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A Validation loss

Figure 1: Validation loss changes for 50k steps. X-axis: Training time (second). Y-axis: Cross
Entropy Loss on validation set.

Figure 1 shows the validation loss changes with respect to training time for 50k steps as supplementary
results for the experiments in Section 5. In general, Skyformer converges faster and finishes 50k steps
earlier than vanilla Attention and Kernelized Attention over all tasks. We further remark that on Text
Classification, all models quickly fall into over-fitting, and thus the validation losses rise quickly. On
Pathfinder, due to the difficulty of training, in the trial shown in the figure vanilla Attention fails to
reach the best long-time limit under a certain setting.

B Singular value decay rate

Figure 2: Singular value distribution of attention output.

Figure 2 shows the singular value distribution of attention output from the second layer of a trained
vanilla transformer. Results are averaged across one random batch from the test set in each LRA task.
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The singular values decay fast and thus justify the low-rank approximation, as analyzed by Wang
et al. [2020], Dong et al. [2021]. We propose to measure the task difficulty with the singular value
decay rate in attention output, as higher intrinsic task difficulty forces the model to output a matrix
with more large singular values. Such matrices are considered more informative since they are harder
to approximate, requiring more ranks even in the truncated SVD approximation. With the observation
in Figure 2, we conclude that the singular values in Document Retrieval and Pathfinder tasks decay
slower, and those two tasks are more difficult than Text Classification and ListOps.

C Useful facts

This section introduces some useful facts, which are key in the proof in the next section. To start with,
we provide a matrix concentration inequality as follows.

Lemma C.1 (Matrix Bernstein Inequality [Tropp, 2012]). Consider a finite sequence {Xk} of
independent, random, self-adjoint matrices with dimension n. Assume that each random matrix
satisfies

EXk = 0 and ‖Xk‖ ≤ R almost surely.

Then, for all t ≥ 0,

P
{
‖
∑

k
Xk‖ ≥ t

}
≤ 2n · exp

(
−t2/2

σ2 +Rt/3

)
where σ2 ≥

∥∥∥∑
k
E
(
X2
k

)∥∥∥ .
For a certain n-by-n orthogonal matrix H (HHT is a diagonal matrix) and an n-by-d uniform
sub-sampling matrix S (as defined in Definition 1 in the main paper), we denote the sketching
matrix Π :=

√
nS. We aim to show HΠΠTHT can satisfy ( 1

2 , δ)-MA property for HHT by the
following lemma.

Lemma C.2. Denote the stable rank s :=
‖H‖2F
‖H‖2 ≥ 1, and a constant δ < 1/2. Suppose there exists

a constant β ∈ (0, 1] such that β ≤ ‖H‖2F
n‖H(i)‖2 ,∀i = 1, . . . , n, where H(i) is the i-th column of H .

There exists a constant C0 that if

d ≥ C0
s

β
log

n

δ
,

then HΠΠTHT satisfies ( 1
2 , δ)-MA property for HHT .

Proof. The main idea is to utilize Lemma C.1 by setting t = 1
2‖HHT ‖ = 1

2‖H‖
2. Specifically, we

denote the matrices

Xk = HΠ(i)
(
Π(i)

)T
HT − 1

d
HHT , so that∑

k
Xk = HΠΠTHT −HHT .

We still need two steps to give control of R and σ2. For R, we have

‖Xk‖ =

∥∥∥∥∥1

d

n∑
i=1

(nzki − 1)H(i)
(
H(i)

)T∥∥∥∥∥ ≤ 1

d
max

{
max
i

(n− 1)‖H(i)‖2, ‖H‖2
}

≤ 1

d
nmax

i
‖H(i)‖2,

where {zki}ni=1 are the indicators of whether the i-th column is chosen. The first inequality of
the preceding display holds due to the fact that H is an orthogonal matrix. Using the condition
n ≤ ‖H‖2F

β‖H(i)‖2 ,∀i = 1, . . . , n, we further have

‖Xk‖ ≤
‖H‖2F
dβ

,
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and we thus set R :=
‖H‖2F
dβ . On the other hand,

EX2
k =

1

d2

n∑
i=1

E
(
(nzki − 1)2

)
‖H(i)‖2H(i)

(
H(i)

)T
=

1

d2

n∑
i=1

(n− 1)‖H(i)‖2H(i)
(
H(i)

)T
.

Again using the condition that n‖H(i)‖2 ≤ ‖H‖
2
F

β ,∀i = 1, . . . , n, we reach∥∥∥∥∥E
d∑
k=1

X2
k

∥∥∥∥∥ ≤ 1

d

‖H‖2F
β

∥∥HHT
∥∥ =

‖H‖2F
dβ

‖H‖2 ,

and set σ2 :=
‖H‖2F
dβ ‖H‖2.

Finally we plug R and σ2 into Lemma C.1 and obtain:

P
{∥∥HΠΠTHT −HHT

∥∥ ≥ 1

2
‖H‖2

}
≤ 2n · exp

(
−‖H‖4/8

s‖H‖4
dβ + s‖H‖4

6dβ

)
.

To ensure the right-hand-side is smaller than δ, we just need

d ≥ 28

3

s

β
log

2n

δ
,

which validates the lemma. ♦

D Proof of Theorem 2 in the main paper

Proof. The conclusion in the lemma can be divided into two parts, that ˜̄C 4 C̄ and C̄ 4 ˜̄C + λI .
To prove them we first introduce some notations and auxiliary results. Since C̄ is PSD, there exists
a matrix B satisfying BBT = C̄. We further denote B’s SVD decomposition as B = UΣ

1
2V T

(C̄ = UΣUT ), where both U and V are 2n-by-2n orthonormal matrices. (In this section we
slightly abuse the notation that V represents the matrix of right-singular vectors, instead of the value
matrix in self-attention.) Define Σ̄ := Σ + λI,Ψ := UΣ

1
2 Σ̄−

1
2 , which implies C̄(C̄ + λI)−1 =

ΨΨT . Also following the notations in the last section, we define the 2n-by-d matrix Π :=
√

2nS

With those notations, ˜̄C can be rewritten as BBTΠ(ΠTBBTΠ)†ΠBBT = BPΠBT , where
PΠ is the orthogonal projection matrix for the column space of BTΠ. It is easy to check that
C̄ − ˜̄C = B(I − PΠ)BT . Since I − PΠ is an orthogonal projection matrix (which is PSD), we
have C̄ − ˜̄C < 0, which proves the first conclusion that ˜̄C 4 C̄.

For the second conclusion, we utilize the following important identity:

BTΠΠTB −BTB = V Σ̄
1
2

(
Σ̄−

1
2V T (BTΠΠTB −BTB)V Σ̄−

1
2

)
Σ̄

1
2V T

= V Σ̄
1
2

(
ΨTΠΠTΨ−ΨTΨ

)
Σ̄

1
2V T .

For Ψ, we have that its squared Frobenius norm ‖Ψ‖2F = dstat, and ‖Ψ‖2 = ‖C̄( ˜̄C+λI)−1‖ ≥ 1/2,
indicating that Ψ’s stable rank s = ‖Ψ‖2F / ‖Ψ‖

2 is at most 2dstat.

Taking ε = 1
2 and applying Lemma C.2, we can conclude that with the conditions on d in the theorem,

ΨTΠΠTΨ satisfies ( 1
2 , δ)-MA property for ΨTΨ. Therefore it holds with probability 1− δ that,

‖ΨTΠΠTΨ−ΨTΨ‖ ≤ 1

2
‖Ψ‖2 ≤ 1

2
.

From identity V Σ̄
1
2 Σ̄

1
2V T = BTB + λ

2 I , we obtain

1

2
BTB − λ

2
I 4 BTΠΠTB 4

3

2
BTB +

λ

2
I, (1)

which implies

BTB 4 2BTΠΠTB + λI. (2)
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Finally, we multiply two sides of Eq. (2) by (I − PΠ) to obtain

(I − PΠ)BTB(I − PΠ) 4 2 · 0 + λ(I − PΠ) 4 λI,

where the second inequality is due to the fact that (I − PΠ) is an orthogonal projection matrix. The
equation above implies ‖(I − PΠ)BTB(I − PΠ)‖ = ‖B(I − PΠ)BT ‖ ≤ λ, which completes
the proof for the second conclusion C̄ 4 ˜̄C + λI .

Based on the conclusion above, the last implication is direct:

‖C̃ −C‖ =
∥∥∥(I,0)

(
˜̄C − C̄

)
(0, I)T

∥∥∥ ≤ ‖(I,0)‖
∥∥∥( ˜̄C − C̄

)∥∥∥∥∥(0, I)T
∥∥ ≤ λ = ε‖C‖,

which completes the proof. ♦

E Proof of Lemma 3 in the main paper

Proof. As C̄ is constructed based on a PSD kernel, C̄ is also PSD. Consequently M = ST C̄S is
PSD, and D

−1/2
M (M + γI)D

−1/2
M is positive definite, with all eigenvalues positive. To prove the

claim in the lemma we only need to show the eigenvalues of D−1/2M (M + γI)D
−1/2
M are bounded

from above by 1. It is equivalent to prove that I −D
−1/2
M (M + γI)D

−1/2
M is PSD, which can be

induced by another statement that L := DM − (M + γI) is PSD.

The proof of the statement above is similar to the proof of the well-known conclusion that graph
Laplacian matrix is PSD. For simplicity we denote W := M + γI , and given any vector x ∈ Rd
we have

xTLx = xTDMx− xTWx =

d∑
i=1

(DM )iix
2
i −

d∑
i,j=1

Wijxixj

=
1

2

 d∑
i=1

(DM )iix
2
i − 2

d∑
i,j=1

Wijxixj +

d∑
j=1

(DM )jjx
2
j


=

1

2

d∑
i,j=1

Wij(xi − xj)
2 ≥ 0,

where the last equation holds due to the fact that (DM )ii =
∑d
j=1 Wij .

Combining the pieces above we can conclude that ‖I −D
−1/2
M (M + γI)D

−1/2
M ‖ < 1. ♦

F Additional discussions about the stability in model training

For our argument about stability, we mainly refer to the paper [Liu et al., 2020], which identifies
that the amplification of small parameter perturbations in the self-attention module is the root cause
of training instability. We take kernelized attention as mitigation since it contains an automatic
normalization. We have empirically used Figure 2 and Figure 1 in Appendix A to support our claim.

For further analysis we conduct a toy experiment adapting from Figure 4 in the aforementioned
paper [Liu et al., 2020]. We aim to show that in kernelized attention (and Skyformer) the output
changes f(x,W ∗)− f(x,W ) for parameter changes W ∗ −W is smaller than in self-attention (and
its approximation Nyströmformer). This concept involved is somewhat similar to condition number
and below we will formalize it as “instability score".

We show a table of the averaged ratios between the instability scores of kernelized attention (we
also add Skyformer and Nyströmformer for reference) and self-attention to conclude our statement
about stability. A ratio smaller than 1 means higher stability compared to self-attention. We follow
all the settings in Table 1 in the main paper except here we only update the model for 20 steps (we
limit the number of steps as suggested by Liu et al. [2020] to make the results of the same step
comparable among different models). In step i for each model we compute the instability score

4



Table 1: Ratios of instability score on LRA benchmark.

Model Text ListOps Retrieval Pathfinder Image

Nyströmformer 1.03 1.01 0.97 0.99 1.02
Kernelized Attention 0.83 0.77 0.64 0.74 0.62
Skyformer 0.81 0.79 0.64 0.79 0.65

τi =
‖f(xi,Wi)−f(xi,Wi−1)‖2F

‖Wi−Wi−1‖2F
, i = 1, · · · , 20, where f() gives the embedding after two layers, xi is

the i-th input sequence batch, W0 represents the initial parameters, and Wi represents the parameters
after step i. In each step we compute the ratio of a certain method’s τi to the τi of self-attention, and
finally average the 20 ratios in Table 1 in the appendix.

As we can observe, both kernelized attention and Skyformer consistently have a lower instability score
than self-attention, while the instability score of Nyströmformer, an approximation to self-attention,
fluctuates around 1 in all the tasks. The results support our claim that the proposed kernelized
attention can improve stability.
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