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A Victim Video Classifiers: Clean Test Accuracy

We consider four state-of-the-art video classification models, representing diverse methodologies
of learning from videos, i.e., C3D [1], SlowFast [2], TPN [3] and I3D [4], as our black-box victim
models to perform adversarial attack. The C3D model applies 3D convolution to learn spatio-temporal
features from videos. SlowFast uses a two-pathway architecture where the slow pathway operates
at a low frame rate to capture spatial semantics and the fast pathway operates at a high frame rate
to capture motion at fine temporal resolution. TPN captures actions at various tempos by using a
feature-level temporal pyramid network. I3D proposes the Inflated 3D ConvNet(I3D) with Inflated
2D filters and pooling kernels of traditional 2D CNNs. All the models are trained using open-source
toolbox MMAction2 [5] with their default setups. The test accuracy of the victim models with clean
16-frame videos on both UCF-101 and Jester datasets are shown in Table 1. Note that both datasets
do not contain personally identifiable information and offensive contents.

Table 1: Clean test Accuracy of the victim classifiers

Black-box Video ClassifiersDatasets
C3D SlowFast TPN I3D

UCF-101 78.8% 85.4% 74.3% 71.7%
Jester 90.1% 89.5% 90.5% 91.2%

B Additional Experiments with Different Perturbation Budgets ρmax

We present additional analysis of the attack performance of GEO-TRAP and our two baseline methods,
i.e., HEURISTICATTACK [6] and MOTION-SAMPLER ATTACK [7] for ρmax = 8, 16 in Table 2. Note
that for comprehensibility, we also provide the results for ρmax = 10 from the main manuscript in
Table 2. We observe that GEO-TRAP consistently outperforms MOTION-SAMPLER ATTACK [7];
GEO-TRAP requires less number of queries while achieves same or higher attack success rates.

C Statistical Comparison of Different Attack Methods

We have three sources of randomness in our experiments: a) the sampling of rframe in both GEO-
TRAP and MOTION-SAMPLER ATTACK [7] and the sampling of Φwarp in GEO-TRAP; b) direction
initialization sampling in HEURISTICATTACK [6]; c) target label sampling in targeted adversarial
attacks for all three methods. To account for all these three randomness, we run the targeted attack
against I3D model on Jester dataset under perturbation budget ρmax = 16 for the three methods
for five times. Using targeted attack strategy allows us to include the randomness of the target
label sampling. We choose Jester dataset as it generally takes few queries to attack Jester dataset,
thus saving testing time. We choose perturbation budget ρmax = 16 as we observe that the attacks
under such budget generally take few queries. We choose I3D model because compared to C3D and
SlowFast, the attack success rates against I3D are not always 100%; which is good for measuring the
error bars for the attack success rates. In addition, compared to TPN, it generally takes fewer queries
to launch the attack against I3D. We observe that the gradient estimated by HEURISTICATTACK [6]
becomes zero after a certain number of iterations, in which case, no further queries are performed
(and hence resulting in a low success rate).

We report the mean, standard deviation, and standard error in Table 3 and present the error bar
plot (with mean and standard error) in Figure 1. GEO-TRAP, compared to other methods, requires
statistically fewer number of queries while achieving statistically higher attack success rates than the
baseline methods.

D Additional Experiments with Different Geometric Transformations

GEO-TRAP can employ different kinds of geometric transformations in the TRANS-WARP func-
tion. In addition to the translation-dilation transformation (D = 3) employed throughout the main
manuscript, we report the performance of GEO-TRAP with two other different geometric transforma-
tions, i.e., similarity transformation (D = 4) and affine transformation (D = 6).
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Table 2: Additional analysis of attack performance with different perturbation budgets ρmax

Black-box Video Classifiers
C3D SlowFast TPN I3DBudget Methods

ANQ (↓) SR (↑) ANQ (↓) SR (↑) ANQ (↓) SR (↑) ANQ (↓) SR (↑)
Attack: Untargeted, Dataset: Jester

ρmax = 8
MOTION-SAMPLER ATTACK [7] 7310 96.3% 1926 100% 8056 91.3% 5482 98.1%

GEO-TRAP (Ours) 2614 100% 553 100% 4518 92.4% 2312 100%

ρmax = 10
MOTION-SAMPLER ATTACK [7] 4549 99.0% 1906 100% 6269 91.3% 3029 99.4%

GEO-TRAP (Ours) 1602 100% 521 100% 3315 92.4% 1599 100%

ρmax = 16
MOTION-SAMPLER ATTACK [7] 2201 100% 1421 100% 3786 96.3% 1347 100%

GEO-TRAP (Ours) 311 100% 137 100% 3147 96.3% 551 100%
Attack: Untargeted, Dataset: UCF-101

ρmax = 8
MOTION-SAMPLER ATTACK [7] 16848 78.0% 5436 95.0% 20687 70.0% 9242 92.0%

GEO-TRAP (Ours) 12100 84.0% 2064 98.0% 18433 74.0% 6647 97.0%

ρmax = 10
MOTION-SAMPLER ATTACK [7] 14336 81.6% 4673 97.2% 20369 75.8% 7400 94.4%

GEO-TRAP (Ours) 11490 86.2% 1547 98.8% 17716 76.1% 4887 97.4%

ρmax = 16
MOTION-SAMPLER ATTACK [7] 11605 82.0% 1944 99.% 18055 75.8% 4437 96.0%

GEO-TRAP (Ours) 9006 86.2% 858 99.0% 15972 76.1% 2643 98.0%
Attack: Targeted, Dataset: Jester

ρmax = 8
MOTION-SAMPLER ATTACK [7] 42136 92.6% 39833 98.1% 121800 52.2% 48788 85.2%

GEO-TRAP (Ours) 9333 100% 11433 98.1% 51799 88.9% 25552 96.3%

ρmax = 10
MOTION-SAMPLER ATTACK [7] 26704 98.2% 33087 100% 63721 80.9% 39037 90.7%

GEO-TRAP (Ours) 6198 100% 7788 100% 41294 92.6% 19542 98.2%

ρmax = 16
MOTION-SAMPLER ATTACK [7] 8696 100% 18901 100% 40643 90.7% 25308 94.4%

GEO-TRAP (Ours) 4219 100% 3855 100% 16979 96.3% 9110 100%
Attack: Targeted, Dataset: UCF-101

ρmax = 8
MOTION-SAMPLER ATTACK [7] 136327 51.7% 72807 76.7% 153355 35.0% 107304 51.1%

GEO-TRAP (Ours) 90401 82.5% 27306 93.0% 150052 36.8% 91773 59.3%

ρmax = 10
MOTION-SAMPLER ATTACK [7] 100467 71.1% 57126 86.0% 151409 31.6% 96498 59.6%

GEO-TRAP (Ours) 71820 85.8% 21878 95.0% 141629 40.0% 76708 74.6%

ρmax = 16
MOTION-SAMPLER ATTACK [7] 69344 79.6% 37759 92.8% 143504 45.0% 70707 75.0%

GEO-TRAP (Ours) 35641 98.0% 18177 95.0% 132065 45.5% 44400 86.0%

Recall that untargeted attack performance of GEO-TRAP using these three geometric transformations
on Jester dataset is reported in the main manuscript (Figure 4). In this section, we present the
a more comprehensive set of results on both targeted and untargeted attacks, for both Jester and
UCF-101 datasets in Table 4. We observe that the transformation with fewer degrees of freedom, i.e.,
translation-dilation transformation tends to requires fewer queries while having the same or higher
attack success rates on Jester Dataset; this trend is consistent no matter which attack goal is used.
On UCF-101 dataset, the transformations with fewer degrees of freedom, i.e., translation-dilation
transformation and similarity transformation, require fewer queries while having the same or higher
attack success rates compared to the affine transformation.

Table 3: Statistical results with respect to the random seed after running attacks multiple times (Attack: Targeted,
victim classifier: I3D, Dataset: Jester, perturbation budget: ρmax = 16)

Methods
HEURISTIC MOTION SAMPLER GEO-TRAP

ANQ (↓) SR (↑) ANQ (↓) SR (↑) ANQ (↓) SR (↑)
Run 1 31088 77.9% 25308 94.4% 9110 100%
Run 2 38388 76.0% 20290 96.3% 10110 100%
Run 3 42098 74.1% 23356 94.4% 5758 100%
Run 4 42022 74.0% 24464 96.3% 7799 100%
Run 5 27431 81.5% 25312 94.4% 11782 100%
Mean 36205 76.7% 23746 95.2% 8912 100%

Standard Deviation 6643 3.1% 2092 1.0% 2286 0%
Standard Error 2971 1.4% 936 0.5% 1022 0%
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Figure 1: Error bar plot to compare the performance (success rate and average number of queries) of different
attack methods. We observe that our method outperforms the baseline methods in a statistically significant way.
Detailed numbers are presented in Table 3

Table 4: Additional analysis of attack performance of GEO-TRAP with different geometric transformationsMφ

Black-box Video Classifiers
C3D SlowFast TPN I3DGeometric Transformations,Mφ

ANQ (↓) SR (↑) ANQ (↓) SR (↑) ANQ (↓) SR (↑) ANQ (↓) SR (↑)
Attack: Untargeted, Dataset: Jester

Translation 3340 100% 1316 100% 5305 92.4% 3943 100%
Dilation 1407 100% 325 100% 3574 92.4% 1239 100%

Translation Dilation 1602 100% 521 100% 3315 92.4% 1599 100%
Similarity 1621 100% 532 100% 3746 92.4% 1629 100%

Affine 2716 100% 1057 100% 4579 91.6% 2679 100%
Attack: Targeted, Dataset: Jester

Translation 12560 100% 18337 100% 56073 83.0% 46683 90.7%
Dilation 6887 100% 8134 98.1% 36898 92.6% 14019 98.2%

Translation Dilation 6198 100% 7788 100% 41294 92.6% 19542 98.2%
Similarity 6431 100% 7939 100% 42594 90.7% 19369 98.2%

Affine 10326 100% 15360 100% 55276 90.7% 32006 94.4%
Attack: Untargeted, Dataset: UCF-101

Translation 13145 86.2% 3959 98.0% 18551 3220% 9078 94.0%
Dilation 9991 87.6% 1510 98.9% 16847 76.7% 3755 97.4%

Translation Dilation 11490 86.2% 1547 98.9% 17716 76.1% 4887 97.4%
Similarity 10624 85.8% 1489 98.6% 17492 76.7% 5694 95.0%

Affine 12792 84.8% 3088 98.0% 17773 75.0% 8291 94.0%

E Additional Experiments on GEO-TRAP with Different Loss Functions

In this section, we further validate that, compared to our three baseline methods (i.e., MULTI-NOISE
ATTACK [8], ONE-NOISE ATTACK, MOTION-SAMPLER ATTACK [7]), the gradients searched with
GEO-TRAP are better. This is demonstrated by the fact that GEO-TRAP’s gradients generally have
larger cosine similarity with the ground truth gradients. This trend is loss function agnostic, with
both untargeted and targeted attacks, as shown in Figure 2. We consider four attack loss functions,
three untargeted attack loss functions and one targeted attack loss function, described below.

We start with explaining the flicker loss used for untargeted attack and the cross-entropy loss used
for targeted attack in the main paper. Flicker loss is defined with the probability scores of the top-2
labels returned by fθ(x) following [9]. In particular, if the attack is not successful, the most likely
label predicted by fθ(x) will be the true label y. We denote the probability score associated with
this label as py(x). Similarly, we denote the second most likely label predicted by fθ(x) as y′
and its corresponding probability score as py′(x). The loss function is defined to encourage py′(x)
increasing and py(x) decreasing until py′(x) > py(x) and y′ becomes the predicted top-1 label.
This loss function can be mathematically denoted as follows.

Lflicker(x, y) =

[
min

(
1

m
K(x, y)2,K(x, y)

)]
+

with, K(x, y) = py(x)− py′(x) +m (1)
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Here, [a]+ = max(0, a) and m > 0 is the desired margin of the original class probability below the
adversarial class probability. We refer readers to [9] for more detailed explanation of (1).

For the targeted attack, the cross-entropy loss is defined as follows.

L(x, y>) = − log
(
py>(x)

)
(2)

where py>(x) is the probability score of the target label returned by fθ(x).

In addition to the above loss functions, we consider two other untargeted loss functions for gradient
analysis of attacks methods. The first one is the untargeted attack loss function defined in [7] based
on CW2 loss [10] as shown in the following.

Lcw(x, y) =
[
py(x)− py′(x)

]
+

(3)

where, py(x) is the largest probability score, which should be associated with the true label y, and
py′(x) is the second largest probability score, which is associated with the second most confident
label y′. The second loss is a cross-entropy loss where a lower py(x) is encouraged, as shown in the
following.

Lce(x, y) = − log
(
1− py(x)

)
(4)

We calculate the average cosine similarity (over 1000 randomly chosen samples) between the ground
truth gradients and the estimated gradients for GEO-TRAP and the three baselines. As shown in
Figure 2, for all the five different loss functions considered and on both Jester (see Figure 2(a))
and UCF-101 (see Figure 2(b)) dataset, the gradients searched by GEO-TRAP have better quality
consistently. This explains why GEO-TRAP requires less number of queries while achieving the same
or higher attack success rates.

Geo-Trap(Ours) One-NoiseMotion-Sampler Multi-Noise
0

0.5

1

1.5

2

2

0
.8

3

1
.4

2

0
.9

8

1
.4

9

1
.0

61
.1

9

0
.9

9

1
.3

8

0
.9

11
.0

4

0
.8

8

1
.5

1
.0

31
.2

2

1
.0

2

Attack Methods

〈g
,g

?
〉(
×
10

3
)

Targeted

Untargeted (Lflicker)

Untargeted(Lcw)

Untargeted(Lce)

(a) Jester dataset

Geo-Trap(Ours) One-NoiseMotion-Sampler Multi-Noise
0

1

2

3

2
.5

7

0
.7

8

1
.4

6

0
.9

5

2
.3

6

0
.8

5

1
.8

1
.0

6

2
.2

1

0
.6

8

1
.4

2

0
.9

2

2
.4

9

0
.8

2

1
.6

6

1
.0

1

Attack Methods

〈g
,g

?
〉(
×
10

3
)

Targeted

Untargeted (Lflicker)

Untargeted(Lcw)

Untargeted(Lce)

(b) UCF-101 dataset
Figure 2: Evaluation of gradient estimation quality by calculating the cosine similarity between the ground truth
gradient g? and the estimated gradient g calculated by different attack methods.

F Additional Examples of Adversarial Videos

In this section, we provide additional adversarial examples on both Jester and UCF-101 datasets as
shown in Figure 3. We observe that the generated adversarial frames have little difference from the
clean ones but can lead to a failed classification.

In addition, we calculate PSNR to measure the perception of perturbations. We measure the minimum
PSNR among all frames as it represents the worst-case scenario of maximum degradation for the
video. For this, we generate the adversarial examples for untargeted attack against the C3D model
on the Jester dataset. The average minimum (across all videos) PSNR of resultant adversarial
videos for GEO-TRAP is 28.30 dB; for MOTION-SAMPLER ATTACK [7] is 28.60 dB, and for
HEURISTICATTACK [6] is 22.06 dB. We observe that GEO-TRAP, as well as MotionSampler, has
less video quality degradation compared to HeuristicAttack.
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Figure 3: The visualization of the perturbation (×10) and adversarial frames of our methods and the two baseline
methods on Jester (left column) and UCF-101 datasets (right column).
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