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Supplementary Material
In this supplementary material, we provide details and additional results omitted in the main texts.

• Appendix A: additional discussion on related work (Section 2 of the main paper).
• Appendix B: details of experimental setups (Section 4.1 of the main paper).
• Appendix C: additional results and analysis (Section 4.2 and Section 4.3 of the main paper).

◦ Section C.1: results on LVIS v1 instance segmentation.
◦ Section C.2: results on LVIS v0.5 instance segmentation.
◦ Section C.3: results on LVIS v0.5 object detection.
◦ Section C.4: results on Objects365 dataset.
◦ Section C.5: results on MSCOCO dataset.
◦ Section C.6: results on image classification datasets.
◦ Section C.7: ablation studies on sigmoid-based detectors.
◦ Section C.8: further comparisons between Nc and ‖wc‖2 for NORCAL.
◦ Section C.9: further analysis on existing post-processing calibration methods.
◦ Section C.10: additional qualitative results.

A Additional Discussion on Related Work

A.1 Long-Tailed Object Detection and Instance Segmentation

Existing works can be categorized into re-sampling, cost-sensitive learning, and data augmentation.

Re-sampling changes the training data distribution — by sampling rare class data more often than
frequent class ones — to mitigate the long-tailed distribution. Re-sampling is widely adopted as a
simple but effective baseline approach [1, 8, 27]. For example, repeat factor sampling (RFS) [8] sets
a repeat factor (i.e., sampling frequency) for each image based on the rarest object within that image;
class-aware sampling [27] samples a uniform amount of images per class for each mini-batch. Since
an image can contain multiple object classes, Chang et al. [1] proposed to re-sample on both the
image and object instance levels. RFS is the baseline approach used for the LVIS dataset [8].

Cost-sensitive learning is the most popular category, which adjusts the cost of mis-classifying an
instance or the loss of learning from an instance according to its true class label. Re-weighting is the
simplest method of this kind, which gives each instance a class-specific weight in calculating the total
loss (usually, tail classes with larger weights). The equalization loss (EQL) [28] and EQL v2 [29]
ignore the negative gradients for rare class classifiers or equalize the positive-negative gradient ratio
for each class to balance the training, respectively. The drop loss [11] improves EQL by specifically
handling the background class via re-weighting. The seesaw loss [32] proposes a re-weighting
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scheme by combining the dataset statistics and training dynamics. Forest R-CNN [36] leverages the
class hierarchical for knowledge transfer and introduces new losses for hierarchical classi�cation.

Instead of applying the new loss functions during the entire training phase, several recent methods
decouple the training phase into two stages [12, 13, 16, 24, 33–35, 43]. At the �rst stage, the object
detector is trained normally just like on a relatively balanced dataset such as MSCOCO [17]. Then
in the second stage, re-sampling or cost-sensitive learning is employed, usually for re-training or
�ne-tuning only the classi�cation network. Such a pipeline is shown to learn both better features
and classi�er. For example, two-stage �ne-tuning approach (TFA) [35] �rst trains a base detector
using only common and frequent classes, and then �ne-tune the classi�er and box regressor with
re-sampling. Similar ideas are adopted in classi�er re-training (cRT) [13], SimCal [33], balanced
softmax (BSM) [24], balanced group softmax (BaGS) [16], DisAlign [43], and ACSL [34], which
develop strategies or losses to re-train the classi�er. Learning to segment the tail (LST) [12] takes an
incremental learning approach to gradually learn from the head to tail classes in multiple stages.

Data augmentationimproves long-tailed object detection by augmenting data for the tail classes.
DLWL [ 23] and MosaicOS [42] leveraged weakly-supervised data from YFCC-100M [30], Ima-
geNet [5], and Internet to augment the long-tailed LVIS dataset [8]. Copy-Paste [6] self-augments
the LVIS dataset by copying object instances from one image and paste to the others. Instead of
augmenting images, FASA [41] generates class-wise virtual features using a Gaussian prior whose
parameters are estimated from features of real data.

A.2 Calibration of Model Uncertainty

We note that, the calibration rules we apply are different from the ones used for calibrating model
uncertainty [7]: we aim to adjust the prediction across classes, while the latter adjusts the predicted
probability to re�ect the true correctness likelihood. For calibrating model uncertainty, representative
methods are Platt scaling [22], histogram binning [39], Bayesian binning into quantiles (BBQ) [21],
isotonic regression [40], temperature scaling [7], beta and Dirichlet calibration [14, 15], etc.

B Experimental Setups

B.1 Baseline Methods

Our approachNORCAL is model-agnostic as long as the detector hasa softmax classi�er or multiple
binary sigmoid classi�ers for the objects and the background. Thus, we focus on those methods as
long as the pre-trained models are applicable and public:

• The baseline Mask R-CNN [10] model with feature pyramid networks [18], which is trained with
repeated factor sampling (RFS), following the standard training procedure in [8].

• Re-sampling/cost-sensitive based methods that have a multi-class classi�er for the foreground
objects and the background class,e.g., cRT [13] and TFA [35].

• Re-sampling/cost-sensitive based methods that have multiple binary sigmoid-based classi�ers,
e.g., EQL [28], BALMS [24], and RetinaNet with focal loss [19].

• Data augmentation based methods,e.g., MosaicOS [42]. MosaicOS augments LVIS with images
from ImageNet [5], which can improve the feature network of an object detector like Faster
R-CNN [25] or Mask R-CNN [9].

We note that, several methods change the decision/classi�cation rules. For example, EQL v2 [29]
and Seesaw [32] adopt a separate background or objectness branch during the training and inference.
Some other methods (BaGS [16] and Forest R-CNN [36]) re-organize the category groups and apply
either a group-based softmax classi�er or hierarchical classi�cation. Therefore, it is not immediately
obvious how to apply calibration to them.

B.2 Implementation

NORCAL is easy to implement and requires no re-training of the model. We follow Eq. 4 and Eq. 5
of the main paper to applyNORCAL to the existing models. For all the baseline detectors, we directly
take the released models from the corresponding papers without any modi�cations. We report the
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Table A:Instance segmentation results on the validation set of LVIS v1.Our methodNORCAL can improve
all baseline models with different backbones to which it is applied. Seesaw [32] applies a stronger2� training
schedule while other methods are with1� schedule.y: slight performance drop on sigmoid-based detectors.?:
models from [42].z: models from [29].| : results from [6].

Backbone Method NORCAL AP APr APc APf APb

R-50

DropLoss [11] 19.80 3.50 20.00 26.70 20.40
BaGS [16] 23.10 13.10 22.50 28.20 25.76
Forest R-CNN [36] 23.20 14.20 22.70 27.70 24.60
RIO [1] 23.70 15.20 22.50 28.80 24.10
EQL v2 [29] 23.70 14.90 22.80 28.60 24.20
DisAlign [43] 24.30 8.50 26.30 28.10 23.90
Seesaw [32]2� 25.40 15.90 24.70 30.40 25.60
Seesaw w/ RFS [32]2� 26.40 19.60 26.10 29.80 27.40

EQL [28]z 18.60 2.10 17.40 27.20 19.30
3 (+2.30) 20.90 (+3.90) 6.00(+3.80) 21.20y(-0.10) 27.10(+2.50) 21.80

cRT [13]z 22.10 11.90 20.20 29.00 22.20
3 (+2.20) 24.30(+3.50) 15.40(+2.70) 22.90 (+0.70) 29.70(+1.50) 23.70

RFS [8]? 22.58 12.30 21.28 28.55 23.25
3 (+2.65) 25.22(+7.03) 19.33(+2.88) 24.16 (+0.43) 28.98(+2.83) 26.08

MosaicOS [42] 24.45 18.17 22.99 28.83 25.05
3 (+2.32)26.76 (+5.69)23.86 (+2.82) 25.82 (+0.27) 29.10(+2.73)27.77

R-101

Seesaw [32]2� 27.10 18.70 26.30 31.70 27.40
Seesaw w/ RFS [32]2� 28.10 20.00 28.00 31.90 28.90

RFS [8]? 24.82 15.18 23.71 30.31 25.45
3 (+2.43) 27.25(+5.61) 20.79(+2.74) 26.45 (+0.68) 30.99(+2.60) 28.05

MosaicOS [42] 26.73 20.53 25.78 30.53 27.41
3 (+2.30)29.03 (+5.85)26.38 (+2.37)28.15 (+0.66) 31.19(+2.55)29.96

X-101

cRT [13]| 27.20 19.60 26.00 31.90 –
RIO [1] 27.50 18.80 26.70 32.30 28.50

RFS [8]? 26.67 17.60 25.58 31.89 27.35
3 (+1.25) 27.92(+2.15) 19.75(+1.61) 27.19 (+0.45) 32.34(+1.49) 28.83

MosaicOS [42] 28.29 21.75 27.22 32.35 28.85
3 (+1.52)29.81 (+3.97)25.72 (+1.70)28.92 (+0.24)32.59 (+1.71)30.56

results on the validation set with the best hyper-parameter tuned on training images for all models
and benchmarks. The implementations are mainly based on the Detectron2 [37] or MMdetection [2]
framework. We run our experiments on 4 NVIDIA RTX A6000 GPUs with AMD 3960X CPUs.

B.3 Inference and Evaluation

We follow the standard evaluation protocol for the LVIS benchmark [8]. Speci�cally, during the
inference, the threshold of con�dence score is set to10� 4, and we keep the top300proposals as
the predicted results. No test time augmentation is used. We adopt the standard mean Average
Precision (AP) and denote the AP for rare, common, and frequent categories byAPr , APc, andAPf ,
respectively. For the object detection results on LVIS v0.5, we report the box AP for each category.

C Additional Experimental Results and Analyses

Due to space limitations, we only reported the results ofNORCAL with strong baseline models in
the main paper (cf. Table 1). In this section, we provide detailed comparisons with more existing
works on LVIS [8] v1 and v0.5. We also examineNORCAL on MSCOCO dataset [17]. Moreover,
we conduct further analyses and ablation studies of our method.

C.1 Results on LVIS v1 Instance Segmentation

We summarize the results of instance segmentation on LVIS v1 in Table A. As mentioned in
Section B.1, several methods (e.g., BaGS [16], EQL v2 [29], Seesaw [32]) change the deci-
sion/classi�cation rules and it is not immediately obvious how to apply calibration to them. Neverthe-
less, we include their results for comparison. We observe, for example, thatNORCAL can improve
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Table B: Instance segmentation results on the validation set of LVIS v0.5.Our methodNORCAL can
improve a simple baseline such as RFS [8] to match or outperform all methods with different backbone models.
y: slight performance drop on sigmoid-based detectors.?: models from Detectron2 [37]. z: models from [24]
(the results are slightly different from those reported in [24]).

Backbone Method NORCAL AP APr APc APf APb

R-50

EQL [28] 22.80 11.30 24.70 25.10 23.30
LST [12] 23.00 – – – –
SimCal [33] 23.40 16.40 22.50 27.20 –
DropLoss [11] 25.50 13.20 27.90 27.30 25.10
Forest R-CNN [36] 25.60 18.30 26.40 27.60 25.90
BaGS [16] 26.25 17.97 26.91 28.74 25.76
DisAlign [43] 24.20 8.50 26.20 28.00 23.90
RIO [1] 26.00 18.90 26.20 28.50 –
EQL v2 [29] 27.10 18.60 27.60 29.90 27.00

BALMS [24]z 26.97 17.31 28.07 29.47 26.42
3 (+0.55) 27.52(+2.02) 19.33(+0.75)28.82 y(-0.30) 29.17(+0.38) 26.80

RFS [8]? 24.39 15.98 23.97 28.26 23.64
3 (+2.23) 26.61(+2.73) 18.71(+3.40) 27.37 (+0.57) 28.83(+2.36) 26.00

MosaicOS [42] 26.28 19.65 26.62 28.49 25.76
3 (+1.69)27.97 (+3.57)23.22 (+2.02) 28.64 (+0.54) 29.03(+1.86)27.61

R-101

EQL [28] 26.20 11.90 27.80 29.80 26.20
Forest R-CNN [36] 26.90 20.10 27.90 28.30 27.50
DropLoss [11] 26.90 14.80 29.80 28.30 26.80
RIO [1] 27.70 20.10 28.30 30.00 27.30
EQL v2 [29] 28.10 20.70 28.30 30.90 28.10
DisAlign [43] 25.80 10.30 27.60 29.60 25.60

RFS [8]? 25.75 15.46 25.96 29.60 25.44
3 (+2.38)28.13 (+4.90) 20.36(+3.24) 29.20 (+0.30) 29.90(+2.55) 28.00

X-101

Forest R-CNN [36] 28.50 21.60 29.70 29.70 28.80
RIO [1] 28.90 19.50 29.70 31.60 28.60
DisAlign [43] 27.40 11.00 29.30 31.60 26.80

RFS [8]? 27.05 15.38 27.34 31.35 26.66
3 (+1.93)28.98 (+3.94) 19.32(+2.60)29.94 (+0.27)31.62 (+1.94) 28.60

a simple baseline such as RFS [8] to match or outperform all methods but Seesaw [32], which is
trained with a stronger 2� schedule and an improved mask head. When paired with MosaicOS [42],
NORCAL can achieve state-of-the-art performance with all different backbone models, suggesting
that improving the feature (especially on rare objects) and calibrating the classi�er are key ingredients
to the success of long-tailed object detection and instance segmentation.

C.2 Results on LVIS v0.5 Instance Segmentation

Many existing works focus on LVIS v0.5. In this subsection, we thus report the results of instance
segmentation on LVIS v0.5 in Table B. Again, we observe similar trends thatNORCAL can signi�-
cantly improve the baseline models with all different backbone architectures. Particularly, we can
also see improvements on the sigmoid-based object detector,i.e., BALMS [24].

C.3 Results on LVIS v0.5 Object Detection

In Table C, we compare with existing methods that reported results on LVIS v0.5 object detection —
only the bounding box annotations are used for model training. Concretely, we include EQL [28],
LST [12], BaGS [16], TFA [35], and MosaicOS [42], as the compared methods. In addition, we
study a popular sigmoid-based detector,i.e., RetinaNet with focal loss [19]. We train the RetinaNet
using the default hyper-parameters [8] and applyNORCAL on top of it. We see thatNORCAL can
consistently improve the baseline models.

C.4 Results on Objects365 dataset

We further validateNORCAL on Objects365 [26], a dataset designed to spur object detection research
with a focus on diverse objects in the wild. Objects365 contains 2 million images, 30 million
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Table C:Object detection results on the validation set of LVIS v0.5.NORCAL signi�cantly boosts baseline
methods. All models use Faster R-CNN [25] with ResNet-50 and FPN [18]. y: slight drop on frequent class.| :
pre-trained with MSCOCO [17].x: models trained by ourselves.?: models from [42].z: models from [16].

Method NORCAL APb APb
r APb

c APb
f

EQL [28] 23.30 – – –
LST [12] 22.60 – – –
BaGS [16]| 25.96 17.66 25.75 29.55

RetinaNet [19]x 16.34 9.47 14.07 21.93
3 (+0.98) 17.32 (+2.24) 11.71 (+1.62) 15.69 y(-0.32) 21.61

Faster R-CNN [25]| ; z 20.98 4.13 19.70 29.30
3 (+2.89) 23.87 (+2.85) 6.98 (+4.47) 24.17 (+0.94) 30.24

RFS [8]? 23.35 12.98 22.60 28.42
3 (+2.27) 25.62 (+4.57) 17.55 (+2.93) 25.53 (+0.53) 28.95

TFA [35] 24.07 14.90 23.89 27.94
3 (+0.56) 24.63 (+1.72) 16.62 (+0.84) 24.73 y(-0.25) 27.70

MosaicOS [42] 25.01 20.19 23.89 28.33
3 (+2.53) 27.54 (+4.88)25.07 (+3.32) 27.21 (+0.60) 28.93

MosaicOS [42]| 26.30 17.32 26.20 30.00
3 (+2.05)28.35 (+5.82) 23.14 (+2.19)28.39 (+0.37)30.37

Table D:Results of object detection AP within each group of categories (according to the training image
numbers) on Objects365 [26] validation set. The baseline model is Faster R-CNN with ResNet-50 and FPN.

AP AP(0 ;100) AP[100 ;1000) AP[1000 ;10000) AP[10000 ;+ 1 )

# Category 365 33 115 141 76

Baseline 16.29 2.43 6.95 20.88 27.93
w/ NORCAL (+0.48) 16.77 (+0.23) 2.67 (+0.54) 7.50 (+0.48) 21.36 (+0.50) 28.43

bounding boxes, and 365 categories with a long-tailed distribution. We train a Faster R-CNN [25]
as the baseline on the training set, with FPN and ResNet-50 as the backbone. We report results in
Table D. We not only show the overall mean AP, but also the mean APs for different groups of
categories based on the training image number per category.NORCAL outperforms the baseline
detector on all groups of categories, justifying its effectiveness and generalizability.

C.5 Results on MSCOCO Dataset

We also experiment our methodNORCAL on the generic object detection benchmark,i.e.,
MSCOCO [17]. MSCOCO is the most popular benchmark for object detection and instance segmen-
tation, which contains 80 categories with a relative balanced class distribution (See Figure A). More
importantly, the least frequent class, “hair driver”, still has189training images. In other words, all the
classes in MSCOCO are considered as frequent classes using the de�nition of LVIS. We report results
in Table E. We see that the performance gains brought byNORCAL is marginal. Our hypothesis is
that the detectors trained with MSCOCO already see suf�cient examples for all categories (even for
tail classes) and the trained classi�er is less biased.

Table E:Results of object detection on MSCOCO [17].The baseline model is from Faster R-CNN with FPN
and ResNet-50 as the backbone.

Method AP AP50 AP75 APs APm APl

Baseline 37.93 58.84 41.05 22.44 41.14 49.10
w/ NORCAL 37.96 58.40 41.22 22.22 41.18 49.48

C.6 Results on Image Classi�cation Datasets

Besides object detection and instance segmentation, we further evaluateNORCAL on three imbalanced
classi�cation benchmarks: ImageNet-LT [20], iNaturalist (2018 version) [31], and CIFAR-10-LT
(with an imbalance factor 100) [3]. ImageNet-LT has 1,000 classes while iNaturalist has 8,142 classes.
All three datasets have long-tailed distributions on the number of training images per class but have
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Figure A:Per-class AP of Faster R-CNN and the category distribution on MSCOCO (2017).The cate-
gories are sorted in descending numbers of training images. Orange stars indicate the average of predicted
con�dence scores for each class. Green diamonds are per-class APs. The least frequent class, “hair driver”, still
has 189 training images, indicating that all the classes in MSCOCO are considered as frequent classes using the
de�nition of LVIS.

Table F:Classi�cation accuracy on ImageNet-LT [20], iNaturalist [31], and CIFAR-10-LT [3].
(a) ImageNet-LT

Method Top-1 Top-5

Baseline 45.11 71.18
w/ NORCAL 49.71 74.53

(b) iNaturalist

Method Top-1 Top-5

Baseline 61.54 82.94
w/ NORCAL 65.15 84.83

(c) CIFAR-10-LT

Method Top-1

Baseline 70.36
w/ NORCAL 77.78

a balanced evaluation set. We follow the literature to train a ResNet-50 classi�er for the �rst two
datasets, and a ResNet-32 classi�er for CIFAR. Since there is no background class in these datasets,
we simply drop the background class in Eq.4 in the main text. Results are shown in Table F. As
expected,NORCAL consistently outperforms the baseline classi�ers, demonstrating its effectiveness
on long-tailed classi�cation problems as well.

As mentioned in the Section 1 in the main paper, post-processing calibration for imbalanced or
long-tailed classi�cation has been studied in several prior works. Our approach is indeed inspired by
their ef�ciency and effectiveness in classi�cation problems and we extend them to the detection and
instance segmentation problems.

C.7 Ablation Studies on Sigmoid-Based Detectors (i.e., with Multiple Binary Classi�ers)

As shown in the main paper (cf. Table 3), we conduct ablation studies ofNORCAL with a standard
softmax-based object detection. Here, we further examine a sigmoid-based object detector,i.e.,
BALMS [24], and report the results in Table G. Beyond Eq. 7 of the main paper, we ablateNORCAL
with different calibration mechanisms, factors, and with and without score normalization. We note
that, in this kind of models,C binary classi�ers are learned, each corresponds to one foreground
class. In other words, no background class is speci�cally learned. Thus, the score normalization is
usually not necessary or harmful — the background patches with low scores by all the classi�ers will
now gets their scores boosted due to calibration.

C.8 Empirical Class Frequency is Better than Classi�er Norms for NORCAL

As mentioned in the main paper (cf. Section 3.3 and Table 2 (bottom)), class-dependent temperature
(N 


c ) [38] provides a better signal for calibration than the classi�er norms (kw ck

2 ) of the classi�er.

Table H shows a comparison between those two factors for our proposed calibration mechanism.
With NORCAL , we see thatNc outperformskw ck2 on all object categories. Moreover, we notice that
leaving the background intact shows a better performance, justifying our analysis and experimental
results on how to handle the background class (cf. Section 3.2 and Figure 4 of the main paper).
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Table G:Ablation studies of NORCAL with the sigmoid-based baseline model (BALMS [24]).We follow
Ren et al.[24] to report the results on LVIS v0.5 instance segmentation.CAL : calibration mechanism.NOR:
class score normalization. The best ones are in bold. As discussed in Section C.7, normalization is not suitable
for this kind of models.

ac CAL NOR AP APr APc APf

Baseline exp(� � c (x )) 3 26.97 17.31 28.07 29.47

1 � 
 N c

1 � 

(ENS [3])

exp(� � c (x ) � ac ) 7 26.99 17.40 28.06 29.46
3 15.56 7.73 14.91 19.51

sc � ac
7 27.12 19.89 28.25 28.59
3 15.29 12.05 16.98 14.47

exp(� � c (x )) � ac
7 27.17 19.88 28.26 28.71
3 18.62 12.34 18.29 21.55

N 

c

(CDT [38])

exp(� � c (x ) � ac ) 7 27.37 18.64 28.69 29.22
3 16.82 9.50 17.24 19.22

sc � ac
7 27.52 19.33 28.82 29.17
3 15.62 11.58 17.32 15.10

exp(� � c (x )) � ac
7 27.52 19.34 28.80 29.19
3 18.60 12.64 18.36 21.28

Table H:Empirical class frequency (Nc) is better than classi�er norms (kw ck2) for N ORCAL . Results are
reported on LVIS v1 instance segmentation. Background: whether calibrating the background class or not.

Method ac Background AP APr APc APf APb

RFS [8] – – 22.58 12.30 21.28 28.55 23.25

w/ NORCAL
kw ck


2
7 22.86 13.21 21.67 28.43 23.41
3 22.56 12.47 21.34 28.37 23.17

N 

c 7 25.22 19.33 24.16 28.98 26.08

C.9 Further Analysis on Existing Post-Processing Calibration Methods

We compareNORCAL to the existing post-calibration methods in the main paper (cf. Table 2 (upper)).
In the main paper, we follow the implementations in [4] to perform the calibration after the top300
predicted boxes are selected. Here we study an alternative of directly applying the calibration before
selecting the300predictions. We show the results in Table I.NORCAL still outperforms all existing
calibration methods.

Table I: Further analysis and comparison on existing post-processing calibration methods.Results are
reported on LVIS v1 instance segmentation. When to calibrate: before or after the top300predicted boxes are
selected per image.

Method When to calibrate? AP APr APc APf

RFS [8] – 22.58 12.30 21.28 28.55

w/ HistBin [39] before 18.91 5.65 17.49 26.33
after 21.82 11.28 20.31 28.13

w/ BBQ (AIC) [21] before 16.56 3.07 14.76 24.51
after 22.05 11.41 20.72 28.21

w/ Beta calibration [14] before 22.11 11.54 21.77 27.15
after 22.55 12.29 21.27 28.49

w/ Isotonic seg. [40] before 20.58 10.46 20.36 25.27
after 22.43 12.19 21.12 28.41

w/ Platt. scaling [22] before 22.09 12.07 21.40 27.26
after 22.55 12.29 21.27 28.49

w/ NORCAL before 25.22 19.33 24.16 28.98

7



Figure B:Additional qualitative results. We superimpose red arrows to show the improvement. Yellow, cyan
and red bounding boxes indicate frequent, common and rare class labels.

C.10 Additional Qualitative Results

We provide additional qualitative results on LVIS v1 in Figure B. We show the (predicted) bounding
boxes from the ground truth annotations, the baseline Mask R-CNN [10] with RFS [8], andNORCAL .
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