictor [31, 16].

2 Problem settings

This section introduces the problem settings of combinatorial semi-bandits and linear bandits. In
both settings, a player is given, before the game starts, an action set A ∈ Rd and the total number
T of rounds. In each round t ∈ [T ], the player chooses an action at ∈ A, while the environment
chooses a loss vector `t ∈ Rd. After choosing the action, the player gets feedback on the loss, which
will depend on the problem settings. Player performance is measured in terms of regret RT defined
as follows:

RT (a∗) = E

[
T∑
t=1

`>t (at − a∗)

]
, RT = max

a∗∈A
RT (a∗), (1)

where the expectation is taken w.r.t. the randomness of `t and the algorithm’s internal randomness.

2.1 Combinatorial semi-bandits

This subsection provides settings of action sets and feedback information in combinatorial semi-
bandits. The action set A is a subset of binary vectors {0, 1}d, each element of which can
be interpreted as a subset of [d]. Denote m = maxa∈A ‖a‖1. For each chosen action at =
[at1, at2, . . . , atd]

> ∈ A, we denote It = {i ∈ [d] | ati = 1}. We further assume that `t ∈ [0, 1]d,
similarly to what is seen in existing work [71, 40, 42, 66, 54].

In combinatorial semi-bandits, the player can get entry-wise bandit feedback. More precisely, after
choosing an action at, which corresponds to a subset It of [d], the player can observe `ti for each
i ∈ It, while `ti for i ∈ Jt := [d] \ It will not be revealed.

In addition to general action set A ∈ {0, 1}d, this paper analyzes two special cases of settings. One
is size-invariant semi-bandits, in which all actions a ∈ A have the same size ‖a‖1 = m. The other
one is matroid semi-bandits [40, 66], in which an action set A corresponds to the bases of a matroid.
As all bases of an arbitrary matroid have the same size, matroid semi-bandits are special cases of
size-invariant semi-bandits, which implies

{general semi-bandits} ⊇ {size-invariant semi-bandits} ⊇ {matroid semi-bandits}.
An important example of matroid semi-bandits is the problem over m-set, which is defined as
A = {a ∈ {0, 1} | ‖a‖1 = m}. The problem with full-combinatorial set A = {0, 1}n can also be
reduced to a special case of matroid semi-bandits with (d,m) = (2n, n). Zimmert et al. [71] have
provided improved regret bounds for such special cases of m-sets and full-combinatorial sets.
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2.2 Linear bandits

In linear bandits, the action setA is assumed to be an arbitrary closed and bounded subset of Rd. The
special cases in which A consists of binary vectors in {0, 1}d are called combinatorial bandits [17].
Similarly to what has been done in existing work [15, 29], we assume that there exists p, q ∈ [1,∞]
for which 1/p+ 1/q = 1, ‖a‖p ≤ 1 and ‖`t‖q ≤ 1 hold for all a ∈ A and `t. By rescaling A and
{`t} as needed, any problem with bounded A and {`t} can be transformed into a problem satisfying
this assumption.

The available feedback in linear bandits is even more limited than in combinatorial semi-bandits.
After choosing an action at ∈ A, the player can only observe the incurred loss `>t at. In the special
case of combinatorial bandits, the player can only observe the sum of losses

∑
i∈It `ti for the chosen

subset, unlike in combinatorial semi-bandits in which `ti is revealed for each i ∈ It.

2.3 Assumptions regarding environments

The scope of this work includes the following three different settings in terms of the environments’
determining losses `t:

{adversarial regimes} ⊇ {stochastic regimes with adversarial corruptions} ⊇ {stochastic regiems}.

Stochastic regimes In a stochastic regime, the loss vectors `t are supposed to follow an unknown
distribution D, i.i.d. for t = 1, 2, . . . , T . Denote µ = E`∼D[`] and set a∗ ∈ arg mina∈A µ

>a.
The regret can then be expressed as RT = E[

∑T
t=1 µ

>(at − a∗)]. It is known that the optimal
regret in this regime can be characterized by the suboptimality gap parameter ∆ defined as ∆ =
mina∈A\a∗ µ

>a−µ>a∗.Note that no prior information on the distributionD, including the parameter
∆, is given to the player. When we consider stochastic regime, we assume that ∆ > 0, which implies
that the optimal action a∗ ∈ arg mina∈A µ

>a is assumed to be unique.

Adversarial regimes In an adversarial regime, no stochastic models on `t are assumed, but the loss
`t may be chosen in an adversarial manner. More precisely, the environment can choose `t depending
on the actions and losses {(`j , aj)}t−1

j=1 chosen up until the (t− 1)-th round.

Stochastic regimes with adversarial corruptions A stochastic regime with adversarial corrup-
tions is a regime intermediate between stochastic regimes and adversarial regimes. In such a regime,
a temporary loss `′t is drawn from an unknown distribution D, and then the environment may corrupt
it to determine `t in each round, subject to the constraint

∑T
t=1 ‖`t − `′t‖∞ ≤ C, where C ≥ 0 is

a parameter called the corruption level and corresponds to the total amount of corruptions. In this
paper, we suppose that the corruptions on `t depend on `′t and historical data {(`′j , `j , aj)}

t−1
j=1, and

that they do not depend on at, similarly to what is seen in existing models [48, 27, 70, 8].

The special cases of the stochastic regime with adversarial corruptions in which C ≥ Ω(T ) and
C = 0 coincide, respectively, with the adversarial regime and the stochastic regime. This paper
supposes that the player is not given parameter C in advance, i.e., it aims to adapt to any environment
with an arbitrary corruption level C.

3 Related work

Combinatorial semi-bandits have been extensively studied for a wide range of applications, including
adaptive routing [25], network optimization [40], spectrum allocations [25] and recommender systems
[41, 65, 56]. For stochastic combinatorial semi-bandits, Kveton et al. [42, 40], Wang and Chen [66]
provide tight regret bounds dependent on the suboptimality gap. Interestingly, these tight regret
bounds differ depending on the assumption of the action set: for the general action set, the tight
bound is ofO(dm log T

∆ ), while, in the matroid semi-bandit cases, the tight bound is ofO( (d−m) log T
∆ ).

Similar tight bounds are reproduced in the work by [71] and in this work as well, together with
worst-case optimal regret bounds for the adversarial setting. Chen et al. [19, 20] have considered
a more extended framework including nonlinear reward functions. Linear bandits also have many
applications, including end-to-end adaptive routing [7, 6] and various examples of combinatorial
bandits [17].
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In a bandits context, BOBW algorithms have been developed for various problem settings, including
the multi-armed bandit [12, 62, 5, 61, 68, 70, 59], combinatorial semi-bandits [71], episodic Markov
decision processes [37, 38], online learning with feedback graphs [24], and linear bandits [45].
Similar algorithms have been developed for full-information online learning problems as well, such as
the problem of prediction with expert advice [2, 52, 23, 26] and online linear optimization [32]. For
achieving BOBW, two main approaches can be found in these papers. One is to select an appropriate
mode in an online manner, by determining whether the environment is i.i.d. or not. The other is
to exploit self-bounding constraints, i.e., an approach which is meant to lead to improved bounds
by combining a regret lower bound expressed with a suboptimality gap and a regret upper bound
dependent on the action probability vectors. This work adopts the latter approach, similarly to certain
existing work [70, 71, 68].

Since Lykouris et al. [48] initiated a study on stochastic bandits robust to adversarial corruptions,
research in this direction has been extended to a variety of models, such as those for (adversarial)
multi-armed bandits [27, 70, 28, 50], episodic Markov decision processes [49, 21, 38], Gaussian
process bandits [8], the problem of prediction with expert advice [2, 33], online learning with
feedback graphs [24], and linear bandits [9, 45]. There can be found studies on effective attacks and
on the vulnerability of well-known algorithms [39, 46]. We note that some existing studies (e.g.,
[9, 39, 28, 46]) have considered targeted corruption models, in which the adversary may choose
corruption on `t after observing the player’s action at, unlike this work and some previous studies
[48, 27, 70, 8]. The differences in corruption models can be summarized; see, e.g., the paper by
Hajiesmaili et al. [28]. In addition, there are alternative definitions of regret, e.g., as one is defined
with the losses after corruptions, as in this work and certain previous studies [48, 70, 8] and another
is defined with the losses without corruptions [27, 45, 9]. As the gap between these two notions of
regret is at most O(C), regret bounds for one side has consequences for the other sides up to an
additional O(C)-term. For further discussion on alternative notions of regret, see, e.g., Section 5.2 of
the paper by Gupta et al. [27].

Data-dependent bounds have been studied for a variety of difficulty indicators. For a bandits context,
Allenberg et al. [1] have developed a multi-armed bandit algorithm with a first-order regret bound,
i.e., the bound dependent on L∗ rather than on T . Hazan and Kale [29] provided algorithms so-called
second-order regret bounds, which depend on Q2. Similarly to what is seen in such full-information
online learning problems as the problem of prediction with expert advice, there are algorithms
with first- and second-order regret bounds [18, 26, 63, 47]. It is worth mentioning that one kind of
second-order regret bound implies BOBW guarantees, as shown by Gaillard et al. [26]. Note that
some known difficulty indicators are not dealt with in this work, e.g., the sparsity of loss vectors
[43, 14].

4 Combinatorial semi-bandits

4.1 Preliminary: existing techniques

Convex combination and decomposition Let X denote the convex hull of the action set A, i.e.,
the set of all vectors that can be expressed by a convex combination of vectors in A. Our proposed
algorithm manages vectors xt ∈ X , and chooses at ∈ A so that E[at|xt] = xt. Such at can be
generated via a convex decomposition of xt. In fact, from Carathéodory’s theorem, for any xt ∈ X ,
there exist {λk}dk=0 ⊆ [0, 1] and {a(k)

t }dk=0 ⊆ A such that
∑d
k=0 λk = 1 and

∑d
k=0 λka

(k)
t = xt.

Hence, by choosing at = a
(k)
t with probability λk, we have E[at|xt] = xt. Such {λk}dk=0 and

{a(k)
t }dk=0 can be computed efficiently if there is an algorithm for solving linear optimization over

A, as shown, e.g., in Corollary 11.4 in [60]. Similar techniques are used in [35, 36] as well. More
efficient algorithms for computing {λk}dk=0 have been developed for the special cases of bases of
uniform matroids [71, 67] and general matroids [64]. In our regret analyses, we use the fact that
It = {i ∈ [d] | ati = 1} satisfies Prob[i ∈ It|xt] = xti.
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Optimistic follow the regularized leader Our proposed algorithm is based on the framework of
optimistic follow the regularized leader [57, 58, 44], in which the vector xt is defined as

xt ∈ arg min
x∈X

{ t−1∑
j=1

ˆ̀>
j x+m>t x+ ψt(x)

}
, (2)

where each ˆ̀
j is an unbiased estimator of `j , mt is an arbitrary hint vector estimating `t, and ψt is a

regularizer that is a smooth convex function over X . The regret for this algorithm can be evaluated
by means of Bregman divergences defined by Dt(x, y) = ψt(x)− ψt(y) +∇ψt(y)>(x− y).

Lemma 1. If xt is given by (2), we then have
∑T
t=1

ˆ̀>
t (xt − x∗) ≤ ψT+1(x∗) − ψ1(x′1) +∑T

t=1

(
(ˆ̀
t −mt)

>(xt − x′t+1)−Dt(x
′
t+1, xt) + ψt(x

′
t+1)− ψt+1(x′t+1)

)
, where x′t is defined as

x′t ∈ arg minx∈X

{∑t−1
j=1

ˆ̀>
j x+ ψt(x)

}
.

All omitted proofs are given in the Appendix. A similar framework is used in [36] for linear bandits.
Further, a special case in which mt = 0 has been employed in [71].

Remark 2. In some existing work, a slightly different approach called online mirror descent
has been used, e.g., in [68]. In online mirror descent, the update rule is expressed as xt ∈
arg minx∈X

{
ˆ̀>
t x+Dt(x, xt−1)

}
. The relationship between follow the regularized leader and

online mirror descent has been widely discussed [51, 44]. Amir et al. [2] have pointed out an essential
difference: an algorithm in the follow-the-regularized-leader framework has improved performance
in stochastic regimes, but none in online mirror descent has done so.

4.2 Proposed algorithm

In our proposed algorithm, we define an unbiased estimator ˆ̀
t and regularizer ψt as follows:

ˆ̀
ti = mti +

ati
xti

(`ti −mti), ψt(x) =

d∑
i=1

βti (− log xi + γ(1− xi) log(1− xi)) , (3)

where βti and γ are defined as

αti = ati(`ti −mti)
2 min

{
1,

1− xti
γx2

ti

}
, βti =

√√√√2 +
1

log T

t−1∑
j=1

αji, γ = log T. (4)

Our hybrid regularizer given in (3) is designed to lead to improved regret bounds in stochastic
settings. In order to show BOTW regret bounds, it is necessary that round-wise regret bounds (e.g.,
the stability term in the paper by Zimmert et al. [71]) converge to 0 when xt approaches extreme
points in {0, 1}d. As can be seen in Lemma 2 below, the round-wise regret bounds of our algorithm
can be expressed as O(

∑d
i=1

αti

βti
) = O(

∑d
i=1

xti

βti
min{1, 1−xti

γx2
ti
}) in expectation. Without hybrid

regularization, i.e., if γ = 0, we cannot obtain the above-mentioned convergence property, particularly
when xti approaches 1 for some i’s. On the other hand, thanks to hybrid regularization (with γ > 0),
we can show that the round-wise regret converge to 0 when approaching any points in {0, 1}d. The
learning rate parameters βti given in (4) are designed so that two main parts of the regret bound,∑T
t=1

αti

βti
and log T · βT+1,i, will be well-balanced.

The optimistic predictor mt is updated as follows:

m1i = 1/4 (i ∈ [d]), mt+1,i = mti + ati(`ti −mti)/4 (t ∈ [T ], i ∈ [d]). (5)

The proposed algorithm can be summarized in Algorithm 1, which is similar to the one proposed in
[71] in that both are based on the follow-the-regularized-leader framework with a round-dependent
regularizer. The main differences are as follows:

• Algorithm 1 employs an optimistic-prediction framework while the algorithm in [71] does
not, i.e., mt is fixed to the zero vector for each t.
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Algorithm 1 Hybrid algorithm for combinatorial semi-bandits
Require: Action set A, time horizon T ∈ N

1: Initialize mt ∈ [0, 1]d by m1i = 1/2 for all i ∈ [d].
2: for t = 1, 2, . . . , T do
3: Compute xt as (2), where ˆ̀

j , ψt and βti are defined in (3) and (4), respectively.
4: Pick at so that E[at|xt] = xt, output at, and get feedback of `ti for each i such that ati = 1.
5: Compute ˆ̀

t, βt+1,i and mt+1 on the basis of (3), (4) and (5), respectively.
6: end for

• Algorithm 1 uses a hybrid regularizer combining the log-barrier and Shannon entropy given
in (3), while Zimmert et al. [71] adopt the combination of Tsallis entropy with power 1/2

and Shannon entropy defined as ψt(x) = 1√
t

∑d
i=1(−√xi + γ(1− xi) log(1− xi)).

• Algorithm 1 maintains the strength γti for regularization that is different for each entry, and
it updates each on the basis of historical data {xj , aj , (`ji)i∈It}t−1

j=1.

The reason for using a log-barrier regularizer is that it allows us to exploit the optimistic prediction
framework, i.e., it provides regret bounds dependent on (`t −mt). When mt are non-zero vectors,
ˆ̀
t can be O(1/xti) negative values, which would make it even more difficult to bound the regret

if Tsallis entropy were used. For details, see, e.g., [69] and the paragraph just after (RV) in [70].
In contrast to this, a log-barrier regularizer works well even for O(1/xti) negative losses, which is
convenient for combining with an optimistic prediction framework.

4.3 Regret analysis

This subsection provides regret bounds achieved by Algorithm 1. First, as we have E[ˆ̀|xt] = `t from
(3) and E[at|xt] = xt, the regret can be bounded as

RT (a∗) ≤ E

[
T∑
t=1

`>t (xt − x∗)

]
+ T‖a∗ − x∗‖1 = E

[
T∑
t=1

ˆ̀>
t (xt − x∗)

]
+ T‖a∗ − x∗‖1 (6)

for any x∗ ∈ X . We set x∗ = (1 − d
T )a∗ + d

T x0, where x0 is a point in X such that x0i ≥ 1/d
for all i ∈ [d]. The existence of such a point follows from the assumption that for any i ∈ [d] there
exists a ∈ A satisfying ai = 1. The term ‖a∗ − x∗‖1 in (6) can then be bounded as ‖a∗ − x∗‖1 =
d
T ‖a

∗ − x0‖1 ≤ d2

T . Further, the term
∑T
t=1

ˆ̀>
t (xt − x∗) can be bounded via Lemma 1 and the

following lemma:

Lemma 2. Suppose ˆ̀
t and ψt are given by (3), respectively. The following part of the bound in

Lemma 1 can then be bounded as (ˆ̀
t −mt)

>(xt − x′t+1)−Dt(x
′
t+1, xt) = O

(∑d
i=1

αti

βti

)
, where

αti is defined in (4).

This lemma can be shown via standard techniques used, e.g., in [71, 68]. Combining Lemmas 1, 2
and (6), we obtain the following regret bound:

Theorem 1. For Algorithm 1, the regret is bounded as RT = O
(

log T ·E
[∑d

i=1 βT+1,i

]
+ d2

)
where βti is defined as (4). Consequently, we have

RT = O

 d∑
i=1

√√√√log T E

[
T∑
t=1

ati(`ti −mti)2

]
+ d2 + d log T

 (7)

as well as

RT = O

 d∑
i=1

√√√√log T E

[
T∑
t=1

min

{
xti,

1− xti√
log T

}]
+ d2 + d log T

 . (8)

Note that this theorem holds for arbitrary mt ∈ [0, 1]d. The specific choice of mt in (5) and (7) leads
to the following bound in the adversarial regime:
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Corollary 1 (Data-dependent bounds for adversarial regimes). For Algorithm 1, the regret is bounded

asRT = O

(√
d log T ·min

{∑T
t=1 `

>
t a
∗,
∑T
t=1

∥∥`t − ¯̀
∥∥2

2
,
∑T−1
t=1 ‖`t − `t+1‖1

}
+ d log T + d2

)
for any a∗ ∈ A, where ¯̀= 1

T

∑T
t=1 `t.

Further, from (8), we see that Algorithm 1 may offer improved performance in stochastic regimes
(with adversarial corruptions), as follows:
Corollary 2 (Improved regret bounds for stochastic regimes with adversarial crruptions). If the
environment is in a stochastic regime with adversarial corruptions (defined in Subsection 2.3),

Algorithm 1 has the following regret bound: RT (a∗) = O

(
B(A) log T

∆ +
√
B(A)Cm log T

∆ + d2

)
,

where B(A) ≥ 0 is a constant dependent on the action set, bounded as

B(A) ≤

 dm (general cases)
(d−m+m/

√
log T ) min{m, d−m} (size-invariant semi-bandits)

d−m+m/
√

log T (matroid semi-bandits)
. (9)

Remark 3. From Corollary 2, we can obtain regret bounds for the stochastic regime as well, by
substituting C = 0. In a stochastic regime, the BOBW algorithm proposed by Zimmert et al. [71]
has been shown to enjoy similar but slightly different regret bounds, e.g., B(A) ≤ (d+m/ log T )m
for general cases (which is slightly worse than in (9)), and B(A) ≤ (d −m)(1 + (log d)2/ log T )
for the cases of uniform matroids (which in general is not comparable to (9)). For a stochastic regime
with adversarial corruptions, their algorithm achieves O(B(A) log T

∆ +Cm)-regret for such a modified
B(A), though it is not known if the bound can be improved to an O(

√
C)-type as in Corollary 2.

Remark 4. For matroid semi-bandits, we can state a more refined regret bound. For
the optimal action a∗ ∈ arg mina∈A µ

>a set J∗ = {i ∈ [d] | a∗i = 0} and de-
note ∆ = mina∈A:ai=1 µ

>a − µ>a∗ for each i ∈ J∗. We then have RT (a∗) =

O

(∑
i∈J∗

log T
∆i

+ m
√

log T
∆ +

√
Cm

(∑
i∈J∗

log T
∆i

+ m
√

log T
∆

))
.

5 Linear bandits

5.1 Predictor-dependent regret bounds

Regret bounds dependent on mt have been developed for linear bandit problems, similarly to what is
seen for semi-bandits. This paper focuses on regret bounds in the following form:

RT ≤ D ·E


√√√√ T∑

t=1

((`t −mt)>at)2

 , (10)

where D is a parameter dependent onA, d and T . Rakhlin and Sridharan [57] proposed the SCRiBLe
algorithm, which achieves a regret bound as in (10) withD = O(ϑd log T ), given a ϑ-self-concordant
barrier over the convex hull of A, if an appropriate learning rate is chosen. Even without self-
concordant barriers, for general action sets, an algorithm proposed by Ito et al. [36] achieves a regret
bound with D = O(d log T · log(dT )), as is shown in Theorem 2 in their paper.

From (10), we can achieve small regret by choosing mt so that
∑T
t=1 gt(mt), where we define

gt(m) = 1
2 ((`t −m)>at)

2. When choosing mt, we can use the information of {(`j , `>j aj)}
t−1
j=1.

5.2 Tracking linear experts

In this subsection, we revisit the work by Herbster and Warmuth [31]. Let p′ = min{p, 2 log d} and
let q′ ≥ q be such that 1/p′ + 1/q′ = 1. Define Φp(m) = ‖m‖2p. Let L = {m ∈ Rd | ‖m‖q ≤ 1}.
Consider mt ∈ L defined as follows:

m1 = 0, mt+1 ∈ arg min
m∈L

{
Φp′(m) +

(
∇Φq′(mt)−

1

2(p′ − 1)

(
m>t at − `>t at

)
at

)>
m

}
.

(11)
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For mt defined by (11), we have the following:
Theorem 2 ([31], Theorem 11.4 in [16]). Suppose p ≥ 2. If mt is chosen by (11), for any sequence
{ut}Tt=1 ⊆ L, we have

∑T
t=1 gt(mt) ≤ 2

∑T
t=1 gt(ut) + 4(p′ − 1)

(∑T
t=1 ‖ut − ut+1‖q + 1

)
.

5.3 Hybrid data-dependent regret bound

By combining (10) and Theorem 2, we obtain the following regret bound:
Theorem 3. Suppose p ≥ 2. Suppose an algorithm enjoys a regret bound as (10) andmt is chosen by
(11). We then haveRT = O

(
D ·E

[√
min {Qq, p′ · Vq}+ p′

])
for any u ∈ L. Further, if `>t a ≥ 0

holds for all a ∈ A and all t ∈ [T ], it holds for all a∗ ∈ A that RT (a∗) = O
(
D ·
√

E [L∗] + p′
)

.2

By combining this theorem and (10) with D = Õ(d) [36], we obtain the regret bound in Table 2.

On Potential Societal Impact This study is primarily theoretical in nature, and we do not see any
negative social consequences. Researchers working on bandit theory may benefit from this paper. In
the long run, we expect that the proposed algorithms, which are robust to adversarial attacks, have
the potential to contribute to the realization of a safer and more secure society.
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A Appendix

A.1 Proof of Lemma 1

From the definition of xt and x′t shown in (2) and the first-order optimality condition, we have

T∑
t=1

ˆ̀>
t x
∗ + ψT+1(x∗) ≥

T∑
t=1

ˆ̀>
t x
′
T+1 + ψT+1(x′T+1)

=

(
T−1∑
t=1

ˆ̀
t +mT

)>
x′T+1 + ψT (x′T+1) + ψT+1(x′T+1)− ψT (x′T+1) + (ˆ̀

T −mT )>x′T+1

≥

(
T−1∑
t=1

ˆ̀
t +mT

)>
xT + ψT (xT ) + ψT+1(x′T+1)− ψT (x′T+1) + (ˆ̀

T −mT )>x′T+1 +DT (x′T+1, xT )

=

T−1∑
t=1

ˆ̀>
t xT + ψT (xT ) +m>T xT + ψT+1(x′T+1)− ψT (x′T+1) + (ˆ̀

T −mT )>x′T+1 +DT (x′T+1, xT )

≥
T−1∑
t=1

ˆ̀>
t x
′
T + ψT (x′T ) +m>T xT + ψT+1(x′T+1)− ψT (x′T+1) + (ˆ̀

T −mT )>x′T+1 +DT (x′T+1, xT )

≥ · · · ≥ ψ1(x′1) +

T∑
t=1

(
ψt+1(x′t+1)− ψt(x′t+1) +m>t xt + (ˆ̀

t −mt)
>x′t+1 +Dt(x

′
t+1, xt)

)
,

where the first and the third inequalities follow from the definition of x′t, the second inequality
follows from the definition (2) of xt and the first-order optimality condition, and the last inequality is
obtained by applying similar arguments recursively. This inequality immediately implies the bound
in Lemma 1.

For the special case in which mt = 0, a proof can be found in the literature, e.g., in Exercise 28.12 of
the book by Lattimore and Szepesvári [44].

A.2 Proof of Lemma 2

For the sake of simplicity, we here assume T ≥ 3 and, consequently, have γ = log T ≥ 1. For each
i ∈ [d], we denote

ψ
(1)
ti (xti) = −βti log(xi), ψ

(2)
ti (x) = γβti(1− xi) log(1− xi) (12)

and let D(1)
ti and D

(2)
ti be the Bregman divergences over R>0, corresponding to ψ

(1)
ti and ψ

(2)
ti ,

respectively. As ψt can be expressed as ψt(x) =
∑d
i=1(ψ

(1)
ti (xi) + ψ

(2)
ti (xi)), from the linearity of

Bregman divergences, we have Dt(x, y) =
∑d
i=1(D

(1)
ti (xi, yi) +D

(2)
ti (xi, yi)). We hence have

(ˆ̀
t −mt)

>(xt − x′t+1)−Dt(x
′
t+1, xt)

=

d∑
i=1

(
(ˆ̀
ti −mti)(xti − x′t+1,i)−D

(1)
ti (x′t+1,i, xti)−D

(1)
ti (x′t+1,i, xti)

)
≤

d∑
i=1

min
{

(ˆ̀
ti −mti)(xti − x′t+1,i)−D

(1)
ti (x′t+1,i, xti), (

ˆ̀
ti −mti)(xti − x′t+1,i)−D

(2)
ti (x′t+1,i, xti)

}
.

(13)

We show below that

(ˆ̀
ti −mti)

>(xti − x)−D(1)
ti (x, xti) ≤ βtih(1)

(
ati(`ti −mti)

βti

)
(14)

(ˆ̀
ti −mti)

>(xti − x)−D(2)
ti (x, xti) ≤ γβti(1− xti)h(2)

(
ati(`ti −mti)

γβtixti

)
(15)
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hold for any x ∈ R>0, where we define h(1)(z) = z − log(z + 1) and h(2)(z) = exp(z)− z − 1.

Let us first show (14). From the first-order optimality condition, the left-hand side of (14) is
maximized when x satisfies

−ˆ̀
ti +mti −∇ψ(1)

ti (x) +∇ψ(1)
ti (xti) = 0, (16)

which can be rewritten as

1

x
=

1

xti
+

ˆ̀
ti −mti

βti
, and equivalently,

xti
x

= 1 +
xti(ˆ̀

ti −mti)

βti
. (17)

For such x, the left-hand side of (14) can be expressed as

(ˆ̀
ti −mti)(xti − x)−D(1)

ti (x, xti)

= (ˆ̀
ti −mti)(xti − x) + βti

(
log x− log xti −

1

xti
(x− xti)

)
=

(
ˆ̀
ti −mti +

βti
xti

)
(xti − x) + βti

(
− log

(
xti(ˆ̀

ti −mt)

βti
+ 1

))

=
βti
x

(xti − x) + βti

(
− log

(
xti(ˆ̀

ti −mti)

βti
+ 1

))

= βti

(
− log

(
xti(ˆ̀

ti −mti)

βti
+ 1

)
+
xti(ˆ̀

ti −mti)

βti

)

= βtih
(1)

(
xti(ˆ̀

ti −mti)

βti

)
= βtih

(1)

(
ati(`ti −mti)

βti

)
,

where the second, third, and fourth equalities follow from (17), and the last equality follows from the
definition of ˆ̀

t in (3).

Let us next show (15). From the first-order optimality condition, the left-hand side of (15) is
maximized when x satisfies

log(1− x) = log(1− xti) +
ˆ̀
ti −mti

γβti
. (18)

The left-hand side of (15) can then be expressed as

(ˆ̀
ti −mti)(xti − x)−D(2)

ti (x, xti)

= (ˆ̀
ti −mti + γβti(log(1− xti) + 1))(xti − xi)− γβti ((1− xi) log(1− xi)− (1− xti) log(1− xti))

= γβti ((log(1− xi) + 1) · (xti − xi)− ((1− xi) log(1− xi)− (1− xti) log(1− xti)))
= γβti ((xti − 1) log(1− xi) + (1− xti) log(1− xti) + xti − xi)

= γβti(1− xti)
(

log
1− xti
1− xi

− 1 +
1− xi
1− xti

)
= γβti(1− xti)

(
exp

(
ˆ̀
ti −mti

γβti

)
−

ˆ̀
ti −mti

γβti
− 1

)

= γβti(1− xti)h(2)

(
ˆ̀
ti −mti

γβti

)
= γβti(1− xti)h(2)

(
ati(`ti −mti)

γβtixti

)
.

Combining (13), (14) and (15), we obtain

(ˆ̀
t −mt)

>(xt − x′t+1)−Dt(x
′
t+1, xt)

≤
d∑
i=1

βti min

{
h(1)

(
ati(`ti −mti)

βti

)
, γ(1− xti)h(2)

(
ati(`ti −mti)

γβtixti

)}
. (19)
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As we have h(1)(z) ≤ 2z2 for |z| ≤ 1√
2

and h(2)(z) ≤ z2 for |z| ≤
√

2, from βti ≥
√

2, we have

min

{
h(1)

(
ati(`ti −mti)

βti

)
, γ(1− xti)h(2)

(
ati(`ti −mti)

γβtixti

)}

≤


2ati(`ti−mti)

2

β2
ti

(γβtixti <
1√
2
)

min
{

2ati(`ti−mti)
2

β2
ti

, ati(1−xti)(`ti−mti)
2

γβ2
tix

2
ti

}
(γβtixti ≥ 1√

2
)

≤ 2ati(`ti −mti)
2

β2
ti

min

{
1,

1− xti
γx2

ti

}
=

2αti
β2
ti

.

The last inequality can be confirmed as follows: If 1−xti

γx2
ti
≤ 1, then 1− xti ≤ γx2

ti ≤ γxti, which

implies xti ≥ 1
γ+1 ≥

1
2γ ≥

1√
2γβti

. Combining this with (19), we obtain

(ˆ̀
t −mt)

>(xt − x′t+1)−Dt(x
′
t+1, xt) ≤ 2

d∑
i=1

αti
βti

.

A.3 Proof of Theorem 1

From (6), the definition of x∗, and Lemmas 1 and 2, we have

RT (a∗) ≤ E

[
ψT+1(x∗)− ψ1(x′1) + 2

T∑
t=1

(
ψt(x

′
t+1)− ψt+1(x′t+1) +

d∑
i=1

αti
βti

)]
+ d2

≤ E

[
d∑
i=1

βT+1,i log
1

x∗i
+
γ

e

d∑
i=1

β1i + 2

T∑
t=1

d∑
i=1

(
αti
βti

+
γ

e
(βt+1,i − βti)

)]
+ d2

≤ E

[(
log T +

γ

e

) d∑
i=1

βT+1,i + 2

d∑
i=1

T∑
t=1

αti
βti

]
+ d2, (20)

where the second inequality follows from log x′ti − γ(1 − x′ti) log(1 − x′ti) ≤ γ/e as x′ti ∈ (0, 1)
and the last inequality follows from the definition of x∗. We further have

T∑
t=1

αti
βti
≤ 2 log T · βT+1,i. (21)

In fact, for β′ti defined by β′ti =
√

1
log T

∑t−1
j=1 αji (≤ βt−1,i), we have

β′t+1,i − β′ti =
1

β′t+1,i + β′ti

αti
log T

≥ αti
2βti log T

,

which implies

T∑
t=1

αti
βti
≤ 2 log T ·

T∑
t=1

(β′t+1,i − β′ti) = 2 log T · β′T+1,i ≤ 2 log T · βT+1,i.

Combining (20) and (21), and substituting γ = log T , we obtain

RT ≤ 6 log T ·E

[
d∑
i=1

βT+1,i

]
+ d2. (22)

From this and the definitions of αti and βti in (4), we have (7) and (8). In fact, as we have

βT+1,i =

√√√√2 +
1

log T

T∑
t=1

αti ≤
√

2 +

√√√√ 1

log T

T∑
t=1

αti (23)
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from (4), by combining this with (22), we obtain

RT ≤ 6 log T ·E

 d∑
i=1

√2 +

√√√√ 1

log T

T∑
t=1

αti

+ d2

≤ 6 ·E

 d∑
i=1


√√√√log T

T∑
t=1

αti

+ d2 + 9d log T. (24)

From this and αti ≤ ati(`ti −mti)
2, which immediately follows from the definition of αti in (4), we

have

RT ≤ 6 ·E

 d∑
i=1

√√√√log T

T∑
t=1

ati(`ti −mti)2

+ d2 + 9d log T. (25)

Further, as we have (`ti −mti)
2 ≤ 1 and E[ati|xti] = xti, we have

E[αti] ≤ E

[
ati min

{
1,

1− xti
γx2

ti

}]
= E

[
min

{
xti,

1− xti
γxti

}]
≤ 2E

[
min

{
xti,

1− xti√
γ

}]
.

(26)

In fact, if min
{
xti,

1−xti√
γ

}
= 1−xti√

γ , we have xti ≥ 1
1+
√
γ ≥

1
2
√
γ , which implies 1−xti

γxti
≤ 2 1−xti√

γ .
Combining (24) and (26), substituting γ = log T , and applying Jensen’s inequality, we obtain

RT ≤ 9 ·
d∑
i=1

√√√√log T E

[
T∑
t=1

min

{
xti,

1− xti√
log T

}]
+ d2 + 9d log T. (27)

A.4 Proof of Corollary 1

We start with showing the following lemma:

Lemma 3. If mt is given by (5), it holds for any {ut}Tt=1 ⊆ [0, 1]d that

T∑
t=1

ati(`ti −mti)
2 ≤ 2

T∑
t=1

ati(`ti − uti)2 +

T∑
t=1

16|uti − ut+1,i|+ 1 (28)

for any i ∈ [d].

Proof. From the definition (5) of mt, we have

ati(`ti −mti)
2 − ati(`ti − uti)2 = ati(2`ti −mti − uti)(uti −mti)

≤ 2ati(`ti −mti)(uti −mti)

= 2ati(`ti −mti)(mt+1,i −mti) + 2ati(`ti −mti)(uti −mt+1,i)

=
1

2
ati(`ti −mti)

2 + 8(mt+1,i −mti)(uti −mt+1,i)

≤ 1

2
ati(`ti −mti)

2 + 4((uti −mti)
2 − (uti −mt+1,i)

2),

where the third inequality follows from mt+1,i −mti = 1
4ati(`ti −mti). We hence have

ati(`ti −mti)
2 ≤ 2ati(`ti − uti)2 + 8((uti −mti)

2 − (uti −mt+1,i)
2).

18



By taking the summation of this for t ∈ [T ], we obtain

T∑
t=1

ati(`ti −mti)
2 ≤ 2

T∑
t=1

ati(`ti − uti)2 + 8

T∑
t=1

((uti −mti)
2 − (uti −mt+1,i)

2)

≤ 2

T∑
t=1

ati(`ti − uti)2 + 8

T−1∑
t=1

((ut+1,i −mt+1,i)
2 − (uti −mt+1,i)

2) + (u1i −m1i)
2

≤ 2

T∑
t=1

ati(`ti − uti)2 + 8

T−1∑
t=1

(ut+1,i + uti − 2mt+1,i)(ut+1,i − uti) + 1

≤ 2

T∑
t=1

ati(`ti − uti)2 +

T+1∑
t=1

16|ut+1,i − uti|+ 1.

Note that {ut}Tt=1 in this lemma does not appear in the algorithm and is used only in the analysis.
Lemma 3 can be seen as a special case of Theorem 11.4 in [16].

Proof of Corollary 1. We first show RT = O

(√
d log T E

[∑T
t=1 `

>
t a
∗
]

+ d2 + d log T

)
. By

substituting uti = 0 for all t ∈ [T ] and i ∈ [d], from (28), we obtain

E

[
T∑
t=1

d∑
i=1

ati(`ti −mti)
2

]
≤ 2E

[
T∑
t=1

d∑
i=1

ati`
2
ti

]
+ 1 ≤ 2E

[
T∑
t=1

`>t at

]
+ 1

= 2

(
RT (a∗) + E

[
T∑
t=1

`>t a
∗

])
+ 1,

where the first inequality follows from (28) with uti = 0, the second inequality follows from
`t ∈ [0, 1]d and at ∈ {0, 1}d, and the last equality follows from the definition of RT (a∗) in (1).
Combining this with (25) and applying Jensen’s inequality, we obtain

RT (a∗) ≤ 6 ·E

 d∑
i=1

√√√√log T

T∑
t=1

ati(`ti −mti)2

+ d2 + 9d log T

≤ 6 ·E


√√√√dlog T

d∑
i=1

T∑
t=1

ati(`ti −mti)2

+ d2 + 9d log T

≤ 6 ·

√√√√dlog T E

[
d∑
i=1

T∑
t=1

ati(`ti −mti)2

]
+ d2 + 9d log T

≤ 6 ·

√√√√2dlog T

(
RT (a∗) + E

[
T∑
t=1

`>t a
∗

]
+ 1

)
+ d2 + 9d log T,

where the second inequality follows from the Cauchy–Schwarz inequality. By solving the quadratic
inequation (RT (a∗) − d2 − 9d log T )2 ≤ 72d log T

(
RT (a∗) + E

[∑T
t=1 `

>
t a
∗
]

+ 1
)

in RT (a∗),

we obtain RT (a∗) = O

(√
d log T E

[∑T
t=1 `

>
t a
∗
]

+ d2 + d log T

)
.

Similarly, we can show thatRT = O

(√
d log T E

[∑T
t=1

∑d
i=1 ati(`ti − ¯̀

i)2
]

+ d2 + d log T

)
=

O

(√
d log T E

[∑T
t=1 ‖`t − ¯̀‖22

]
+ d2 + d log T

)
by substituting ut = ¯̀for all t ∈ [T ], to (28).
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We can show that RT = O

(√
d log T E

[∑T−1
t=1 ‖`t − `t+1‖1

]
+ d2 + d log T

)
as well by substi-

tuting ut = `t for all t ∈ [T ], into (28).

A.5 Proof of Corollary 2

We provide improved regret upper bounds via the following regret lower bounds:

Lemma 4. For a∗ ∈ A, denote I∗ = {i ∈ [d] | a∗i = 1} and J∗ = [d] \ I∗. In a stochastic regime
with adversarial corruptions, for any algorithm, the regret is bounded from below as

RT (a∗) ≥ ∆

B′(A)
E

[
T∑
t=1

(∑
i∈I∗

(1− ati) +
∑
i∈J∗

ati

)]
− 2Cm, (29)

where B′(A) > 0 is defined as

B′(A) =

{
2m (general cases)
2 min{m, d−m} (size-invariant semi-bandits)
2 (matroid semi-bandits)

. (30)

Further, for matroid semi-bandits, we have

RT (a∗) ≥ 1

2
E

[
T∑
t=1

(
∆
∑
i∈I∗

(1− ati) +
∑
i∈J∗

∆iati

)]
− 2Cm, (31)

where we define ∆i = mina∈A:ai=1 µ
>a− µ>a∗.

Proof. Let us recall the conditions in a stochastic regime with adversarial corruptions:

E[`′t] = µ (t ∈ [T ]), (32)
T∑
t=1

‖`t − `′t‖∞ ≤ C, (33)

a∗ ∈ arg min
a∈A

µ>a, (34)

∆ = min
a∈A\{a∗}

µ>a− µ>a∗ > 0. (35)

From these conditions, we have

RT (a∗) = E

[
T∑
t=1

`>t (at − a∗)

]
= E

[
T∑
t=1

`′>t (at − a∗) +

T∑
t=1

(`t − `′t)>(at − a∗)

]

≥ E

[
T∑
t=1

µ>(at − a∗)−
T∑
t=1

‖`t − `′t‖∞‖at − a∗‖1

]

≥ E

[
T∑
t=1

µ>(at − a∗)− 2m

T∑
t=1

‖`t − `′t‖∞

]

≥ E

[
T∑
t=1

µ>(at − a∗)

]
− 2Cm ≥ E

[
T∑
t=1

∆ · 1[at 6= a∗]

]
− 2Cm, (36)

where the first, the third and the last inequality follows from (32), (33) and (35), respectively, and
the second inequality follows from ‖a‖1 ≤ m for all a ∈ A. As we have ‖at − a∗‖1 ≤ 2m for any
at ∈ A, we have

1[at 6= a∗] ≥ 1

2m
‖at − a∗‖1 =

1

2m

(∑
i∈I∗

(1− ati) +
∑
i∈J∗

ati

)
. (37)
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Combining this with (36), we obtain (29) in which B′(A) = 2m. Similarly for the case of size-
invariant semi-bandits, as we have ‖at − a∗‖1 ≤ 2 min{m, d −m} for any at, we obtain (29) in
which B′(A) = 2 min{m, d−m}.
For the matroid case, we have

µ>(a− a∗) ≥
∑
i∈J∗

∆iai (38)

for any a ∈ A. This can be shown via the symmetric basis-exchange property of matroid bases [10].
Denote I = {i ∈ [d] | ai = 1} and k = |I \ I∗|. We consider the following sequence of bases
{Ij}kj=0:

• Set I0 = I∗.

• For j = 0, 1, . . . , k− 1: choose ij ∈ Ij \ I∗ arbitrarily. From the symmetric basis-exchange
property, there exists i′j ∈ I∗ \ Ij such that both (Ij ∪ i′j) \ {ij} and (I∗ ∪ ij) \ {i′j} are
bases. Let Ij+1 = (Ij ∪ i′j) \ {ij}.

As we have |Ij+1 \ I∗| = |Ij \ I∗| − 1 for j ∈ [k − 1], we have |Ik \ I∗| = 0, and consequently,
Ik = I∗ holds. Similarly, we can see that {ij}kj=1 = I \ I∗. The value of µ>(a − a∗) can be
expressed as

µ>(a− a∗) =

k∑
j=1

(µij − µi′j ) ≥
k∑
j=1

∆ij =
∑
i∈I\I∗

∆i =
∑
i∈J∗

∆iai, (39)

where the inequality follows from the definition of ∆i and the fact that (I∗ ∪ ij) \ {i′j} is a base.
From this, ∆ = mini∈J∗ ∆i, and the fact that

∑
i∈J∗ ai =

∑
i∈I∗(1− ai), we have

µ>(a− a∗) ≥ ∆

2

∑
i∈J∗

ai +
1

2

∑
i∈J∗

∆iai =
∆

2

∑
i∈I∗

(1− ai) +
1

2

∑
i∈J∗

∆iai. (40)

Combining this with (36), we obtain (31). Further, it follows from ∆ ≤ ∆i for any i ∈ J∗ that (29)
with B′(A) = 2 holds.

Proof of Corollary 2. From (27) and (29), for any λ > 0, we have

RT (a∗) = (1 + λ)RT (a∗)− λRT (a∗)

≤ (1 + λ)

9 ·
d∑
i=1

√√√√log T E

[
T∑
t=1

min

{
xti,

1− xti√
log T

}]
+ d2 + 9d log T


− λ

(
∆

B′(A)
E

[
T∑
t=1

(∑
i∈I∗

(1− ati) +
∑
i∈J∗

ati

)]
− 2Cm

)

≤
∑
i∈J∗

9(1 + λ)
√

log T

√√√√E

[
T∑
t=1

xti

]
− λ∆

B′(A)
E

[
T∑
t=1

xti

]
+
∑
i∈I∗

9(1 + λ)(log T )1/4

√√√√E

[
T∑
t=1

(1− xti)

]
− λ∆

B′(A)
E

[
T∑
t=1

(1− xti)

]
+ (1 + λ)(d2 + 9d log T ) + 2λCm

≤
∑
i∈J∗

81(1 + λ)2B′(A) log T

4λ∆
+
∑
i∈I∗

81(1 + λ)2B′(A)
√

log T

4λ∆

+ (1 + λ)(d2 + 9d log T ) + 2λCm,

=

(
|J∗|+ |I∗| 1√

log T

)
81(1 + λ)2B′(A) log T

4λ∆
+ (1 + λ)(d2 + 9d log T ) + 2λCm,
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where the first inequality follows from (27) and (29), the second inequality follows from E[at|xt] =

xt, and the third inequality follows from the inequality a
√
x− bx = −b(

√
x− a

2b )
2 + a2

4b ≤
a2

4b that

holds for any x ≥ 0, a ≥ 0, and b > 0. By setting B(A) = 1
2

(
|J∗|+ |I∗| 1√

log T

)
B′(A), we have

RT (a∗) ≤ 81(1 + λ)2B(A) log T

2λ∆
+ (1 + λ)(d2 + 9d log T ) + 2λCm

≤ 81B(A) log T

∆
+ d2 + 9d log T + λ

(
81B(A) log T

2∆
+ d2 + 9d log T + Cm

)
+

1

λ

81B(A) log T

2∆
.

By choosing λ = Θ

(√(
B(A) log T

∆

)
/
(
B(A) log T

∆ + d2 + d log T + Cm
))

,we obtainRT (a∗) =

O

(
B(A) log T

∆ +
√
B(A)Cm log T

∆ + d2

)
. From conditions in (30) and the definition of B(A), we

can confirm that (9) holds.

The regret bound in Remark 4 can be similarly shown, by combining (27) and (31).

A.6 Proof of Theorem 3

Combining (10) and Theorem 2, we obtain

RT ≤ D ·E


√√√√2

T∑
t=1

((`t − ut)>at)2 + 8p′
T−1∑
t=1

‖ut − ut+1‖q + 8p′

 (41)

for any {ut}Tt=1 ⊆ L. Considering a special case of ut = ¯̀for all t ∈ [T ], we have

RT ≤ D ·E


√√√√2

T∑
t=1

((`t − ¯̀)>at)2 + 8p′

 ≤ D ·E

√√√√2

T∑
t=1

‖`t − ¯̀‖2q‖at‖2p + 8p′


≤ D ·E


√√√√2

T∑
t=1

‖`t − ¯̀‖2q + 8p′

 = D ·E
[√

2Qq + 8p′
]
.

Similarly, by considering a special case of ut = `t for all t ∈ [T ], we obtain

RT ≤ D ·E


√√√√8p′

T−1∑
t=1

‖`t − `t+1‖q + 8p′

 = D ·E
[√

8p′Vq + 8p′
]
.

Further, if `>t at ∈ [0, 1] for all t ∈ [T ], by substituting ut = 0 for all t ∈ [T ], we obtain

RT (a∗) ≤ D ·E


√√√√2

T∑
t=1

(`>t at)
2 + 8p′

 ≤ D ·E

√√√√2

T∑
t=1

`>t at + 8p′


≤ D ·

√√√√2

(
RT (a∗) + E

[
T∑
t=1

`>t a∗

])
+ 8p′ = D ·

√
2 (RT (a∗) + E [L∗]) + 8p′,

where the second inequality follows from `>t at ∈ [0, 1] and the second inequality follows the
definition of RT (a∗) and Jensen’s inequality. This implies (RT (a∗))2 ≤ D2(2 (RT (a∗) + E [L∗]) +

8p′). By solving this quadratic inequation in RT (a∗), we obtain RT (a∗) = O(D · (
√

E[L∗] +
p′)).

B Regret Bounds for an Existing Method in Corrupted Stochastic Settings

In this section, we see that the algorithm by Zimmert et al. [71] achieves a regret bound of

RT (a∗) = O

(
m

∆
(d log T +m) +

√
Cm2

∆
(d log T +m)

)
(42)

in stochastic regimes with adversarial corruptions.
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B.1 Natation and known results

From (4) in the paper [71], the regret for their algorithm is bounded as

RT (a∗) ≤
T∑
t=1

25√
t

(f(E[at]) + g(E[at])) + c, (43)

where f , g and c are defined by

f(x) =
∑
i∈J∗

√
xi, g(x) =

∑
i∈I∗

(γ−1 − γ log(1− xi))(1− xi), c =
58m

γ2
(44)

and γ ∈ (0, 1] is an input parameter. Note that I∗ and J∗ are defined in the same way as in Lemma 4.
Define ∆x for x ∈ A, r(·), and P (·) in the same way as in the paper by Zimmert et al. [71]. Similarly,
we further define Csto and Cadd(u) by

Csto := max
α∈[0,∞]A

(f(ᾱ)− r(α)) , Cadd(u) :=

∞∑
t=1

max
α∈∆(A)

(
u√
t
f(ᾱ)− r(α)

)
(45)

for any u > 0, where ᾱ ∈ Rd is defined by ᾱ =
∑
x∈A αxx. As can be seen from Section A.3 of

[71], Csto and Cadd are bounded as

Csto = O

(
md

∆

)
, Cadd(u) = O

(
m2u2

γ2∆

)
(46)

in general. We note that ∆ in this paper corresponds to ∆min in [71] and that Zimmert et al. [71] have
provided even better bounds for Csto and Cadd(u) in some special cases including problems with
full combinatorial set or m-set. We only consider the case in which Csto and Cadd(u) are bounded
as in (46) for the sake of simplicity.

B.2 Regret analysis in stochastic regime with adversarial corruptions

In stochastic regimes with adversarial corruptions, the regret is bounded from below as follows:

RT (a∗) ≥
T∑
t=1

r(P (E[at]))− 2Cm, (47)

which can be shown in a similar way to Lemma 4. Combining (43) with (47), for any λ > 0, we
obtain
RT (a∗) = (1 + λ)RT (a∗)− λRT (a∗)

≤ (1 + λ)

(
T∑
t=1

25√
t

(f(E[at]) + g(E[at])) + c

)
− λ

(
T∑
t=1

r(P (E[at]))− 2Cm

)

=

T∑
t=1

(
25(1 + λ)√

t
f(E[at])−

λ

2
r(P (E[at]))

)
+

T∑
t=1

(
50(1 + λ)√

t
g(E[at])−

λ

2
r(P (E[at]))

)
+ (1 + λ)c+ 2λCm. (48)

Each term in the right-hand side can be bounded via similar arguments to in the proof of Theorem 1
by Zimmert et al. [71]. In fact, we have

T∑
t=1

(
25(1 + λ)√

t
f(E[at])−

λ

2
r(P (E[at]))

)
≤

T∑
t=1

max
α∈∆(A)

(
25(1 + λ)√

t
f(ᾱ)− λ

2
r(α)

)

≤
T∑
t=1

max
α∈[0,∞]A

(
25(1 + λ)√

t
f

(
502(1 + λ)2

λ2t
ᾱ

)
− λ

2
r

(
502(1 + λ)2

λ2t
α

))

=

T∑
t=1

502(1 + λ2)

2λt
max

α∈[0,∞]A
(f(ᾱ)− r(α)) = O

(
(1 + λ)2

λ
Csto log T

)
= O

((
λ+

1

λ

)
Csto log T

)
, (49)
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where the first equality follows from the fact that r is linear and that f(ux) =
√
uf(x) holds for any

scalar u ≥ 0, and the second equality follows from (46). Similarly, we can see that

T∑
t=1

(
50(1 + λ)√

t
g(E[at])−

λ

2
r(P (E[at]))

)
=
λ

2

T∑
t=1

(
100(1 + λ)

λ
√
t

g(E[at])− r(P (E[at]))

)

≤ λ

2
Cadd

(
100(1 + λ)

λ
√
t

)
= O

(
λ

2

(
1 + λ

λ2

)2
m2

γ2∆

)
= O

((
λ+

1

λ

)
m2

γ2∆

)
, (50)

where the inequality follows for the definition of Cadd(u) in (45) and the second inequality follows
from (46). Combining (48), (49) and (50), we obtain

RT (a∗) = O

(
λ

(
Csto log T +

m2

γ2∆
+ Cm+ c

)
+

1

λ

(
Csto log T +

m2

γ2∆

)
+ c

)
.

By choosing λ =
√

Csto log T+m2/γ2∆
Csto log T+m2/γ2∆+Cm+c , we obtain

RT (a∗) = O

(√(
Csto log T +

m2

γ2∆
+ Cm+ c

)(
Csto log T +

m2

γ2∆

)
+ c

)

= O

(
Csto log T +

m2

γ2∆
+ c+

√
(Cm+ c)

(
Csto log T +

m2

γ2∆

))

= O

(
dm

∆
log T +

m2

γ2∆
+ c+

√
(Cm+ c)

(
dm

∆
log T +

m2

γ2∆

))
,

where the last equality follows from (46). If we set γ = 1, we have c = O(m) and hence the regret is
bounded as

RT = O

(
m

∆
(d log T +m) +

√
Cm2

∆
(d log T +m)

)
,

which means that (42) holds.
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