
MCUNetV2: Memory-Efficient Patch-based
Inference for Tiny Deep Learning

Ji Lin1 Wei-Ming Chen1 Han Cai1 Chuang Gan2 Song Han1

1MIT 2MIT-IBM Watson AI Lab
https://mcunet.mit.edu

Abstract

Tiny deep learning on microcontroller units (MCUs) is challenging due to the
limited memory size. We find that the memory bottleneck is due to the imbalanced
memory distribution in convolutional neural network (CNN) designs: the first
several blocks have an order of magnitude larger memory usage than the rest of
the network. To alleviate this issue, we propose a generic patch-by-patch inference
scheduling, which operates only on a small spatial region of the feature map and
significantly cuts down the peak memory. However, naive implementation brings
overlapping patches and computation overhead. We further propose receptive field
redistribution to shift the receptive field and FLOPs to the later stage and reduce
the computation overhead. Manually redistributing the receptive field is difficult.
We automate the process with neural architecture search to jointly optimize the
neural architecture and inference scheduling, leading to MCUNetV2. Patch-based
inference effectively reduces the peak memory usage of existing networks by
4-8×. Co-designed with neural networks, MCUNetV2 sets a record ImageNet
accuracy on MCU (71.8%), and achieves >90% accuracy on the visual wake words
dataset under only 32kB SRAM. MCUNetV2 also unblocks object detection on
tiny devices, achieving 16.9% higher mAP on Pascal VOC compared to the state-
of-the-art result. Our study largely addressed the memory bottleneck in tinyML
and paved the way for various vision applications beyond image classification.

1 Introduction

IoT devices based on tiny hardware like microcontroller units (MCUs) are ubiquitous nowadays.
Deploying deep learning models on such tiny hardware will enable us to democratize artificial
intelligence. However, tiny deep learning is fundamentally different from mobile deep learning due to
the tight memory budget [27]: a common MCU usually has an SRAM smaller than 512kB, which is
too small for deploying most off-the-shelf deep learning networks. Even for more powerful hardware
like Raspberry Pi 4, fitting inference into the L2 cache (1MB) can significantly improve energy
efficiency. These pose new challenges to efficient AI inference with a small peak memory usage.

Existing work employs pruning [16, 18, 19, 32, 31], quantization [16, 54, 53, 37, 46, 9, 39], and
neural architecture search [6, 44, 47, 5] for efficient deep learning. However, these methods focus on
reducing the number of parameters and FLOPs, but not the memory bottleneck. The tight memory
budget limits the feature map/activation size, restricting us to use a small model capacity or a small
input image size. Actually, the input resolutions used in existing tinyML work are usually small
(< 2242) [27], which might be acceptable for image classification (e.g., ImageNet [11], VWW [10]),
but not for dense prediction tasks like objection detection: as in Figure 2, the performance of object
detection degrades much faster with input resolution than image classification. Such a restriction
hinders the application of tiny deep learning on many real-life tasks (e.g., person detection).

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://mcunet.mit.edu

0

280

560

840

1120

1400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17

Per-patch memory
Per-layer memory

Block Index

M
em

or
y

U
sa

ge
 (k

B
) High

mem.
Low
mem. 8×

smaller

256kB constraint

original
peak mem.

per-patch
peak mem.

4x4patch (int8)

per-patch inference per-layer inference
per-layer inference peak mem: 1372kB

peak mem: 172kB

Figure 1. MobileNetV2 [41] has a very imbalanced memory usage distribution. The peak memory is determined
by the first 5 blocks with high peak memory, while the later blocks all share a small memory usage. By using
per-patch inference (4× 4 patches), we are able to significantly reduce the memory usage of the first 5 blocks,
and reduce the overall peak memory by 8×, fitting MCUs with a 256kB memory budget. Notice that the model
architecture and accuracy are not changed for the two settings. The memory usage is measured in int8.

A
cc

ur
ac

y/
m

A
P

(%
)

60

65

70

75

Image Resolution

160 224 288 352

VOC mAP
ImgNet Top-1

larger
degrade VOC mAP

ImgNet Top-1

larger
degrade

Image Resolution

A
cc

ur
ac

y/
m

A
P

(%
)

160 224 228 352

75

70

65

60

Figure 2. Detection is more
sensitive to smaller resolutions.

We perform an in-depth analysis on memory usage of each layer in
efficient network designs and find that they have a very imbalanced
activation memory distribution. Take MobileNetV2 [41] as an example,
as shown in Figure 1, only the first 5 blocks have a high peak memory
(>450kB), becoming the memory bottleneck of the entire network. The
remaining 13 blocks have a low memory usage, which can easily fit a
256kB MCU. The peak memory of the initial memory-intensive stage
is 8× higher than the rest of the network. Such a memory pattern leaves
a huge room for optimization: if we can find a way to “bypass” the
memory-intensive stage, we can reduce the overall peak memory by 8×.

In this paper, we propose MCUNetV2 to address the challenge. We first propose a patch-by-patch
execution order for the initial memory-intensive stage of CNNs (Figure 3). Unlike conventional
layer-by-layer execution, it operates on a small spatial region of the feature map at a time, instead of
the whole activation. Since we only need to store the feature of a small patch, we can significantly
cut down the peak memory of the initial stage (blue to yellow in Figure 3), allowing us to fit a
larger input resolution. However, the reduced peak memory comes at the price of computation
overhead: in order to compute the non-overlapping output patches, the input image patches need
to be overlapped (Figure 3(b)), leading to repeated computation. The overhead is positively related
to the receptive field of the initial stage: the larger the receptive field, the larger the input patches,
which leads to more overlapping. We further propose receptive field redistribution to shift the
receptive field and workload to the later stage of the network. This reduces the patch size as well as
the computation overhead caused by overlapping, without hurting the performance of the network.
Finally, patch-based inference brings a larger design space for the neural network, giving us more
freedom trading-off input resolution, model size, etc. We also need to minimize the computation
overhead under patch-based execution. To explore such a large and entangled space, we propose
to jointly design the optimal deep model and its inference schedule with neural architecture search
given a specific dataset and hardware.

Patch-based inference effectively reduces the peak memory usage of existing networks by 4-8×
(Figure 5). The results are further improved when co-designing neural architecture with inference
scheduling. On ImageNet [11], we achieve a record accuracy of 71.8% on MCU (Table 2); on visual
wake words dataset [10], we are able to achieve >90% accuracy under only 32kB SRAM, which is
4.0× smaller compared to MCUNetV1 [27], greatly lowering the boundary of tiny deep learning
(Figure 7). MCUNetV2 further unlocks the possibility to perform dense prediction tasks on MCUs
(e.g., object detection), which was not practical due to the limited input resolution. We are able to
achieve 64.6% mAP under 256kB SRAM constraints and 68.3% under 512kB, which is 16.9% higher
compared to the existing state-of-the-art solution, making object detection applicable on a tiny ARM
Cortex-M4 MCU. Our contributions can be summarized as follows:

• We systematically analyze the memory usage pattern of efficient CNN designs and find that they
suffer from a imbalanced memory distribution, leaving a huge room for optimization.

• We propose a patch-based inference scheduling to significantly reduce the peak memory required
for running CNN models, together with receptive field redistribution to minimize the computation
overhead.

2

conv1
s=1

conv2
s=2

2

2

conv1
s=1

conv2
s=2

(a) Per-layer computation (executing first conv) (b) Per-patch computation (executing first patch)

In memory Not in memory Currently executing To be executed

H

W

C

Overlapped

11 1
1

2

Figure 3. Per-patch inference can significantly reduce the peak memory required to execute a sequence of
convolutional layers. We study two convolutional layers (stride 1 and 2). Under per-layer computation (a),
the first convolution has a large input/output activation size, dominating the peak memory requirement. With
per-patch computation (b), we allocate the buffer to host the final output activation, and compute the results
patch-by-patch. We only need to store the activation from one patch but not the entire feature map, reducing the
peak memory (the first input is the image, which can be partially decoded from a compressed format like JPEG).

• With the joint design of network architecture and inference scheduling, we achieve a record
performance for tiny image classification and objection detection on MCUs. Our work largely
addressed the memory bottleneck for tinyML, paving the way for various vision applications.

2 Understanding the Memory Bottleneck of Tiny Deep Learning

We systematically analyze the memory bottleneck of CNN models.
Imbalanced memory distribution. As an example, we provide the per-block peak memory usage
of MobileNetV2 [41] in Figure 1. The profiling is done in int8 (details in Section 4). We can
observe a clear pattern of imbalanced memory usage distribution. The first 5 blocks have large
peak memory, exceeding the memory constraints of MCUs, while the remaining 13 blocks easily
fit 256kB memory constraints. The third block has 8× larger memory usage than the rest of the
network, becoming the memory bottleneck. We also inspect other efficient network designs and find
the phenomenon quite common across different CNN backbones, even for models specialized for
memory-limited microcontrollers [27]. The detailed statistics are provided in the supplementary.

We find that this situation applies to most single-branch or residual CNN designs due to the hier-
archical structure*: after each stage, the image resolution is down-sampled by half, leading to 4×
fewer pixels, while the channel number increases only by 2× [42, 17, 22] or by an even smaller
ratio [41, 21, 45], resulting in a decreasing activation size. Therefore, the memory bottleneck tends to
appear at the early stage of the network, after which the peak memory usage is much smaller.
Challenges and opportunities. The imbalanced memory distribution significantly limits the model
capacity and input resolution executable on MCUs. In order to accommodate the initial memory-
intensive stage, the whole network needs to be scaled down even though the majority of the network
already has a small memory usage. It also makes resolution-sensitive tasks (e.g., object detection)
difficult, as a high-resolution input will lead to large initial peak memory. Consider the first convolu-
tional layer in MobileNetV2 [41] with input channels 3, output channels 32, and stride 2, running it
on an image of resolution 224 × 224 requires a memory of 3 × 2242 + 32 × 1122 = 539kB even
when quantized in int8, which cannot be fitted into microcontrollers. On the other hand, if we can
find a way to “bypass” the initial memory-intensive stage, we can greatly reduce the peak memory of
the whole network, leaving us a large room for optimization.

3 MCUNetV2: Memory-Efficient Patch-based Inference

3.1 Breaking the Memory Bottleneck with Patch-based Inference

We propose to break the memory bottleneck of the initial layers with patch-based inference (Figure 3).
Existing deep learning inference frameworks (e.g., TensorFlow Lite Micro [1], TinyEngine [27],
microTVM [8], etc.) use a layer-by-layer execution. For each convolutional layer, the inference
library first allocates the input and output activation buffer in SRAM, and releases the input buffer
after the whole layer computation is finished. Such an implementation makes inference optimization
easy (e.g., im2col, tiling, etc.), but the SRAM has to hold the entire input and output activation for

*some CNN designs have highly complicated branching structure (e.g., NASNet [56]), but they are generally
less efficient for inference [34, 44, 6]; thus not widely used for edge computing.

3

co
nv

3x
3

M
B

1
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

Po
ol

in
g

FC

co
nv

3x
3

M
B

1
1x

1

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
3x

3

Po
ol

in
g

FC

M
B

6
3x

3

M
B

6
3x

3

large peak memory/per-patch small peak memory/per-layerMbV2

MbV2-RD
Reduce

Receptive Field

Increase

Receptive Field

Figure 4. The redistributed MobileNetV2 (MbV2-RD) has reduced receptive field for the per-patch inference
stage and increased receptive field for the per-layer stage. The two networks have the same level of performance,
but MbV2-RD has a smaller overhead under patch-based inference. The mobile inverted block is denoted as
MB{expansion ratio} {kernel size}. The dashed border means stride=2.

Table 1. Per-patch inference reduces the peak memory by 8× for MobileNetV2 [41] (1372kB to 172kB),
but it increases the overall computation by 10% due to patch overlapping. We futher propose receptive field
redistribution (MbV2-RD) which reduces the overall overhead to only 3% without hurting performance.

Model Patch
Size

Comp. overhead MACs(4×4 patches) Peak SRAM ImgNet
Top-1

VOC
mAPpatch-stage overall patch-stage overall per-layer per-patch

MbV2 [41] 752 +42% +10% 130M 330M 1372kB 172kB (8×↓) 72.2% 75.4%
MbV2-RD 632 +18% +3% 73M 301M 1372kB 172kB (8×↓) 72.1% 75.7%

each layer, which is prohibitively large for the initial stage of the CNN. Our patch-based inference
runs the initial memory-intensive stage in a patch-by-patch manner. For each time, we only run the
model on a small spatial region (>10× smaller than the whole area), which effectively cuts down the
peak memory usage. After this stage is finished, the rest of the network with a small peak memory is
executed in a normal layer-by-layer manner (upper notations in Figure 1).

We show an example of two convolutional layers (with stride 1 and 2) in Figure 3. For conventional
per-layer computation, the first convolutional layer has large input and output activation size, leading
to a high peak memory. With spatial partial computation, we allocate the buffer for the final output
and compute its values patch-by-patch. In this manner, we only need to store the activation from one
patch instead of the whole feature map. Note that the first activation is the input image, which can be
partially decoded from a compressed format like JPEG and does not require full storage.
Computation overhead. The significant memory saving comes at the cost of computation overhead.
To maintain the same output results as per-layer inference, the non-overlapping output patches
correspond to overlapping patches in the input image (the shadow area in Figure 3(b)). This is
because convolutional filters with kernel size >1 contribute to increasing receptive fields. The
bordering pixel on the output patches is dependent on the inputs from neighboring patches. Such
repeated computation can increase the overall network computation by 10-17% even under optimal
hyper-parameter choice (Figure 5), which is undesirable for low-power edge devices.

3.2 Reducing Computation Overhead by Redistributing the Receptive Field

The computation overhead is related to the receptive field of the patch-based initial stage. Consider the
output of the patch-based stage, the larger receptive field it has on the input image, the larger resolution
for each patch, leading to a larger overlapping area and repeated computation (see Section 4.4 for
quantitative analysis). For MobileNetV2, if we only consider down-sampling, each input patch has a
side length of 224/4 = 56. But when considering the increased receptive field, each input patch has
to use a shape of 75× 75, leading to a large overlapping area.

We propose to redistribute the receptive field (RF) of the CNN to reduce computation overhead. The
basic idea is: (1) reduce the receptive field of the patch-based initial stage; (2) increase the receptive
field of the later stage. Reducing RF for the initial stage helps to reduce the size of each input patch
and repeated computation. However, some tasks may have degraded performance if the overall RF
is smaller (e.g., detecting large objects). Therefore, we further increase the RF of the later stage to
compensate for the performance loss.

We take MobileNetV2 as a study case and modify its architecture. The comparison is shown in
Figure 4. We used smaller kernels and fewer blocks in the per-patch inference stage, and increased

4

the number of blocks in the later per-layer inference stage. The process needs manual tuning and
varies case-by-case. We will later discuss how we automate the process with NAS. We compare the
performance of the two architectures in Table 1. Per-patch inference reduces the peak SRAM by 8×
for all cases, but the original MobileNetV2 design has 42% computation overhead for the patch-based
stage and 10% for the overall network. After redistributing the receptive field (“MbV2-RD”), we can
reduce the input patch size from 75 to 63, while maintaining the same level of performance in image
classification and object detection. After redistribution, the computation overhead is only 3%, which
is negligible considering the benefit in memory reduction.

3.3 Joint Neural Architecture and Inference Scheduling Search

Redistributing the receptive field allows us to enjoy the benefit of memory reduction at minimal
computation/latency overhead, but the strategy varies case-by-case for different backbones. The
reduced peak memory also allows larger freedom when designing the backbone architecture (e.g.,
using a larger input resolution). To explore such a large design space, we propose to jointly optimize
the neural architecture and the inference scheduling in an automated manner. Given a certain dataset
and hardware constraints (SRAM limit, Flash limit, latency limit, etc.), our goal is to achieve the
highest accuracy while satisfying all the constraints. We have the following knobs to optimize:

Backbone optimization. We follow [27] to use a MnasNet-alike search space [44, 6] for NAS,
so that we can have a fair comparison. The space includes different kernel sizes for each inverted
residual block k[] (3/5/7), different expansion ratios e[] (3/4/6), and a different number of blocks
for each stage d[] (2/3/4). More recent search space designs like MobileNetV3 [21] have better
accuracy-computation trade-off, but are hard to quantize due to Swish activation function [36],
making deployment on MCU difficult. As shown in [27], the search space configuration (i.e., the
global width multiplier w and input resolution r) is crucial to the final NAS performance. We argue
that the best search space configuration is not only hardware-aware but also task-aware: for example,
some tasks may prefer a higher resolution over a larger model size, and vice versa. Therefore, we
also put r and w into the search space. We further extend w to support per-block width scaling w[].
Including w[] (0.5/0.75/1.0) and r (96-256) expands the search space scalability, allowing us to fit
different MCU models and tight resource budgets (ablation study provided in the supplementary).

Inference scheduling optimization. Given a model and hardware constraints, we will find the
best inference scheduling. Our inference engine is developed based on TinyEngine [27] to further
patch-based inference. Apart from the optimization knobs in TinyEngine, we also need to determine
the patches number p and the number of blocks n to perform patch-based inference, so that the
inference satisfies the SRAM constraints. According to Section 4.4, a smaller p and n lead to a
smaller computation overhead and faster inference. But it varies case-by-case, so we jointly optimize
it with the architecture.

Joint search. We need to co-design the backbone optimization and inference scheduling. For
example, given the same constraints, we can choose to use a smaller model that fits per-layer execution
(p = 1, no computation overhead), or a larger model and per-patch inference (p > 1, with a small
computation overhead). Therefore, we put both sides in the same loop and use evolutionary search to
find the best set of (k[], e[], d[], w[], r, p, n) satisfying constraints. Specifically, we randomly sample
neural networks from the super network search space; for each sampled network, we enumerate all
the p and n choices (optimized together with other knobs in TinyEngine) and find the satisfying
combinations. We then report the best (p, n) pair with minimal computation/latency, and use the
statistics to supervise architecture search. We provide the details and pseudo code in supplementary.

4 Experiments
Memory profiling. The memory usage is dependent on the inference framework implementa-
tion [27]. To ease the comparison, we study two profiling settings:

(1) We first study analytic profiling, which is only related to the model architecture but not the
inference framework. Following [10, 40], the memory required for a layer is the sum of input and
output activation (since weights can be partially fetched from Flash); for networks with multi-branches
(e.g., residual connection), we consider the sum of memory required for all branches at the same time
(if the same input is shared by multiple branches, it will only be counted once).

5

0

280

560

840

1120

1400

227214
301

172172

1372

784

1176
13721372

Per-layer Per-patch

MbV2 OFA-CPU MnasNet

8.0x

smaller

OOM

MbV2-RD FBNet-A

8.0x

smaller

3.9x

smaller 3.7x

smaller

6.1x

smaller

0

120

240

360

480
431

367

445

301
330

376
314

413

293301

MbV2 OFA-CPU MnasNetMbV2-RD FBNet-A
(a) Peak Memory (kB) (b) Computation (M MACs)

0

120

240

360

480
431

367

445

301329
376

314

413

293301

Per-layer Per-patch (4×4)

+3%

+8%
+17%

+15%

+10%
redistribute

Figure 5. Analytical profiling: patch-based inference significantly reduces the inference peak memory by
3.7-8.0× at a small computation overhead of 8-17%. The memory reduction and computation overhead are
related to the network design. For MobileNetV2, we can reduce the computation overhead from 10% to 3% by
redistributing the receptive field. All networks take an input resolution of 2242 and 4× 4 patches.

OOM
56

76
5164

85

FBNet-A MCUNetMbV2-Re

(a) Peak SRAM (kB)

MbV2

(c) Latency (ms)(b) Computation (M MACs)

FBNet-AMbV2-ReMbV2
w0.5, r144 w0.5, r144 w0.45, r144 w0.5, r144 w0.5, r144 w0.45, r144w1.0, r144

MCUNet
w1.0, r144

FBNet-A MCUNetMbV2-ReMbV2
w0.5, r144 w0.5, r144 w0.45, r144 w1.0, r144

0

64

128

192

256

320

56
76

5164
85

132
94113

234

310300315

4.9x

smaller

5.9x

smaller

4.1x

smaller

4.2x

smaller

0

200

400

600

800

522

789

564

741

494

732

562

711

432

613
540

617

(a) Measured Peak SRAM (kB) (b) Measured Latency (ms)

FBNet-A MCUNetMbV2-RDMbV2
w0.5, r144 w0.5, r144 w0.45, r144 w1.0, r144

+20%+15%

+4% +4%

+19%

+14%
+21%

FBNet-A MCUNetMbV2-RDMbV2
w0.5, r144 w0.5, r144 w0.45, r144 w1.0, r144

redistribute

56765164 85
132

94113

234

310300315

Per-layer (w/ TinyEngine) Per-patch (2×2) Per-patch (3×3)

Figure 6. On-device measurement: patch-based inference reduce the measured peak SRAM usage by 4-6×
when running on MCUs. The latency overhead could be large for some networks, but we can reduce it to 4%
with proper architecture design (MbV2-RD). We scale down width w and resolution to fit MCU memory.

(2) We also study on-device profiling to report the measured SRAM and Flash usage when executing
the deep model on MCU. The number is usually larger than the analytic results since we need to
account for temporary buffers storing partial weights, Im2Col buffer, etc.
Datasets. We analyze the advantage of our method on image classification datasets: ImageNet [11]
as the standard benchmark, and Visual Wake Words [10] to reflect TinyML applications. We further
validate our method on object detection datasets: Pascal VOC [13] and WIDER FACE [48] to show
our advantage: be able to fit larger resolution on the MCU.
Training&deployment. We follow [27] for super network training and evolutionary search,
detailed in the supplementary. Models are quantized to int8 for deployment. We extend
TinyEngine [27] to support patch-based inference, and benchmark the models on 3 MCU models with
different hardware resources: STM32F412 (Cortex-M4, 256kB SRAM/1MB Flash), STM32F746
(Cortex-M7, 320kB SRAM/1MB Flash), STM32H743 (Cortex-M7, 512kB SRAM/2MB Flash).

4.1 Reducing Peak Memory of Existing Networks

We first analyze how patch-based inference can significantly reduce the peak memory for model
inference, both in analytic profiling and on-device profiling.
Analytic profiling. We study several widely used deep network backbones designed for edge
inference in Figure 5: MobileNetV2 [41] (MbV2), redistributed MobileNetV2 (MbV2-RD), Once-
For-All CPU (OFA-CPU) [5], MnasNet [44], and FBNet-A [47]. All the networks use an input
resolution of 224× 224; for patch-based inference, we used 4× 4 patches. The memory is profiled in
int8. Per-patch inference significantly reduces the peak memory by 3.7-8.0×, while only incurring
8-17% of computation overhead. For MobileNetV2, we can reduce the computation overhead from
10% to 3% by redistributing the receptive field without hurting accuracy (Table 1). The memory
saving and computation reduction are related to the network architecture. Some models like MnasNet
have a larger overhead since it uses large kernel sizes in the initial stage, which increases receptive
fields. It shows the necessity to co-design the network architecture with the inference engine.
On-device measurement. We further profile existing networks running on STM32F746 MCU. We
measure the SRAM usage of the network with per-layer and per-patch (2 × 2 or 3 × 3 patches)
inference. Due to the memory limit of MCU (320kB SRAM, 1MB Flash), we have to scale down
the width multiplier w and input resolution r. As in Figure 6, per-patch based inference reduces the
measured peak SRAM by 4-6×. Some models may have a large latency overhead, since the initial

6

Table 2. MCUNetV2 significantly improves the ImageNet accuracy on microcontrollers, outperforming the
state-of-the-arts by 4.6% under 256kB SRAM and 3.3% under 512kB. Lower or mixed precisions (marked
gray) are orthogonal techniques, which we leave for future work. Out-of-memory (OOM) results are struck out.

Model / Library Quant. MACs SRAM Flash Top-1 Top-5

STM32F412 (256kB SRAM, 1MB Flash)

MbV2 0.35× (r=144) [41] / TinyEngine [27] int8 24M 308kB 862kB 49.0% 73.8%
Proxyless 0.3× (r=176) [6] / TinyEngine [27] int8 38M 292kB 892kB 56.2% 79.7%
MbV1 0.5× (r=192) [22] / Rusci et al. [39] mixed 110M <256kB <1MB 60.2%
MCUNet (TinyNAS / TinyEngine) [27] int8 68M 238kB 1007kB 60.3% -
MCUNet (TinyNAS / TinyEngine) [27] int4 134M 233kB 1008kB 62.0% -

MCUNetV2-M4 int8 119M 196kB 1010kB 64.9% 86.2%

STM32H743 (512kB SRAM, 2MB Flash)

MbV1 0.75× (r=224) [22] / Rusci et al. [39] mixed 317M <512kB <2MB 68.0%
MCUNet (TinyNAS / TinyEngine) [27] int8 126M 452kB 2014kB 68.5% -
MCUNet (TinyNAS / TinyEngine) [27] int4 474M 498kB 2000kB 70.7% -

MCUNetV2-H7 int8 256M 465kB 2032kB 71.8% 90.7%

V
W

W
 A

cc
ur

ac
y

(%
)

84

86

88

90

92

94

20 88 156 224 292 360
84

86

88

90

92

94

150 320 490 660 830 1000

MCUNetV2 MCUNet MbV2+TF-Lite Proxyless+TF-Lite

4.0×smaller

Measured Latency (ms)Measured Peak SRAM (kB)
(b) Trade-off: accuracy v.s. measured latency(a) Trade-off: accuracy v.s. peak SRAM

Flash < 1MB

30kB

118kB62kB
256kB
constraint
on MCU

+4.0%

+4.6%

1.8× faster

V
W

W
 A

cc
ur

ac
y

(%
)

92

94

PatchNet Per-layer MCUNet MbV2+TF-Lite Proxyless+TF-Lite Untitled 1

finetune_proxyless384-vww_mcu128kb-1mb-patch4-fixedp_10e_qat

finetune_proxyless384-vww_mcu64kb-1mb-patch4-fixedp_10e_qat

finetune_proxyless384-vww_mcu32kb-1mb-patch4-fixedp_10e_qat

Flash < 1MB
SRAM < 320kB

84

86

88

90

92

94

150 320 490 660 830 1000

old results

Figure 7. Left: MCUNetV2 has better visual wake word (VWW) accuracy vs. peak SRAM trade-off. Compared
to MCUNet [27], MCUNetV2 achieves better accuracy at 4.0× smaller peak memory. It achieves >90%
accuracy under <32kB memory, facilitating deployment on extremely small hardware. Right: patch-based
method expands the search space that can fit the MCU, allowing better accuracy vs. latency trade-off.

stage has worse hardware utilization. But with a proper architecture design (MbV2-RD), we can
reduce the latency overhead to 4%, which is negligible compared to the memory reduction benefit.

4.2 MCUNetV2 for Tiny Image Classification

With joint optimization of neural architecture and inference scheduling, MCUNetV2 significantly
pushes the state-of-the-art results for MCU-based tiny image classification.
Pushing the ImageNet record on MCUs. We compared MCUNetV2 with existing state-of-the-art
solutions on ImageNet classification under two hardware settings: 256kB SRAM/1MB Flash and
512kB SRAM/2MB Flash. The former represents a widely used Cortex-M4 microcontroller; the
latter corresponds to a higher-end Cortex-M7. The goal is to achieve the highest ImageNet accuracy
on resource-constrained MCUs (Table 2). MCUNetV2 significantly improves the ImageNet accuracy
of tiny deep learning on microcontrollers. Under 256kB SRAM/1MB Flash, MCUNetV2 outperforms
the state-of-the-art method [27] by 4.6% at 18% lower peak SRAM. Under 512kB SRAM/2MB Flash,
MCUNetV2 achieves a new record ImageNet accuracy of 71.8% on commercial microcontrollers,
which is 3.3% compared to the best solution under the same quantization policy. Lower-bit (int4)
or mixed-precision quantization can further improve the accuracy (marked in gray in the table). We
believe that we can further improve the accuracy of MCUNetV2 with a better quantization policy,
which we leave to future work.

Visual Wake Words under 32kB SRAM. Visual wake word (VWW) reflects the low-energy
application of tinyML. MCUNetV2 allows us to run a VWW model with a modest memory require-
ment. As in Figure 7, MCUNetV2 outperforms state-of-the-art method [27] for both accuracy vs.

7

Table 3. MCUNetV2 significantly improves Pascal VOC [13] object detection on MCU by allowing a higher
input resolution. Under STM32H743 MCU constraints, MCUNetV2-H7 improves the mAP by 16.9% compared
to [27], achieving a record performance on MCU. It can also scale down to cheaper MCU STM32F412 with only
256kB SRAM while still improving mAP by 13.2% at 1.9× smaller peak SRAM and a similar computation.

MCU Model Constraint Model #Param MACs peak SRAM VOC mAP Gain

H743 (∼$7) SRAM
<512kB

MbV2+CMSIS [27] 0.87M 34M 519kB 31.6% -
MCUNet [27] 1.20M 168M 466kB 51.4% 0%

MCUNetV2-H7 0.67M 343M 438kB 68.3% +16.9%

F412 (∼$4) <256kB MCUNetV2-M4 0.47M 172M 247kB 64.6% +13.2%

Table 4. MCUNetV2 outperforms existing methods for memory-efficient face detection on WIDER FACE [48]
dataset. Compared to RNNPool-Face-C [40], MCUNetV2-L can achieve similar mAP at 3.4× smaller peak
SRAM and 1.6× smaller computation. The model statistics are profiled on 640 × 480 RGB input images
following [40].

Method MACs ↓ Peak Memory ↓ mAP ↑ mAP (≤3 faces) ↑
(fp32) Easy Medium Hard Easy Medium Hard

EXTD [49] 8.49G 18.8MB (9.9×) 0.90 0.88 0.82 0.93 0.93 0.91
LFFD [20] 9.25G 18.8MB (9.9×) 0.91 0.88 0.77 0.83 0.83 0.82
RNNPool-Face-C [40] 1.80G 6.44MB (3.4×) 0.92 0.89 0.70 0.95 0.94 0.92
MCUNetV2-L 1.10G 1.89MB (1.0×) 0.92 0.90 0.70 0.94 0.93 0.92

EagleEye [52] 0.08G 1.17MB (1.8×) 0.74 0.70 0.44 0.79 0.78 0.75
RNNPool-Face-A [40] 0.10G 1.17MB (1.8×) 0.77 0.75 0.53 0.81 0.79 0.77

MCUNetV2-S 0.11G 672kB (1.0×) 0.85 0.81 0.55 0.90 0.89 0.87

peak memory and accuracy vs. latency trade-off. We perform neural architecture search under both
per-layer and per-patch inference settings using the same search space and super network for abla-
tion. Compared to per-layer inference, MCUNetV2 can achieve better accuracy using 4.0× smaller
memory. Actually, it can achieve >90% accuracy under 32kB SRAM requirement, allowing us to
deploy the model on low-end MCUs like STM32F410 costing only $1.6. For the latency-constrained
setting, we jointly optimized the model architecture and inference scheduling, where a smaller patch
number is used when possible. Per-patch inference also expands the search space, giving us more
freedom to find models with better accuracy vs. latency trade-off.

4.3 MCUNetV2 for Tiny Object Detection

Object detection is sensitive to a smaller input resolution (Figure 2). Current state-of-the-art [27]
cannot achieve a decent detection performance on MCUs due to the resolution bottleneck. MCUNetV2
breaks the memory bottleneck for detectors and improves the mAP by double digits.

MCU-based detection on Pascal VOC. We show the object detection results on Pascal VOC
trained with YOLOv3 [38] on Table 3. We provide MCUNetV2 results for M4 MCU with 256kB
SRAM and H7 MCU with 512kB SRAM. On H7 MCU, MCUNetV2-H7 improves the mAP by
16.7% compared to the state-of-the-art method MCUNet [27]. It can also scale down to fit a cheaper
commodity Cortex-M4 MCU with only 256kB SRAM, while still improving the mAP by 13.2% at
1.9× smaller peak SRAM. Note that MCUNetV2-M4 shares a similar computation with MCUNet
(172M vs. 168M) but a much better mAP. This is because the expanded search space from patch-based
inference allows us to choose a better configuration of larger input resolution and smaller models.

Memory-efficient face detection. We benchmarked MCUNetV2 for memory-efficient face detec-
tion on WIDER FACE [48] dataset in Table 4. We report the analytic memory usage of the detector
backbone in fp32 following [40]. We train our methods with S3FD face detector [50] following [40]
for a fair comparison. We also report mAP on samples with ≤ 3 faces, which is a more realistic setting
for tiny devices. MCUNetV2 outperforms existing solutions under different scales. MCUNetV2-L
achieves comparable performance at 3.4× smaller peak memory compared to RNNPool-Face-C [27]
and 9.9× smaller peak memory compared to LFFD [20]. The computation is also 1.6× and 8.4×

8

peak memory patch size

(a) Analysis on peak memory & patch size
patch-based block n # patches p

8× smaller

MbV2: 72.2% MbV2-RD: 72.1%
1400

1200

840

560

280

0
0 1 2 3 4 5 6 7 2 4 7 14 28

140

116

92

68

44

20

with p=4 with n=5

pe
ak

 m
em

or
y

(k
B

)

pa
tc

h
si

ze

1 2 4 7 14 28

75%

50%

25%

0%

3.7×
smaller

co
m

pu
ta

tio
n

ov
er

he
ad

(b) Analysis on computation overhead
patches p

with n=5

Figure 8. Ablation study on patch-based inference. Left: the peak memory generally goes down with more
blocks being executed patch-by-patch (n) and a larger patch number (p). The optimal index for MobileNetV2 is
n∗ = 5, where the feature map is down-sampled by 8×. Right: splitting the input images into more patches
(larger p) leads to larger computation overhead. Receptive field redistribution reduces the overhead (MbV2-RD).

Table 5. Comparing MCUNetV2 with other memory-saving methods. Non-overlapping patches suffer from a de-
graded detection performance; RNNPool [40] leads to worse performance and slower training time. MCUNetV2
with redistributed model maintains the accuracy at the same training cost. Degraded items marked in red.

Model Inference Invariant Peak Memfp32 Train time ImgNet Top-1 VOC mAP

MbV2 [41] Per-layer 3 2.29MB 1.0× 72.2% 75.4%

Non-overlap Per-patch 7 0.19MB 1.0× 71.8% 73.9%
MbV2-RNNPool [40] Streaming 7 0.24MB 3.2× 70.1% 71.0%
MbV2-RD (ours) Per-patch 3 0.19MB 1.0× 72.1% 75.7%

smaller. MCUNetV2-S consistently outperforms RNNPool-Face-A [40] and EagleEye [52] at 1.8×
smaller peak memory.

4.4 Analysis
Hyper-parameters for patch-based inference. We study the hyper-parameters used for patch-
based inference: the number of blocks to be executed under patch-based inference n; the number of
patches to split the input image p (splitting the image into p× p overlapping patches). We analyze
MobileNetV2 [41] in Figure 8(a), with a larger n, the patch size increases due to the growing receptive
field. The peak memory first goes down since the output feature map is smaller then goes up due to
larger receptive field overhead. n = 5 is optimal. For a larger p (given n=5), each patch is smaller,
which helps to reduce the peak memory. However, it also leads to more computation overhead due
to more spatial overlapping (Figure 8(b)). Receptive field redistribution can reduce the overhead
significantly (MbV2-RD). The optimal design is n∗ = 5, p∗ = 4 to reach the minimum peak memory
with the smallest overhead. The choice of p and n varies for different networks. Therefore, we use an
automated method to jointly optimize with neural architecture (Section 3.3).
Comparison to other solutions. We also compare MCUNetV2 with other methods that reduce
inference peak memory. The comparison on MobileNetV2 [41] is shown in Table 5. A straightforward
way is to split the input image into non-overlapping patches (“Non-overlap”) for the first several
blocks as done in [12]. Such a practice does not incur extra computation, but it breaks the feature
propagation between patches and the translational invariance of CNNs. It achieves lower image
classification accuracy and significantly degraded object detection mAP (on Pascal VOC) due to the
lack of cross-patch communication (a similar phenomenon is observed in [30]). For MobileNetV2
with RNNPool [40], it can reduce the peak memory but leads to inferior ImageNet accuracy and
object detection mAP. Its training time is also 3.2× longer† due to the complicated data path and the
RNN module. On the other hand, MCUNetV2 acts exactly the same as a normal network during
training (per-layer forward/backward), while also matching the image classification and objection
detection performance. MCUNetV2 can further improve the results with joint neural architecture and
inference scheduling search (Section 4.2).
Dissecting MCUNetV2 architecture. We visualize one of the MCUNetV2 model architecture on
the VWW [10] dataset in Figure 9. We can find the following patterns:

• The kernel size in the per-patch inference stage is small (1 × 1 and 3 × 3) to reduce the
receptive field and spatial overlapping, thus reducing computation overhead.

†measured with official PyTorch code (MIT License) using a batch size of 64 on NVIDIA Titan RTX.

9

co
nv

3x
3

co
nv

1x
1

M
B

3
3x

3

M
B

4
3x

3

M
B

4
5x

5

M
B

4
3x

3

M
B

4
7x

7

M
B

4
7x

7

M
B

6
5x

5

M
B

6
3x

3

M
B

6
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

6
5x

5

cl
s

he
ad

M
B

4
7x

7

160x160

per-patch per-layer

80x80
40x40 20x20 10x10

5x5

Figure 9. An MCUNetV2 architecture on VWW. The color represents the kernel size; the height of each
block represents the expansion ratio. The name is MB{expansion ratio} {kernel size}x{kernel
size}. Blocks with dashed borders have stride=2. {}x{} in the bottom denotes the feature map resolution.

• The expansion ratio of the middle stage (early in per-layer stage) is small to further reduce the
peak memory; while the expansion ratio for the later stage is large to increase performance.

• Large expansion ratios and large kernel sizes usually do not appear together to reduce the
computational cost and latency: if the expansion ratio is large (like 6), the kernel size is
small (3× 3 or 5× 5); if the kernel size is large (7× 7), the expansion ratio is small (3 or 4).

• The input resolution is larger on resolution-sensitive datasets like VWW compared to
MCUNet [27], since per-layer inference cannot fit a large input resolution.

Notice that all the patterns are automatically discovered by the joint neural architecture and inference
scheduling search algorithm, without human expertise.

5 Related Work
Tiny deep learning on microcontrollers. Deploying deep learning models on memory-constrained
microcontrollers requires an efficient inference framework and model architecture. Existing de-
ployment frameworks include TensorFlow Lite Micro [1], CMSIS-NN [23], TinyEngine [27], Mi-
croTVM [8], CMix-NN [7], etc. However, all of the above frameworks support only per-layer
inference, which limits the model capacity executable under a small memory and makes higher
resolution input impossible.

Efficient neural network. For efficient deep learning, people apply pruning [16, 18, 28, 19, 32, 31]
and quantization [16, 54, 53, 37, 46, 9, 39, 24] to compress an off-the-shelf deep network, or
directly design an efficient network architecture [22, 41, 21, 34, 51]. Neural architecture search
(NAS) [55, 56, 29, 6, 44, 47] can design efficient models in an automated way. It has been used
to improve tinyML on MCUs [27, 4, 25, 14, 33]. However, most of the NAS methods use the
conventional hierarchy CNN backbone design, which leads to an imbalanced memory distribution
under per-layer inference (Section 2), restricting the input resolution. Therefore, they are not able to
achieve good performance on tasks like object detection without our patch-based inference scheduling.

Computation scheduling/re-ordering. The memory requirement to run a deep neural network
is related to the implementation. It is possible to reduce the required memory by optimizing the
convolution loop-nest [43], reordering the operator executions [26, 2], or temporarily swapping
data off SRAM [35]. Computing partial spatial regions across multiple layers can reduce the peak
memory [15, 3, 40]. However, system-only optimization leads to either large repeated computation
or a highly complicated dataflow. Our work explores joint system and model optimization to reduce
the peak memory at a negligible computation overhead while still allowing conventional convolution
optimization techniques like im2col, tiling, etc.

6 Conclusion

In this paper, we propose patch-based inference to reduce the memory usage for tiny deep learning by
up to 8×, which greatly expands the design space and unlocks powerful vision applications on IoT
devices. We jointly optimize the neural architecture and inference scheduling to develop MCUNetV2.
MCUNetV2 significantly improves the object detection performance on microcontrollers by 16.9%
and achieves a record ImageNet accuracy (71.8%). For the VWW dataset, MCUNetV2 can achieve
>90% accuracy under only 32kB SRAM, 4× smaller than existing work. Our study largely addresses
the memory bottleneck in tinyML and paves the way for vision applications beyond classification.

10

Acknowledgments

We thank MIT-IBM Watson AI Lab, Samsung, Woodside Energy, and NSF CAREER Award
#1943349 for supporting this research.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In OSDI, 2016.

[2] Byung Hoon Ahn, Jinwon Lee, Jamie Menjay Lin, Hsin-Pai Cheng, Jilei Hou, and Hadi Esmaeilzadeh.
Ordering chaos: Memory-aware scheduling of irregularly wired neural networks for edge devices. arXiv
preprint arXiv:2003.02369, 2020.

[3] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-layer cnn accelerators. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1–12. IEEE, 2016.

[4] Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas, Urmish Thakker, Dibakar Gope, Vijay
Janapa Reddi, Matthew Mattina, and Paul Whatmough. Micronets: Neural network architectures for
deploying tinyml applications on commodity microcontrollers. Proceedings of Machine Learning and
Systems, 3, 2021.

[5] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once for All: Train One Network
and Specialize it for Efficient Deployment. In ICLR, 2020.

[6] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct Neural Architecture Search on Target Task
and Hardware. In ICLR, 2019.

[7] Alessandro Capotondi, Manuele Rusci, Marco Fariselli, and Luca Benini. Cmix-nn: Mixed low-precision
cnn library for memory-constrained edge devices. IEEE Transactions on Circuits and Systems II: Express
Briefs, 67(5):871–875, 2020.

[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An automated end-to-end optimizing compiler for
deep learning. In OSDI, 2018.

[9] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan,
and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural networks. arXiv
preprint arXiv:1805.06085, 2018.

[10] Aakanksha Chowdhery, Pete Warden, Jonathon Shlens, Andrew Howard, and Rocky Rhodes. Visual wake
words dataset. arXiv preprint arXiv:1906.05721, 2019.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR, 2009.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[13] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):303–338,
2010.

[14] Igor Fedorov, Ryan P Adams, Matthew Mattina, and Paul Whatmough. Sparse: Sparse architecture search
for cnns on resource-constrained microcontrollers. In NeurIPS, 2019.

[15] Koen Goetschalckx and Marian Verhelst. Breaking high-resolution cnn bandwidth barriers with enhanced
depth-first execution. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9(2):323–
331, 2019.

[16] Song Han, Huizi Mao, and William J Dally. Deep Compression: Compressing Deep Neural Networks with
Pruning, Trained Quantization and Huffman Coding. In ICLR, 2016.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
In CVPR, 2016.

[18] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. AMC: AutoML for Model
Compression and Acceleration on Mobile Devices. In ECCV, 2018.

[19] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In
ICCV, 2017.

[20] Yonghao He, Dezhong Xu, Lifang Wu, Meng Jian, Shiming Xiang, and Chunhong Pan. Lffd: A light and
fast face detector for edge devices. arXiv preprint arXiv:1904.10633, 2019.

11

[21] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. Searching for MobileNetV3.
In ICCV, 2019.

[22] Andrew G. Howard, Menglong Zhu, Bo Chen, Dimitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications. arXiv, 2017.

[23] Liangzhen Lai, Naveen Suda, and Vikas Chandra. Cmsis-nn: Efficient neural network kernels for arm
cortex-m cpus. arXiv preprint arXiv:1801.06601, 2018.

[24] Hamed F Langroudi, Vedant Karia, Tej Pandit, and Dhireesha Kudithipudi. Tent: Efficient quantization of
neural networks on the tiny edge with tapered fixed point. arXiv preprint arXiv:2104.02233, 2021.

[25] Edgar Liberis, Łukasz Dudziak, and Nicholas D Lane. µnas: Constrained neural architecture search for
microcontrollers. arXiv preprint arXiv:2010.14246, 2020.

[26] Edgar Liberis and Nicholas D Lane. Neural networks on microcontrollers: saving memory at inference via
operator reordering. arXiv preprint arXiv:1910.05110, 2019.

[27] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han. Mcunet: Tiny deep learning
on iot devices. In NeurIPS, 2020.

[28] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. In NeurIPS, 2017.

[29] Haoxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable Architecture Search. In ICLR,
2019.

[30] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030,
2021.

[31] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian Sun.
MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning. In ICCV, 2019.

[32] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
efficient convolutional networks through network slimming. In ICCV, 2017.

[33] Bo Lyu, Hang Yuan, Longfei Lu, and Yunye Zhang. Resource-constrained neural architecture search on
edge devices. IEEE Transactions on Network Science and Engineering, 2021.

[34] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. ShuffleNet V2: Practical Guidelines for
Efficient CNN Architecture Design. In ECCV, 2018.

[35] Hongyu Miao and Felix Xiaozhu Lin. Enabling large neural networks on tiny microcontrollers with
swapping. arXiv preprint arXiv:2101.08744, 2021.

[36] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

[37] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet classifica-
tion using binary convolutional neural networks. In ECCV, 2016.

[38] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. arXiv, 2018.

[39] Manuele Rusci, Alessandro Capotondi, and Luca Benini. Memory-driven mixed low precision quantization
for enabling deep network inference on microcontrollers. In MLSys, 2020.

[40] Oindrila Saha, Aditya Kusupati, Harsha Vardhan Simhadri, Manik Varma, and Prateek Jain. Rnnpool:
Efficient non-linear pooling for ram constrained inference. arXiv preprint arXiv:2002.11921, 2020.

[41] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. MobileNetV2:
Inverted Residuals and Linear Bottlenecks. In CVPR, 2018.

[42] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[43] Arthur Stoutchinin, Francesco Conti, and Luca Benini. Optimally scheduling cnn convolutions for efficient
memory access. arXiv preprint arXiv:1902.01492, 2019.

[44] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V
Le. MnasNet: Platform-Aware Neural Architecture Search for Mobile. In CVPR, 2019.

[45] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In
International Conference on Machine Learning, pages 6105–6114. PMLR, 2019.

[46] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. HAQ: Hardware-Aware Automated Quantization
with Mixed Precision. In CVPR, 2019.

12

[47] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. FBNet: Hardware-Aware Efficient ConvNet Design via
Differentiable Neural Architecture Search. In CVPR, 2019.

[48] Shuo Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Wider face: A face detection benchmark. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[49] YoungJoon Yoo, Dongyoon Han, and Sangdoo Yun. Extd: Extremely tiny face detector via iterative filter
reuse. arXiv preprint arXiv:1906.06579, 2019.

[50] Shifeng Zhang, Xiangyu Zhu, Zhen Lei, Hailin Shi, Xiaobo Wang, and Stan Z Li. S3fd: Single shot
scale-invariant face detector. In Proceedings of the IEEE international conference on computer vision,
pages 192–201, 2017.

[51] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. ShuffleNet: An Extremely Efficient Convolu-
tional Neural Network for Mobile Devices. In CVPR, 2018.

[52] Xu Zhao, Xiaoqing Liang, Chaoyang Zhao, Ming Tang, and Jinqiao Wang. Real-time multi-scale face
detector on embedded devices. Sensors, 19(9):2158, 2019.

[53] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160,
2016.

[54] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. arXiv preprint
arXiv:1612.01064, 2016.

[55] Barret Zoph and Quoc V Le. Neural Architecture Search with Reinforcement Learning. In ICLR, 2017.

[56] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning Transferable Architectures for
Scalable Image Recognition. In CVPR, 2018.

13

	Introduction
	Understanding the Memory Bottleneck of Tiny Deep Learning
	MCUNetV2: Memory-Efficient Patch-based Inference
	Breaking the Memory Bottleneck with Patch-based Inference
	Reducing Computation Overhead by Redistributing the Receptive Field
	Joint Neural Architecture and Inference Scheduling Search

	Experiments
	Reducing Peak Memory of Existing Networks
	MCUNetV2 for Tiny Image Classification
	MCUNetV2 for Tiny Object Detection
	Analysis

	Related Work
	Conclusion

