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1 Architecture Details of PASTA-GAN

Style Encoder and Mapping Network. The Style Encoder ES and mapping networkM are used
to project the garment patches into spatial-agnostic style code w. ES is composed of one convolution
layer, three encoder layers with downsampling, three encoder layers without downsampling, one
average pooling layer, and one fully-connected layer. Each encoder layer consists of one dense layer
and one convolution layer.M consists of one embedding layer and one fully-connected layer. The
full architecture details can be found in Tab. 1.

Identity Encoder. The Identity Encoder EI is used to encode the pose heat map and person head
into the identity feature map fid. It consists of eight convolution layers. More details about the
architecture can be found in Tab. 2.

Garment Encoder. The Garment Encoder EG is used to extract the warped garment feature map fg ,
which will be used in the Spatially-adaptive Residual Blocks. It consists of a convolution layers and
two Residual Blocks from [6]. More details can be found in Tab. 3.

Generator. The Generator G collaboratively exploits the garment style code w, identity feature map
fid, and warped garment feature map fg to generate the try-on results. It consists of six synthesis
blocks (Syn. B), style synthesis branch (SSB), and texture synthesis branch (TSB). The synthesis
blocks and the style synthesis branch are composed of synthesis layer (Syn. L) and RGB layer (RGB
L), which are inherited from StyleGAN2 [7]. Except for the synthesis layer and RGB layer, the
texture synthesis branch contains three SPADE Residual Blocks from [11]. More details about the
architecture can be found in Tab. 4.

2 Experiments Details

2.1 Dataset Detail

The newly collected UPT dataset consists of front-view person images and its diversity can be
summarized according to the following three aspects: First, UPT covers most of the regular garment
categories, including the sling, vest, t-shirt, long sleeve shirt, coat, pants, shorts, skirts, and dress.
Second, compared with the widely used virtual try-on datasets [2] and [5], UPT contains not only
female images but also male images. Third, UPT contains half-body and full-body person images,
with which the trained model can accomplish lower-body garment transfer and full-body garment
transfer.

After collecting the raw person images, data pre-processing is required to exclude the invalid data.
Specifically, we run the pose estimator [1] for each image and use the keypoint information to remove
the invalid images, i.e., images without a person, images with more than one person, person images
in back view, and person images that do not cover the upper body. We also apply the same filter
mechanism on MPV [2] and DeepFashion [9] to obtain the front view images from these two dataset.
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Fig. 1 displays some examples of the newly collected UPT dataset and the distribution of half-body
images and full-body images in the different datasets used in our experiments. Fig. 2 displays the
garment category distribution in different datasets.

The images in UPT are crawled from the E-commerce website Zalando 1 and Zalora 2. The copyright
of the images belongs to these websites. We, therefore, only release the image links.

2.2 Training Detail

Most of the training details (e.g., data split, evaluation metrics, setting of hardware and software,
setting of the optimizer, training iteration, etc.) have been described in the paper. As for the hyper-
parameters of the loss functions, we first randomly choose 5% of the training data to form the
validation set. Then we use the remaining training data to train the model with different hyper-
parameter settings and test it on the validation set. Finally, we choose the particular hyper-parameters
setting with which the trained model obtained the lowest FID score [12], and use the full training set
to train our model.

2.3 Inference Time

We try to fairly compare the inference time among our PASTA-GAN and the other baseline methods,
and find that our PASTA-GAN is superior to most of the baseline methods in terms of the inference
time. More specifically, the inference time for one try-on process for CP-VTON [14], ACGPN [15],
PFAFN [3], ADGAN [10], Liquid Warping GAN [8], and our proposed PASTA-GAN are 0.021s,
0.104s, 0.067s, 0.164s, 84.441s, and 0.018s, respectively. For a fair comparison, all the methods
except PFAFN are tested on the same machine using one NVIDIA GeForce RTX 3090 Graphics
Card. For PFAFN, we test it on another machine with one GeForce GTX 1660 Ti Graphics Card due
to compatibility issues. Note that all of CP-VTON, ACGPN, ADGAN, and our PASTA-GAN rely
on the 2D pose and human parsing, which requires an additional 0.190s per image (0.005s for 2D
pose estimation and 0.185s for human parsing estimation). Liquid Warping GAN does not take the
2D pose and human parsing as inputs, and instead relies on the SMPL which requires much more
time for the prediction. Since the official code for Liquid Warping GAN deeply entangles the data
pre-processing and model inference, the inference time for Liquid Warping GAN mentioned above
already includes the time for both processes. Since PFAFN leverages knowledge distillation to train
a parser-free student model, there is no extra cost for data pre-processing. Finally, for one try-on
process, the total inference time for CP-VTON, ACGPN, PFAFN, ADGAN, Liquid Warping GAN,
and PASTA-GAN are 0.211s, 0.294s, 0.067s, 84.441s, 0.208s, respectively. We can observe that the
main time cost of our PASTA-GAN is from the data pre-processing and that it has a competitive
inference time compared to most of the existing virtual try-on methods.

2.4 Human Evaluation Details

For human evaluation, we separately design three questionnaires for the UPT dataset, the DeepFashion
dataset [9], and the MPV dataset [2]. Each questionnaire is composed of 40 tasks where the volunteers
need to pick out the most photo-realistic try-on results from the given options. Specifically, for each
task, a person image and a garment image are provided in the question, while the virtual try-on results
generated by our PASTA-GAN and the results of the other baseline methods are provided in the
options in random order. The volunteers are asked to choose the synthesis result that looks most
realistic and is capable of preserving the garment information, i.e., garment style and garment texture,
from the garment image as much as possible. Fig. 3 shows the interface of the questionnaire for the
UPT dataset. The interfaces for the other two datasets are identical.

Before the start of the human evaluation, we first invite five volunteers to accomplish the questionnaire
in a serious manner to test the time required to finish an intact questionnaire. During the evaluation,
for a particular questionnaire, we randomly invite 30 volunteers, who are asked to spend at least 7
seconds accomplishing each task in the questionnaire.

1https://www.zalando.co.uk/
2https://www.zalora.com.my/
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3 Analysis of Limitation and Sensitivity

3.1 Failure Case and Limitation

In PASTA-GAN, the warped garment is derived from the garment patches of the source garment. If
the garment patch for a particular body part contains some appearance from the other body parts, the
warped results may be imprecise. As shown in Fig. 4(a), in the left example, the garment patch for the
right arm contains the appearance of the torso, while in the right example, the garment patch for the
torso contains appearance of the right arm, both of which lead to inaccurate warped results and further
influence the synthesis quality of PASTA-GAN. Besides, as shown in Fig. 4(b), our PASTA-GAN
fails to generate realistic try-on results when the pose of the person image is complicated and scarce
in the dataset.

3.2 Sensitivity Analysis

To analyse the sensitivity of PASTA-GAN, we train three PASTA-GANs with different random seeds.
As shown in Tab. 5, the discrepancy of the FID score [12] among the different PASTA-GANs is small,
illustrating that the proposed PASTA-GAN is insensitive to the random seed.

4 Comparison with StylePoseGAN

There exist certain similarities in some aspects between our PASTA-GAN and the concurrent work
StylePoseGAN [13], which is designed for controllable human manipulation. Specifically, both
methods use a canonical garment representation and set garment feature as the input of the modulation
layer in the pose-conditioned StyleGAN2 [7].

Despite this, we still have many differences inherently, summarized as follows. (1) StylePoseGAN
utilizes the paired images (i.e., the same person with different poses) as training data and turns to
the supervised paradigm, while our PASTA-GAN is designed for tackling the challenging unpaired
try-on task where ground truth data is unavailable; (2) instead of directly using StyleGAN2 generator
as a whole, we decompose the generator into a style synthesis branch and a texture synthesis branch,
which separately serves to predict the precise garment mask and synthesize realistic try-on results
with detailed texture; (3) our PASTA-GAN obtains the normalized garment patches by utilizing the
2D pose, while StylePoseGAN converts the garment to canonical space with the DensePose [4]
UV map. Unlike the size-adjustable patch design in our PASTA-GAN, the patches obtained from
DensePose can not preserve intactness of the source garment, since they only contain the texture
inside the clothing-free DensePose model and thus fail in retaining the texture area outside of it. This
can raise problems when dealing with loose, long sleeve garments. (4) our PASTA-GAN further
transforms the normalized patches to the target shape and obtains the warped garment, which is
essential for synthesizing the texture-preserved try-on results.

5 Additional Results

Virtual try-on results on UPT dataset. Fig. 5 displays more virtual try-on results generated by
PASTA-GAN on the UPT dataset. The synthesis results include the upper-body transfer, lower-body
transfer, and full-body transfer. Furthermore, in Fig. 6, we also display additional high resolution
(512× 320) virtual results generated by PASTA-GAN on the UPT dataset.

Visual Comparison with the state-of-the-art methods on the UPT Dataset. Fig. 7 displays addi-
tional visual comparisons among PASTA-GAN and the baseline methods under the unpaired setting
on the UPT dataset.

Visual comparison with the state-of-the-art methods on the DeepFashion dataset [9]. Fig. 8
displays additional visual comparisons among PASTA-GAN and the baseline methods under the
unpaired setting on the DeepFashion dataset.

Visual comparison with the state-of-the-art methods on the MPV dataset [2]. Fig. 9 displays ad-
ditional visual comparisons among PASTA-GAN and the baseline methods under their corresponding
setting on the MPV dataset.
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Ablation Study for Randomly Erasing Operation. We conduct an additional ablation experiment
to validate the necessity of the randomly erasing operation for the unsupervised training. More
specifically, we train another PASTA-GAN (denoted as PASTA-GAN#) without conducting the
randomly erasing operations on the warped garment. Thus, the warped garment that is obtained
by stitching the warped patches together is directly sent to the texture synthesis branch. Then we
compared PASTA-GAN# with the full PASTA-GAN both quantitatively and qualitatively. For the
quantitative result, the FID score of PASTA-GAN# increases from 7.851 to 12.531 (lower is better)
compared to the full PASTA-GAN model. For the qualitative results, as shown in Fig. 10, PASTA-
GAN# tends to fail at synthesizing precise texture in regions which are occluded by a body part in
the source person image(e.g., hair, arms, etc.). The full PASTA-GAN instead can generate realistic
texture in such occluded regions.

Table 1: The architecture details of the Style Encoder ES and Mapping NetworkM.

ES
Layer Type Output Size
Input Input (64,64,30)
Conv Conv2dLayer 1×1, linear (64,64,64)

Enc1 Dense Layer (64,64,64)
Conv2dLayer 3×3, down=2, linear (32,32,128)

Enc2 Dense Layer (32,32,128)
Conv2dLayer 3×3, down=2, linear (16,16,256)

Enc3 Dense Layer (16,16,256)
Conv2dLayer 3×3, down=2, linear (8,8,512)

Enc4 Dense Layer (8,8,512)
Conv2dLayer 3×3, linear (8,8,512)

Enc5 Dense Layer (8,8,512)
Conv2dLayer 3×3, linear (8,8,512)

Enc6 Dense Layer (8,8,512)
Conv2dLayer 3×3, linear (8,8,512)

AVG GlobalAveragePooling (1,512)
FC1 FullyConnectedLayer (1,512)

M
Layer Type Output Size
Embed FullyConnectedLayer (1,512)

FC2 FullyConnectedLayer (1,512)

Table 2: The architecture details of the Identity Encoder EI .

EI
Layer Type Output Size
Input Input (256,256,6)

Conv1 Conv2dLayer 3×3, down=2, linear (256,256,64)
Conv2 Conv2dLayer 3×3, down=2, linear (128,128,128)
Conv3 Conv2dLayer 3×3, down=2, linear (64,64,256)
Conv4 Conv2dLayer 3×3, down=2, linear (32,32,256)
Conv5 Conv2dLayer 3×3, down=2, linear (16,16,256)
Conv6 Conv2dLayer 3×3, down=2, linear (8,8,512)

Table 3: The architecture details of the Garment Encoder EG.

EG
Layer Type Output Size
Input Input (256,256,3)
Conv Conv2dLayer 7×7, relu (256,256,64)
Res1 Residual Block with conv 4×4, relu (256,256,64)
Res2 Residual Block with conv 4×4, down=2, relu (128,128,128)
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Table 4: The architecture details of the Generator G.

G
Layer Type Output Size
Input Input (4,4,512)

Syn. B1 Syn. L1 Modulated Conv 3×3, up=2, LeakyReLU (4,4,512)
RGB L1 Modulated Conv 1×1, LeakyReLU (4,4,3)

Syn. B2
Syn. L2-1 Modulated Conv 3×3, up=2, LeakyReLU, input from Syn. L1 (8,8,512)
Syn. L2-2 Modulated Conv 3×3, LeakyReLU (8,8,512)
RGB L2 Modulated Conv 1×1, LeakyReLU, skip connection from RGB L1 (8,8,3)

Syn. B3
Syn. L3-1 Modulated Conv 3×3, up=2, LeakyReLU, input from Syn. L2-2 (16,16,512)
Syn. L3-2 Modulated Conv 3×3, LeakyReLU (16,16,512)
RGB L3 Modulated Conv 1×1, LeakyReLU, skip connection from RGB L2 (16,16,3)

Syn. B4
Syn. L4-1 Modulated Conv 3×3, up=2, LeakyReLU, input from Syn. L3-2 (32,32,512)
Syn. L4-2 Modulated Conv 3×3, LeakyReLU (32,32,512)
RGB L4 Modulated Conv 1×1, LeakyReLU, skip connection from RGB L3 (32,32,3)

Syn. B5
Syn. L5-1 Modulated Conv 3×3, up=2, LeakyReLU, input from Syn. L4-2 (64,64,256)
Syn. L5-2 Modulated Conv 3×3, LeakyReLU (64,64,256)
RGB L5 Modulated Conv 1×1, LeakyReLU, skip connection from RGB L4 (64,64,3)

Syn. B6
Syn. L6-1 Modulated Conv 3×3, up=2, LeakyReLU, input from Syn. L5-2 (128,128,128)
Syn. L6-2 Modulated Conv 3×3, LeakyReLU (128,128,128)
RGB L6 Modulated Conv 1×1, LeakyReLU, skip connection from RGB L5 (128,128,3)

SSB
Syn. L7-1 Modulated Conv 3×3, up=2, LeakyReLU, input from Syn. L6-2 (256,256,64)
Syn. L7-2 Modulated Conv 3×3, LeakyReLU (256,256,64)
RGB L7 Modulated Conv 1×1, LeakyReLU, skip connection from RGB L6 (256,256,4)

TSB

SPA. B1 SPADE Residual Block, input from Syn. L6-2 (128,128,128)
SPA. B2 SPADE Residual Block (128,128,128)
SPA. B3 SPADE Residual Block (128,128,128)

Syn. L8-1 Modulated Conv 3×3, up=2, LeakyReLU, input from SPA. B3 (256,256,64)
Syn. L8-2 Modulated Conv 3×3, LeakyReLU (256,256,64)
RGB L8 Modulated Conv 1×1, LeakyReLU, skip connection from RGB L6 (256,256,3)

Table 5: The FID score [12] of different PASTA-GAN on the testing set of UPT dataset. PASTA-GAN
refers to the model used in main paper, while the other three model are the newly trained PASTA-GAN
using various random seed.

Method PASTA-GAN PASTA-GAN1 PASTA-GAN2 PASTA-GAN3

FID ↓ 7.852 8.821 9.207 8.438

（a) （b)

Figure 1: (a) Examples of the collected UPT dataset. (b)The distribution of the half-body images and
full-body images in different datasets used in our experiments.
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Figure 2: The distribution of the garment category in different datasets used in our experiments.

Figure 3: Interface of the task in the questionnaire for the UPT dataset.
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Person Garment Try-on Person Garment Try-on
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(b)

Figure 4: Failure cases of our PASTA-GAN.
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Person Garment Try-on

Upper-body

Transfer

Lower-body

Transfer
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Figure 5: Virtual try-on results by our PASTA-GAN. Please zoom in for more details.
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Person Garment Try-on Person Garment Try-on
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Lower-body 
Try-on
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Figure 6: Virtual try-on results with high resolution (512× 320) by our PASTA-GAN. Please zoom
in for more details.
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Figure 7: Visual comparison among PASTA-GAN and the baseline methods under the unpaired
setting on UPT dataset. Please zoom in for more details.
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Figure 8: Visual comparison among PASTA-GAN and the baseline methods under the unpaired
setting on DeepFashion dataset [9]. Please zoom in for more details.
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Person
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Figure 9: Visual comparison among PASTA-GAN and the baseline methods under their corresponding
setting on MPV dataset [2]. Please zoom in for more details.
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Figure 10: Qualitative results of the ablation study for the randomly erasing operation.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section Abstract and Introduction.
(b) Did you describe the limitations of your work? [Yes] Limitations are discussed with

help of failure examples, which are provided in the supplementary material.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] We discuss

misuse of the proposed method in the Conclusion.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] The code and
data links are provided.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] More details are included in the supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] A fixed seed was used for all experiments and we provide
a sensitivity analysis in the supplementary material.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] It is included in the implementation
details in Sec. 4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] All the models used in our work

are publicly released under an MIT License or a license restricted to non-commercial
research and educational purposes. For the UPT dataset details are provided in the
supplementary material.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We include the source code as a URL.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] The data and models used in this work are publicly released.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] The face information in the source and the
target person images have been masked out (see Sec. 4.1 Experiment Setup).

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] The instruction with an example is provided in the supplementary
material.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] The participants consisted of volunteers.
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