
A Training Details

All experiments were performed using a single Tesla V100 GPU.

A.1 Supervised Learning

We setup the core networks in our CIFAR-10, CIFAR-100, and Tiny ImageNet experiments follow-
ing [19] for fair comparison. We use these trained networks and treat them as pre-trained models,
i.e. we consider the „IC-only” setup, where we do not change the base network.

For CIFAR-10 and CIFAR-100 we train ICs for 50 epochs using the Adam optimizer with learning
rate set to 0.001, but lowered by a factor of 10 after 15 epochs. When training on Tiny ImageNet,
the learning rate is additionally lowered again by the same factor after epoch 40. On ImageNet (on
the pretrained ResNet-50 from the torchvision package), the ICs are trained for 40 epochs, with the
initial learning rate of 0.00001 being reduced by a factor of 10 in epochs 20 and 30. To train the
ensembling part of our method, we run SGD on the training dataset for 500 epochs. Since both the
dataset and the model are very small, we use a high number of epochs to ensure convergence.

Architecture and Placement of ICs Most common computer vision architectures, including the
ones we use, are divided into blocks (e.g. residual blocks in ResNet). Because some blocks change the
dimensionality of the features, we take the natural choice of attaching an IC after each block, which
also considerably simplifies the implementation of our method for any future architectures. Note
that the resulting uniform distribution of ICs along the base network is not necessarily optimal [32].
However, we focus on this setup for the sake of a fair comparison with SDN and PBEE and consider
the exploration of the best placement of ICs as outside the scope of this work.

Each IC consists of a single convolutional layer, a pooling layer, and a fully-connected layer, which
outputs the class logits. The convolutional layer has a kernel size of 3 with the number of output
filters equal to the number of input channels. When applying cascade connections in Zero Time
Waste, we use the outputs of the previous IC as an additional input to the linear classification layer
of the current IC, as shown earlier in Figure 1. Because Tiny ImageNet has a larger input image
size than CIFAR datasets, we use convolutions with stride 2 instead of 1 to reduce the number of
operations of each IC.

For the pooling layer we reuse the SDN pooling proposed by [19], which is defined as:

sdn_pool(x) = γ · avg_pool(x) + (1− γ) ·max_pool(x),

where γ is a learnable scalar parameter. It reduces the size of convolutional maps to 4× 4.

We keep the architecture and IC placement fixed between experiments, but with small exceptions for
Tiny ImageNet and ImageNet. For Tiny ImageNet, we use convolutional layers with stride set to 2
if all dimensions of the input are larger than 8. We do the same for ImageNet, but we additionally
reduce the number of output channels of that convolution by a factor of 4 and we place ICs only every
third ResNet block. Finally, we apply Layer Normalization to the output of the preceding IC before
using it in the final linear layer.

A.2 Reinforcement Learning

We set the Atari environments as follows. Every fourth frame (frame skipping) and the one immedi-
ately before it are max-pooled. The resulting frame is then rescaled to size 84x84 and converted into
grayscale. At every step the agent has a 0.1 probability of taking the previous action irrespective of
the policy probabilities (sticky actions). This is added to introduce stochasticity into the environment
to avoid cases when the policy converges to a simple strategy that results in the same actions taken
in every run. Furthermore, the environment termination flag is set when a life is lost. Finally, the
signum function of the reward is taken (reward clipping). The above setup is fairly common and we
base our code on the popular Stable Baselines repository [30].

Using that environment setup we use the PPO algorithm to train the policy, and then extract the base
network by discarding the value network. We use the following PPO hyperparameters: learning rate
2.5 · 10−4, 128 steps to run for each environment per update, batch size 256, 4 epochs of surrogate
loss optimization, clip range (ε) 0.1, entropy coefficient 0.01, value function coefficient 0.5, discount
factor 0.99, 0.95 as the trade-off of bias vs variance factor for Generalized Advantage Estimator [35],

14



Figure 5: Inference time vs. accuracy for ResNet-50 trained on ImageNet. Base network achieves
76.0% accuracy, and given the same inference time constraint SDN obtains 75.8%, PBEE 73.3%,
and ZTW 76.3%.

and the maximum value for the gradient clipping 0.5. The policy is trained for 107 environment time
steps in total.

We use the standard ’NatureCNN’ [28] architecture with three convolutional layers and a single fully
connected layer. We attach two ICs after the first and the second layer. Similarly as in the supervised
setting, each IC has a single convolutional layer, an SDN pooling layer and a fully connected layer.
The convolutional layer has stride set to 4 and preserves the number of channels.

To train the ICs, the early-exit policy interacts with the environment. In each step, an IC is chosen
uniformly, and the action chosen by that IC is taken. However, the (o, ap) tuple is actually saved to the
replay buffer, with o and ap being the observation and the action of the original policy, respectively.
After 128 concurrent steps on 8 environments that buffer is used to train the ICs with behavioral
cloning. That is, Kullback–Leibler divergence between the PPO policy actions and the IC actions is
used as the cost function. This is done for 5 epochs with batch size set to 64 and 128 for cascading
stage and geometric ensembling stage, respectively. The entire process is repeated until 106 or more
steps in total are taken.

B Additional results

This section contains experimental results which were omitted in the main part of the paper due to
page limitations.

B.1 Supervised Learning

For brevity, in the main part of the paper we have only shown a table summarizing the results
of acceleration on multiple architectures and dataset. Here, we provide a fuller representation
of these results. Figures 10, 11 and 12 (at the end of the Appendix) show results of the tested
methods on CIFAR-10, CIFAR-100 and Tiny ImageNet, respectively. Each figure contains plots
for the four considered architectures: ResNet-56, MobileNet, WideResNet and VGG16. Plots show
that ZTW outperforms SDN and PBEE in almost all settings, which is consistent with the results
summarized earlier. Additionally, in Table 3 we provide summary of the results with standard
deviations. Figures 13, 14, 15 show values of Hindsight Improvability for CIFAR-10, CIFAR-100
and Tiny ImageNet, respectively.

15



Table 3: Results on four different architectures and three datasets: Cifar-10, Cifar-100 and Tiny
ImageNet. Test accuracy (in percentages) obtained using the time budget: 25%, 50%, 75%, 100% of
the base network and Max without any limits. The first column shows the test accuracy of the base
network.

ResNet-56

Data Algo 25% 50% 75% 100% Max

CIFAR-10
(92.0± 0.2)

SDN 77.7± 1.0 87.3± 0.5 91.1± 0.2 92.0± 0.1 92.1± 0.2
PBEE 69.8± 1.3 81.8± 0.3 87.5± 0.1 91.0± 0.3 92.1± 0.3
ZTW 80.3± 1.0 88.7± 0.4 91.5± 0.2 92.1± 0.3 92.1± 0.3

CIFAR-100
(68.4± 0.2)

SDN 47.1± 0.2 57.2± 0.4 64.7± 0.6 69.0± 0.2 69.7± 0.2
PBEE 45.2± 0.5 53.5± 0.5 60.1± 0.5 67.0± 0.2 69.0± 0.2
ZTW 51.3± 0.4 62.1± 0.3 68.4± 0.4 70.7± 0.1 70.9± 0.1

Tiny ImageNet
(53.9± 0.3)

SDN 31.2± 0.2 41.2± 0.3 49.9± 0.4 54.5± 0.5 54.7± 0.4
PBEE 29.0± 0.6 37.6± 0.3 48.2± 0.4 53.4± 0.6 54.3± 0.4
ZTW 35.2± 0.7 46.2± 0.4 53.7± 0.3 56.3± 0.3 56.4± 0.3

MobileNet

Data Algo 25% 50% 75% 100% Max

CIFAR-10
(90.6± 0.2)

SDN 86.1± 0.5 90.5± 0.2 90.8± 0.1 90.7± 0.2 90.9± 0.1
PBEE 76.3± 0.9 85.9± 0.3 89.7± 0.3 90.9± 0.2 91.1± 0.1
ZTW 86.7± 0.7 90.9± 0.3 91.4± 0.2 91.4± 0.1 91.5± 0.1

CIFAR-100
(65.1± 0.3)

SDN 54.3± 1.4 63.5± 0.8 66.8± 0.4 67.8± 0.1 67.9± 0.1
PBEE 47.1± 2.7 61.6± 0.7 61.6± 0.7 67.0± 0.3 68.0± 0.3
ZTW 54.5± 1.1 65.2± 0.5 68.4± 0.3 69.0± 0.1 69.1± 0.1

Tiny ImageNet
(59.3± 0.1)

SDN 35.6± 1.3 47.1± 0.6 55.3± 0.3 58.9± 0.2 59.7± 0.1
PBEE 26.7± 1.5 38.4± 2.0 50.3± 0.8 55.6± 0.3 59.7± 0.0
ZTW 37.3± 2.8 49.5± 1.9 56.7± 0.6 59.7± 0.4 60.2± 0.1

WideResNet

Data Algo 25% 50% 75% 100% Max

CIFAR-10
(94.4± 0.1)

SDN 83.8± 1.3 91.7± 0.5 94.1± 0.2 94.4± 0.1 94.4± 0.2
PBEE 78.0± 1.9 84.0± 1.4 90.3± 0.5 93.8± 0.1 94.4± 0.1
ZTW 86.7± 0.7 92.9± 0.3 94.5± 0.1 94.7± 0.1 94.7± 0.1

CIFAR-100
(75.1± 0.1)

SDN 55.9± 1.5 65.1± 0.9 71.6± 0.4 75.0± 0.1 75.4± 0.1
PBEE 46.7± 2.0 57.2± 1.3 66.0± 0.6 73.2± 0.2 75.4± 0.2
ZTW 59.5± 0.6 69.1± 0.9 74.5± 0.6 76.2± 0.3 76.4± 0.2

Tiny ImageNet
(59.6± 0.6)

SDN 36.8± 0.1 46.0± 1.0 54.6± 0.7 59.4± 0.8 59.7± 0.7
PBEE 29.9± 0.9 37.8± 0.6 52.7± 0.6 58.5± 0.9 59.7± 0.7
ZTW 40.0± 0.3 50.1± 0.2 57.5± 0.4 60.2± 0.1 60.3± 0.2

VGG

Data Algo 25% 50% 75% 100% Max

CIFAR-10
(93.0± 0.0)

SDN 86.0± 0.3 92.1± 0.1 93.0± 0.0 93.0± 0.0 93.0± 0.0
PBEE 75.0± 0.2 86.0± 0.2 91.0± 0.3 92.9± 0.2 93.1± 0.1
ZTW 87.1± 0.1 92.5± 0.1 93.2± 0.2 93.2± 0.2 93.2± 0.2

CIFAR-100
(70.4± 0.3)

SDN 58.5± 0.4 67.2± 0.1 70.6± 0.3 71.4± 0.2 71.5± 0.4
PBEE 51.2± 0.2 65.3± 0.3 65.3± 0.3 70.9± 0.5 72.0± 0.4
ZTW 60.2± 0.2 69.3± 0.4 72.6± 0.1 73.5± 0.3 73.6± 0.4

Tiny ImageNet
(59.0± 0.2)

SDN 40.0± 1.0 50.5± 0.2 57.4± 0.5 59.6± 0.3 59.7± 0.3
PBEE 31.0± 1.6 45.2± 0.6 55.2± 0.3 60.1± 0.5 60.2± 0.5
ZTW 41.4± 0.5 52.3± 0.4 59.3± 0.4 60.1± 0.5 60.5± 0.4

B.2 Results of ImageNet experiments

In order to show that the proposed method scales up well to the ImageNet dataset, we use our
method on a pre-trained model provided by the torchvision package4. The obtained model allows for

4https://pytorch.org/vision/stable/index.html
16

https://pytorch.org/vision/stable/index.html


significant speed-ups on ImageNet while maintaining the same accuracy for the original inference
time limit. The results presented in Figure 5 show that ZTW again outperforms the rest of the methods,
with SDN maintaining reasonable, although lower, performance and PBEE generally failing. We want
to highlight the fact that the architecture of ICs used here is very simple and nowhere as intensely
investigated as the architecture of ResNet or other common deep learning models. Adjusting the ICs
for this problem could thus improve the results significantly, although we consider this outside the
scope of this work.

B.3 Results of Transfer Learning experiments

We investigate whether early exit methods work in a transfer learning setting. We use ResNet-50
from the torchvision package pre-trained on ImageNet similarly as in the previous experiment. To
obtain a baseline standard classifier, we remove the final linear layer of the pretrained classifier and
train a new linear layer with the number of outputs corresponding to the number of classes in the
target dataset. Only then we proceed to train the ICs.

Table 4: Results on the OCT2017 dataset when using an ImageNet pretrained core network. Test
accuracy (in percentages) obtained using the time budget: 25%, 50%, 75%, 100% of the base network
and Max without any limits.

ResNet-50 (94.6)

Algo 25% 50% 75% 100% Max

SDN 81.5 93.8 94.6 94.6 94.6
PBEE 56.5 90.3 90.3 94.5 95.2
ZTW 89.4 98.0 98.4 98.5 98.5

We use the OCT-2017 medical dataset [20] as the target dataset. The training dataset consists of
83484 high-resolution retinal optical coherence tomography images categorized into four classes,
with one class meaning healthy sample, and three diseases. Table 4 shows that ZTW outperforms
other methods by a significant margin, and manages to cut down the time required to obtain the
accuracy of the baseline by over 75%. This suggests that leveraging the power of previous ICs is
especially useful when the features are not perfectly adjusted to the problem at hand, i.e. were trained
for ImageNet classification and used for pathology classification data from a completely different
domain. We aim to explore the transfer learning setting in future work.

B.4 Results of Reinforcement Learning experiments

In Figure 6 we show the results for all eight Reinforcement Learning environments that we ran
our experiments on. Degree of time savings depends heavily on the environment. For some of the
environments, such as AirRaid and Pong, the ICs obtain a similar return to that of the original policy.
Because of that the resulting plot is almost flat, allowing for significant inference time reduction
without any performance drop. Other environments, such as Seaquest, Phoenix and Riverraid, allow
to gradually trade-off performance for inference time just as in the supervised setting.

C Ablation Studies

In this section, we present results of experiments which explain our design decisions. In particular,
we focus here on four issues: (1) what is the individual impact of cascade connections and geometric
ensembling, (2) how performance of additive and geometric ensembles compares in our setting, (3)
how stopping the gradient in cascade connections impacts learning dynamics, and (4) how the number
of classes in the training dataset impacts the results.

C.1 Impact of cascading and ensembling

An important question is whether we need both components in the proposed model (cascade connec-
tions and ensembling), and what role do they play in the final performance of our model. Figure 7
shows the results of independently applied cascade connections and geometric ensembling on
a ResNet-56 and VGG-16 trained on CIFAR-100. We observe that depending on the threshold τ and
the architecture, one of these techniques may be more important than the other. However, combining

17



Figure 6: Mean and standard deviation of returns for multiple confidence thresholds on various Atari
2600 environments. Some environments allow significant computational savings with a negligible or
no impact on performance.

18



Figure 7: Ablation studies exhibiting the importance of both techniques proposed in the paper.
Although both cascade connections and geometric ensembling seem to help, the exact effect depends
on the architecture and chosen threshold τ . For ResNet56 cascade connections seem to be much
more helpful than ensembling, while for VGG16 the opposite is true. As such, both are required to
consistently improve results.

these methods consistently improves the performance each of them achieved independently. Thus we
argue that both cascade connections and geometric ensembling are required in Zero Time Waste and
using only one of them will lead to significant performance deterioration.

C.2 Geometric vs Additive Ensembles

In this work we proposed geometric ensembles for combining predictions from multiple ICs. Here,
we show how this approach performs in comparison to additive ensemble of the form:

qim(x) =
1

Zm

∑
j≤m

wjmp
i
j(x) + bim, (4)

where bim > 0 and wjm > 0, for j = 1, . . . ,m, are trainable parameters, and Zm is a normalization
value, such that

∑
i q
i
m(x) = 1. That is, we use the same approach as in geometric ensembles, but

we substitute the product for a sum and change the weighting scheme.

The empirical comparison between an additive ensemble and a geometric ensemble on ResNet-56
is presented in Figure 8. The results show that the geometric ensemble consistently outperforms
the additive ensemble, although the magnitude of improvement varies across datasets. While the
difference on CIFAR-10 is negligible, it becomes evident on Tiny ImageNet, especially with the later
layers. The results suggest that geometric ensembling is more helpful on more complex datasets with
a larger number of classes.

C.3 Stop gradients in cascade connections

As mentioned in Section 3 of the main paper, we decide to stop gradient from flowing through
the cascade connections. We motivate this decision by noticing that the gradients of later layers
might destroy the predictive power of the earlier layers. In order to test this hypothesis empirically,
we run our experiments on ResNet-56, with and without gradient stopping. As shown in Figure 9,
the accuracy of the early ICs is lower when not using gradient stopping. Performance of later ICs
may vary, as not using stopping gradient allows greater expressivity for later ICs. Since the second
component of our method, ensembling, is able to reuse information from the early ICs we find it
beneficial to use gradient stopping in the final model. This is especially evident on Tiny ImageNet,
where on later ICs cascade connections perform better without gradient stopping, but ZTW is able to
reuse ICs trained with gradient stopping more effectively.

We provide a more in-depth observation of the reason why the gradient of later ICs might have
a detrimental effect on the performance of early ICs. Observe that in the setting without the detach
the parameters of the first IC will be updated using

∑
k gk, where gk is the gradient of the loss

of the k-th IC wrt. parameters of the first IC. Experimental investigation showed that the cosine
similarity of

∑
k gk and g1 is approximately 0.5 at the beginning of the training, which means that

these gradients point in different directions. Since the gradient g1 represents the best direction for

19



Figure 8: Comparison of geometric and additive ensembling on ResNet-56 with cascade connections,
conducted on CIFAR-10, CIFAR-100, and Tiny ImageNet.

improving the first IC, using
∑
k gk will lead to a non-optimal update of its weights, thus reducing

its predictive performance. With detach, g2 = g3 = . . . = 0 and as such the cosine similarity is
always 1. This reasoning can be extended to the rest of ICs.

C.4 Impact of the number of classes

Additionally, we check how the number of classes in the given problem impacts the results of
each method. To do this, we take the CIFAR-10 dataset, which consists of 10 classes and divide
the examples into two more general classes, which can be approximately described as modes of
transportation (includes airplane, automobile, horse, ship, truck) and animals (bird, cat, deer, dog,
frog). Thus, we obtain a dataset for binary classification which we dub CIFAR-2. We train and
evaluate the proposed methods on this dataset with different backbones. Results, summed up in Table
5, show that although performance of ZTW is always on par or better than the baselines, the gap in
performance is much smaller, with SDN achieving identical performance in some cases. Although,
this might be due to the fact that CIFAR-2 is simpler than original CIFAR-10, we note that Zero Time
Waste is better suited to non-binary classification problems.

20



Figure 9: Effects of stopping gradient in ResNet-56 trained on CIFAR-10, CIFAR-100, and Tiny
ImageNet.

Table 5: Results on the CIFAR-2 dataset.
ResNet-56

Data Algo 25% 50% 75% 100% Max

ResNet-56
SDN 95.5 96.5 96.5 96.5 96.5
PBEE 91.2 94.1 96.3 96.5 96.6
ZTW 95.7 96.6 96.6 96.6 96.6

VGG
SDN 96.6 97.6 97.6 97.6 97.7
PBEE 91.2 96.4 97.2 97.4 97.6
ZTW 96.7 97.6 97.7 97.7 97.7

WideResNet
SDN 95.2 97.0 97.3 97.3 97.4
PBEE 89.3 93.0 95.9 97.0 97.4
ZTW 96.3 97.4 97.6 97.6 97.6

MobileNet
SDN 95.7 96.4 96.4 96.4 96.4
PBEE 91.9 94.3 96.2 96.4 96.4
ZTW 96.0 96.4 96.4 96.4 96.4

21



Figure 10: Inference time vs. accuracy obtained on various architectures trained on CIFAR-10.

Figure 11: Inference time vs. accuracy obtained on various architectures trained on CIFAR-100.

22



Figure 12: Inference time vs. accuracy obtained on various architectures trained on Tiny ImageNet.

Figure 13: Hindsight Improvability of various architectures trained on CIFAR-10.

23



Figure 14: Hindsight Improvability of various architectures trained on CIFAR-100.

Figure 15: Hindsight Improvability of various architectures trained on Tiny ImageNet.

24



References

[1] Dan Ariely and Michael I. Norton. From thinking too little to thinking too much: a continuum
of decision making. WIREs Cognitive Science, 2(1):39–46, 2011.

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv:1308.3432, 2013.

[3] Candice Bentéjac, Anna Csörgő, and Gonzalo Martínez-Muñoz. A comparative analysis of
gradient boosting algorithms. Artificial Intelligence Review, pages 1–31, 2020.

[4] Konstantin Berestizshevsky and Guy Even. Dynamically sacrificing accuracy for reduced com-
putation: cascaded inference based on softmax confidence. In Proceedings of the International
Conference on Artificial Neural Networks, ICANN, pages 306–320. Springer, 2019.

[5] Andrew Davis and Itamar Arel. Low-rank approximations for conditional feedforward compu-
tation in deep neural networks. arXiv:1312.4461, 2013.

[6] Thomas G Dietterich. Ensemble methods in machine learning. In Proceedings of the Interna-
tional Workshop on Multiple Classifier Systems, page 15. Springer, 2000.

[7] Gabriel Dulac-Arnold, Daniel J. Mankowitz, and Todd Hester. Challenges of real-world
reinforcement learning. CoRR, abs/1904.12901, 2019.

[8] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: a loss landscape
perspective. arXiv:1912.02757, 2019.

[9] Gerd Gigerenzer and Wolfgang Gaissmaier. Heuristic decision making. Annual Review of
Psychology, 62:451–82, 2011.

[10] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A survey of deep
learning techniques for autonomous driving. Journal of Field Robotics, 37(3):362–386, 2020.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, pages 770–778, 2016.

[12] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
networks. In Proceedings of the IEEE International Conference on Computer Vision, pages
1389–1397, 2017.

[13] Todd Hester and Peter Stone. TEXPLORE: Real-time sample-efficient reinforcement learning
for robots. Machine Learning, 90(3):385–429, 2013.

[14] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
In Proceedings of the NIPS Workshop on Deep Learning and Representation Learning, 2015.

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv:1704.04861, 2017.

[16] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q. Wein-
berger. Multi-scale dense networks for resource efficient image classification. In International
Conference on Learning Representations, 2018.

[17] Sunggoo Jung, Sunyou Hwang, Heemin Shin, and David Hyunchul Shim. Perception, guidance,
and navigation for indoor autonomous drone racing using deep learning. IEEE Robotics and
Automation Letters, 3(3):2539–2544, 2018.

[18] Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, 2017.

[19] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep networks: Understanding
and mitigating network overthinking. In Proceedings of the International Conference on
Machine Learning, ICML, pages 3301–3310, 2019.

25



[20] Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina CS Valentim, Huiying Liang,
Sally L Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, et al. Identifying
medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5):1122–1131,
2018.

[21] Alexandros Kouris, Stylianos I. Venieris, Michail Rizakis, and Christos-Savvas Bouganis.
Approximate LSTMs for time-constrained inference: Enabling fast reaction in self-driving cars,
2019.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[23] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. In Advances in Neural Information
Processing Systems, NIPS, pages 6402–6413, 2017.

[24] Juhyoung Lee, Sangyeob Kim, Sangjin Kim, Wooyoung Jo, and Hoi-Jun Yoo. Gst: Group-sparse
training for accelerating deep reinforcement learning, 2021.

[25] Hao Li, Hong Zhang, Xiaojuan Qi, Yang Ruigang, and Gao Huang. Improved techniques for
training adaptive deep networks. In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 1891–1900, 2019.

[26] Dor Livne and Kobi Cohen. Pops: Policy pruning and shrinking for deep reinforcement learning,
2020.

[27] Mason McGill and Pietro Perona. Deciding how to decide: dynamic routing in artificial neural
networks. In ICML’17 Proceedings of the 34th International Conference on Machine Learning
- Volume 70, pages 2363–2372, 2017.

[28] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[29] Mary Phuong and Christoph H Lampert. Distillation-based training for multi-exit architectures.
In Proceedings of the IEEE International Conference on Computer Vision, ICCV, pages 1355–
1364, 2019.

[30] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah
Dormann. Stable baselines3. https://github.com/DLR-RM/stable-baselines3, 2019.

[31] Simone Scardapane, Danilo Comminiello, Michele Scarpiniti, Enzo Baccarelli, and Aurelio
Uncini. Differentiable branching in deep networks for fast inference. In Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, pages
4167–4171, 2020.

[32] Simone Scardapane, Michele Scarpiniti, Enzo Baccarelli, and Aurelio Uncini. Why should we
add early exits to neural networks? arXiv:2004.12814, 2020.

[33] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227, 1990.

[34] E. Schuitema, L. Buşoniu, Robert Babuška, and P. Jonker. Control delay in reinforcement
learning for real-time dynamic systems: A memoryless approach. 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3226–3231, 2010.

[35] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv:1506.02438,
2015.

[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[37] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In Proceedings of the International Conference on Learning Representations,
ICLR, 2015.

26

https://github.com/DLR-RM/stable-baselines3


[38] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference
via early exiting from deep neural networks. In Proceedings of the International Conference on
Pattern Recognition, ICPR, pages 2464–2469, 2016.

[39] Paul Viola and Michael J. Jones. Robust real-time face detection. International Journal of
Computer Vision, 57(2):137–154, 2004.

[40] Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Fisher Yu, and Joseph E. Gonzalez.
Idk cascades: Fast deep learning by learning not to overthink. In UAI, pages 580–590, 2017.

[41] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet: learning
dynamic routing in convolutional networks. In Proceedings of the European Conference on
Computer Vision, ECCV, pages 409–424, 2018.

[42] Xin Wang, Fisher Yu, Lisa Dunlap, Yi-An Ma, Ruth Wang, Azalia Mirhoseini, Trevor Darrell,
and Joseph E Gonzalez. Deep mixture of experts via shallow embedding. In Proceedings of the
Uncertainty in Artificial Intelligence, UAI, pages 552–562, 2020.

[43] Yulin Wang, Kangchen Lv, Rui Huang, Shiji Song, Le Yang, and Gao Huang. Glance and focus:
a dynamic approach to reducing spatial redundancy in image classification. In Advances in
Neural Information Processing Systems, volume 33, pages 2432–2444, 2020.

[44] Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao Huang. Resolution adaptive
networks for efficient inference. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2369–2378, 2020.

[45] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv:1605.07146, 2016.

[46] Hongjie Zhang, Zhuocheng He, and Jing Li. Accelerating the deep reinforcement learning
with neural network compression. In 2019 International Joint Conference on Neural Networks
(IJCNN), pages 1–8, 2019.

[47] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. BERT loses
patience: fast and robust inference with early exit. arXiv:2006.04152, 2020.

27


