
Supplementary to Smooth Bilevel Programming
for Sparse Regularization

Clarice Poon∗, Gabriel Peyré†

A Pseudocode for gradient descent implementation

For concreteness, we write down in Algorithm 1 the gradient descent algorithm for solving

min
β∈Rn

1

2λ
||Xβ − y||22 + ||β||1,

where we recall that X ∈ Rm×n. The choice of λ = 0 corresponds to the Basis-pursuit setting. Note
that ∇f(βt) = gt is computed either as in line 5 or line 9 of the algorithm and one can use these
computations for any gradient based algorithm (e.g. BFGS). Note also that this is simply gradient
descent on a smooth function, and one can apply typical methods to choosing the stepsize γk, such as
the Barzilai-Borwein stepsize [Barzilai and Borwein, 1988].

Algorithm 1: Gradient descent implementation of Ncvx-Pro for solving Lasso.
1 initialization v0 ∈ Rn (with no zero entries), stepsize γt > 0;

Result: βt
2 while not converged do
3 if n 6 m and λ > 0 then
4 ut = −

(
diag(vt)X

>X diag(vt) + λId
)−1 (

vt �X>y
)
;

5 gt = vt � vt + 1
λut �X

>(Xut � vt − y);
6 βt = ut � vt;
7 else
8 αt = −

(
X diag(vt � vt)X> + λId

)−1
y;

9 gt = vt � vt − vt � |X>αt|2;
10 βt = −vt � vt �X>αt;
11 end
12 vt+1 = vt − γtgt
13 end

B Proofs and additional results for Section 2

Proof to Theorem 1. To show that i) implies ii), recall that a convex, proper and lower semicontinuous
function −ϕ can be written in terms of its convex conjugate which has domain Rd−. By writing
β2 , β � β, using the definition of R, we have

−R(β2) = −ϕ(β2) = sup
v60
〈β2, v〉 − (−ϕ)∗(v) = − inf

u>0
〈β2, u〉+ (−ϕ)∗(−u).

which is ii) with ψ(u) , (−ϕ)∗(−u) as required.

∗University of Bath, Bath BA2 7AY, UK cmshp20@bath.ac.uk †CNRS and DMA, Ecole Normale
Supérieure, 45 rue d’Ulm, F-75230 PARIS cedex 05, FRANCE, gabriel.peyre@ens.fr

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

Conversely, if R is of the form in ii), then

R(β) = inf
u∈Rn+

〈u, β2〉+ ψ(u) = − sup
u∈Rn+

−〈u, β2〉 − ψ(u),

so R(β) = −ψ∗(−β � β) and −ψ∗(−·) is clearly a proper, upper semicontinuous, concave function.

For the expression of ψ when R is a norm,from the above, we know that ψ = (−ϕ)∗(−z), and recall
that for any norm, R(β) = maxR∗(w)61〈w, β〉. So,

ψ(z) = max
u>0
〈−u, z〉+ ϕ(u)

= max
β
〈−β2, z〉+ ϕ(β2) = max

β
〈−β2, z〉+R(β)

= max
β
〈−z, β2〉+ max

R∗(w)61
〈β, w〉 = max

R∗(w)61

1

4

∑
i

w2
i

zi
,

where in the line, we swapped the two maximums and used the optimality condition over β which is
2β � z = w. That is, h(η) = 2ψ(− 1

2η) = maxR∗(w)61

∑
i w

2
i ηi.

To derive the identity for R(β)2, by the Cauchy-Schwarz inequality

R(β)2 = sup
R∗(w)61

|〈β, w〉|2 6 sup
R∗(w)61

(∑
i

β2
i ηi

)(∑
i

w2
i

ηi

)
= 4ψ(η)

∑
i

β2
i ηi

for all η > 0. Therefore,

R(β)2 6 inf
η>0,ψ(η)6 1

4

∑
i

β2
i ηi

= sup
λ>0

inf
η>0

λ(ψ(η)− 1

4
) +

∑
i

β2
i ηi

= sup
λ>0
−λ

4
+ λR(β/

√
λ) = sup

λ>0
−λ

4
+
√
λR(β) = R(β)2.

where we used the identity λR(β/
√
λ) =

∑
i β

2
i ηi + λψ(η) and the fact that R is one positive

homogeneous.

We derive some properties of the function h:
Lemma 1. Consider the function ϕ and ψ from Theorem 1. If ϕ : [0,∞)→ [L,U], where L > −∞
and U ∈ R ∪ {+∞}, then ψ is an decreasing function with domain contained in [0,∞), taking
values in [L,U]. If R is coercive, then lim||z||→0 ψ(z) = +∞.

Proof to Lemma 1. Let ϕ : [0,∞)→ [L,U], where L > −∞ and U ∈ R∪ {+∞}. We describe the
properties of the function ψ(z) = (−ϕ)∗(−z) = supu>0〈z, −u〉+ ϕ(u).

(i) dom(ψ) ⊂ [0,∞): since ϕ is bounded below, it is clear that for z < 0, supu>0〈z, −u〉+
ϕ(u) = +∞.

(ii) ψ(0) = supu>0 ϕ(u) = U .

(iii) Suppose M , sup {v \ v ∈ ∂ϕ(u), u > 0} <∞. Then, for all z >M , −z + ∂ϕ(u) < 0
for all u > 0 and hence, ψ(z) = ϕ(0) > L. Therefore, ψ takes values in [L,U]. So, if M is
finite, then one can restrict the optimisation over z to values in [0,M].

(iv) ψ is decreasing: By Danskin’s theorem [Bertsekas, 1997, Prop. B.25], for z ∈
{v \ v ∈ ∂ϕ(u), u > 0},

∂ψ(z) =
{
−u \ u ∈ argminu>0〈u, −z〉+ ϕ(u)

}
⊂ (−∞, 0).

2

B.1 Functions on matrices

We have the following result for matrix valued functions. Let Sn+ denote the set of symmetric positive
semidefinite matrices.
Theorem 1. Let R : Rn×m → R. The following are equivalent

i) R(B) = ϕ(BB>) where ϕ is a proper concave upper semi-continuous function with
domain Sn+.

ii) There exists a convex function ψ such that R(B) = minZ∈Sn+ tr(B>ZB) + ψ(Z).

Moreover, we have ψ(Z) = (−ϕ)∗(−Z). If R is a norm, then ψ can be written as

ψ(Z) = max
R∗(W)61

1

4
tr(W>Z−1W). (1)

Moreover,

R(B)2 = inf
Z∈Sn+

{
tr(B>ZB) \ ψ(Z) 6

1

4

}
. (2)

Nuclear norm R(W) = tr(
√
WW>) where

√
· is the matrix square root. On the space of symmet-

ric positive semidefinite matrices, ϕ(B) = tr(
√
B) is concave and ψ(D) = 1

4 tr(D−1), where we
use ∂A tr(

√
A) = (2

√
A)−1 for all symmetric positive semidefinite matrices and ∂A tr(AB) = B.

(Nonconvex) spectral regularisation Given a symmetric psd matrix Z = U diag(σi)U
> and

α > 0, let Zα , U diag(σαi)U>. For α ∈ (0, 1), consider R(W) = tr((WW>)α/2) =
∑
i σ

α
i

where σi are the singular values of W . Then, given a symmetric psd matrix, ϕ(Z) = tr(Zα/2) which
is concave [Bhatia, 2009, Thm 4.2.3] and

ψ(Z) = min
V ∈Sd+

− tr(V Z) + ϕ(V) = min
U∈Od,σ∈Rd+

− tr(diag(σ)UZU>) +
∑
i

σ
α/2
i

= min
U∈Od,σ>0

−
∑
i

Ẑiiσi +
∑
i

σ
α/2
i where Ẑ = UZU>

= Cα min
U∈Od

∑
i

Ẑ
α
α−2

ii where Ẑ = UZU> and U ∈ Od

= Cα tr(Z
α
α−2)

Therefore,
R(B) = inf

Z∈Sd+
tr(B>ZB) + Cα tr(Z

α
α−2).

Proof of Theorem 1. To derive (1),
ψ(Z) = max

U∈Sn+
−〈U, Z〉+ ϕ(U) = max

V ∈Rn
−〈V V >, Z〉+ ϕ(V V >)

= max
V ∈Rn

−〈V V >, Z〉+R(V)

Then, (1) follows, since by convex duality and definition of R∗,

max
R∗(W)61

1

4
tr(W>Z−1W) = max

R∗(W)61
max
V
〈−Z, V V >〉+ 〈V, W 〉 = max

V
〈−Z, V V >〉+R(V).

Finally, by the submultiplicative property of the Frobenius norms, for all Z ∈ Sn+ with Z � 0,

R(B)2 = sup
R∗(W)61

|〈Z−1/2W, Z1/2B〉|2 6 sup
R∗(W)61

tr(W>Z−1W) tr(B>ZB)

= 4ψ(W) tr(B>ZB)

It follows that just as in the proof of Theorem 1 that

R(B)2 6 inf
Z∈Sn+

tr(B>ZB) where ψ(Z) 6
1

4
.

3

C Proof of Section 3

Proof of Proposition 3. Let

G(u, v) ,
1

2
||u||2 +

1

2
||v||22 +

1

2λ
||X(v �G u)− y||22.

We know from Theorem 2 that f is differentiable with

∇f(v) = ∂vG(u, v) = v + λ−1u�X>(Xv �G u− y)

where u = argminuG(u, v). In particular,

0 = ∂uG(u, v) = u+ λ−1X>(X(v �G u)− y).

Since ∂uuG = λ−1(vgX
>
g Xhvh)g,h+Id is invertible, by the implicit function theorem u is a smooth

function of v with ∂vu = [∂uuG]−1∂vuG. In particular,

∇2f(v) = ∂vvG(u, v) + ∂uvG(u, v)∂vu.

So, the Hessian of f is the Schur complement of the Hessian of G (as also observed in Ruhe and

Wedin [1980], van Leeuwen and Aravkin [2016]). We write∇2G =

(
A B
B> D

)
where

A , ∂vvG = λ−1
(
u>g X

>
g Xhuh

)
g,h

+ Id

B , ∂uvG = λ−1
(
(u>g X

>
g Xhvh)g,h

)
+ diag(ξ>g)

D , ∂uuG = λ−1(vgX
>
g Xhvh)g,h + Id

where ξ = 1
λX
>(X(u� v)− y). Then,∇2f(t) = A−BD−1B>. Note that in fact, u is infinitely

differentiable by the implicit function theorem, and so, f is also infinitely differentiable.

We now derive a formula for the Hessian of f . By permuting the rows and columns of ∇2G, we can
assume that, letting J denote the support of v,

A ,

(
λ−1

(
u>g X

>
g Xhuh

)
g,h∈J + IdJ 0

0 IdJc

)
B , λ−1

((
(u>g X

>
g Xhvh)g,h∈J + λ diag(ξ>g)g∈J

)
0

0 λ diag(ξ>g)g∈Jc

)
D ,

(
λ−1(vgX

>
g Xhvh)g,h∈J + IdJ 0

0 IdJc

)
Note that A and D is positive definite. So,∇2G is positive semidefinite if and only if A−BD−1B>
is positive semidefinite. Note that A−BD−1B> is a block diagonal matrix, with the bottom right
block as IdJc − diag(||ξg||22)g∈Jc .

To work out the expression for the top left block of A−BD−1B>, let us first examine the top left
block of the matrix B: Note that by definition of u,

λ−1vgX
>
g (X(v �G u)− y) + ug = 0 =⇒ ∀g ∈ Supp(v), ξg = −ug

vg
.

Define the block diagonal matrix Uu/v = diag(ug/vg)g∈J , then U>u/vUu,v = diag(||ug||2/v2g)g∈J .
The top left block of B is

λ−1(u>g X
>
g Xhvh)g,h∈J + diag(ξ>g)g∈J = λ−1U>u/v(vgX

>
g Xhvh)g,h∈J + diag(ξ>g)

= U>u/v
(
λ−1(vgX

>
g Xhvh)g,h∈J + IdJ

)
− U>u/v + diag(ξ>g)

= U>u/v
(
λ−1(vgX

>
g Xhvh)g,h∈J + IdJ

)︸ ︷︷ ︸
,H

−2U>u/v = U>u/vW − 2U>u/v.

Therefore, the top left block of D−1 is H−1. So, the top left block of BD−1B> is

(U>u/vH − 2U>u/v)(Uu/v − 2H−1Uu/v) = U>u/vHUu/v − 4U>u/vUu/v + 4U>u/vH
−1Uu/v.

4

and the top left block of A−BD−1B> is

IdJ − U>u/vU + 4U>u/vUu/v − 4U>u/vH
−1Uu/v

= diag(1− ||ξg||22)g∈J + 4U>u/vUu/v − 4U>u/vH
−1Uu/v.

Note that ||Id−H−1|| 6 1, and given w ∈ R|G|,

〈∇2f(v)w, w〉 =
∑
g∈G

(1− ||ξg||22)w2
g + 4〈(Id−H−1)(w �G ξ), w �G ξ〉

6
∑
g∈G

(1− ||ξg||22)w2
g + 4||ξg||22w2

g ,

and it follows that ||∇2f(v)|| 6 1 + 3 maxg∈G ||ξg||22. We have a global Lipschitz bound on the
gradient of f if ||ξg|| 6 L for some L, which is true because for each v, u minimises

min
u

1

2
||u||22 +

1

2λ
||X(v �G u)− y||22 6

||y||22
2λ

So, maxg∈G ||ξg||2 6 ||y||2 maxg∈G ||Xg||/λ, and ||∇2f(v)|| 6 1 + 3||y||2 maxg∈G ||Xg||2/λ2.

At stationary points, we also have

u>g X
>
g (X(v �G u)− y) + λvg = 0 =⇒ ∀g ∈ Supp(v), u>g ξg = −vg.

Together, this means that at stationary points, ||ug||2 = v2g and U>u/vUu/v = IdJ . Therefore, the top
left block of A−BD−1B> becomes

4IdJ − 4U>u/v
(
λ−1(vgX

>
g Xhvh)g,h∈J + IdJ

)−1
Uu/v � 0

since λ−1(vgX
>
g Xhvh)g,h∈J + IdJ � (1 + µ)Id, where µ = min Eig

(
λ−1(vgX

>
g Xhvh)g,h∈J

)
.

Therefore, the smallest eigenvalue of A−BD−1B is at least

λmin

(
4µ/(1 + µ),min

g 6∈J
(1− ||ξg||2)

)
> min

g 6∈J
(1− ||ξg||2)

Moreover, if A − BD−1B � 0, then ming 6∈J(1 − ||ξg||2) > 0, which implies that (u, v) defines a
minimiser to the original group Lasso problem, hence, (u, v) defines a global minimum. Therefore,
every stationary point is either a global minimum or a strict saddle point.

Remarks on the comparison with ISTA in the introduction To explain the observed behavior,
note that gradient descent for f with stepsize γ reads vk+1 = vk−γ∇f(vk) = vk(1−γ

(
1− |ξk|2

)
)

where ξk , 1
λX
>(Xvk � uk − y) (see Proposition 3). Note that if β∗ is a minimiser, then

ξ∗ , 1
λX
>(Xβ∗ − y) satisfies ||ξ∗||∞ 6 1 and the set {i \ |(ξ∗)i| = 1} is often called the extended

support and contains the support of β∗. It is clear that we can expect coefficients outside the extended
support to (eventually) decay to 0 geometrically. Since ξk is uniformly bounded (see Proposition 3),
for γ sufficiently small, vk never changes sign and any sign change in the iterate βk , vk � uk is
due to uk. In contrast, the ISTA dynamics is βk+1 = sign(βk − γξk) max (|βk − γξk| − γ, 0). Due
to the thresholding operation, a coefficient of βk is initialised with the wrong sign will spend some
iterations as 0 before correcting its sign.

D Supplementary to Section 4

D.1 Remarks on numerical experiments

Initialisation points We generated random initialisation point from the normal distribution. In our
experiments, methods which are not reparameterized (e.g. the proximal methods), are given the same
random initial point, while reparameterized methods have their own random initialisation, since some
of these require positive starting points and some need double the number of variables. We find that
the comparisons are not much affected by the choice of initial points.

5

T = 5 T = 10 T = 100 T = 500

Figure 1: Multitask feature learning (nuclear norm regularisation) with synthetic data. We have T
tasks, n = 30 features and m = 10, 000 samples in total. The matrix Xt associated to each task has
iid entries drawn uniformly at random from [0, 1]. See the description in Section 4.3.

Inversion of linear systems As mentioned in Corollary (1), for the Lasso, when computing the
gradient of f , one can either invert a n × n linear system or an m ×m linear system. The same
applies to Quad-variational, since the solution to the inner maximisation problem is, by the Woodbury
identity,

α = (λIdm +XηX
>
η)−1y =

1

λ
y − 1

λ
Xη(λIdn +X>η Xη)−1(X>η y)

where Xη = X diag(
√
η), with the correspondence that β = η �X>α. Throughout, we simply use

backslash in MATLAB for the matrix inversion.

Implementation details All numerics are done in Matlab with the exception of CELER which is
in Python:

• CELER are conducted in Python and we used the code https://mathurinm.github.io/
celer/ provided by the original paper Massias et al. [2018]

• 0-mem SR1, FISTA w/ BB and SPG/SpaRSA use the Matlab code from https://github.
com/stephenbeckr/zeroSR1 of the paper Becker et al. [2019].

• Interior point method uses the Matlab code https://web.stanford.edu/~boyd/l1_ls/
of Koh et al. [2007].

• CGIST uses the Matlab code http://tag7.web.rice.edu/CGIST.html of Goldstein
and Setzer [2010].

• We had our own implementation of Non-cvx-Alternating-min and IRLS.

• Quad-variational, Non-cvx-LBFGS and Noncvx-Pro are written in Matlab using the L-
BFGS-B solver from https://github.com/stephenbeckr/L-BFGS-B-C which is a
Matlab wrapper for C code converted from the well known Fortran implementation of Byrd
et al. [1995].

D.2 Additional examples

Lasso In Figure 2, we show additional numerics for the Lasso, testing against datasets from the
Libsvm repository. The regularisation parameter λ associated to each plots is found by cross validation
on the mean squared error.

Group Lasso In Figure 3, we show additional numerics for the multitask Lasso setup described in
Section 4.2. We test on two synthetic datasets of size (m,n, q) = (300, 1000, 100) with 5 relevant fea-
tures and (m,n, q) = (50, 1200, 20) with 10 relevant features. The data matrix X has entries drawn
from a normal distribution. We also test on a MEG/EEG dataset with (m,n, q) = (305, 22494, 85)
from the MNE repository https://mne.tools/0.11/manual/datasets_index.html. We dis-
play convergence plots for different regularisation parameters.

Trace norm In Figure 1 we show additional numerics for the multifeature learning setup described
in Section 4.3. The data matrices Xt has entries drawn uniformly at random from [0, 1]. We consider
different number of tasks T tasks, n = 30 features and m = 10, 000 samples in total (the samples
are split at random across the different tasks).

6

https://mathurinm.github.io/celer/
https://mathurinm.github.io/celer/
https://github.com/stephenbeckr/zeroSR1
https://github.com/stephenbeckr/zeroSR1
https://web.stanford.edu/~boyd/l1_ls/
http://tag7.web.rice.edu/CGIST.html
https://github.com/stephenbeckr/L-BFGS-B-C
https://mne.tools/0.11/manual/datasets_index.html

ab
al

on
e

(4
17

7,
8)

ho
us

in
g

(5
06

,1
3)

ca
da

ta
(2

06
40

,8
)

a8
a

(2
26

96
,1

22
)

w
8a

(4
97

49
,3

00
)

le
uk

em
ia

(3
8,

71
29

)
m

ni
st

(6
00

00
,6

83
)

co
nn

ec
t-

4
(6

75
57

,1
26

)

λ∗
1
2λmax

1
10λmax

1
50λmax

Figure 2: Comparisons of Lasso with different regularisation parameters on datasets from Libsvm.
The first column shows the optimal regularisation parameter λ∗ found by cross validation. The
second, third and fourth columns correspond to different fractions of λmax = ||X>y||∞ which is the
parameter for which the Lasso solution is identically zero. The smaller this fraction, the less sparse
the solution.

7

(3
00

,1
00

0,
10

0)
(5

0,
12

00
,2

0)
(3

05
,2

24
94

,8
5)

λ = 1
10λmax λ = 1

20λmax λ = 1
50λmax λ = 1

100λmax

Figure 3: Comparisons for multitask Lasso at different regularisation strengths. The problem sizes
(m,n, q) are displayed on the left of each row. The top two rows are synthetic datasets generated by
random Gaussian variables with 5 and 10 active features respectively. The last row corresponds to a
MEG/EEG dataset from the MNE website

E Douglas-Rachford and Primal-Dual Algorithms

We consider the resolution of a constrained group Lasso problem

min
Xβ=y

||β||1,2 =
∑
g

||βg||2

which we write as the minimization of either F (β) + G(β) (for DR) or F (β) + G0(Xβ) where
F = || · ||1,2, G = ιC where the constraint set is C = {β \ Xβ = y} and G0 = ι{y}. Here ιC is the
convex indicator function of a closed convex set C.

DR and PD are generic algorithm to solve minimization of function of the form F+G and F+G0◦X
when one is able to compute efficiently the so-called proximal operator of the involved functionals,
where the proximal operator of some convex function H and some step size τ > 0 is

ProxτH(β) , argmin
β′

1

2
||β − β′||22 +H(β′).

In our special case, one has

ProxτF (β) =
(

max(||βg|| − τ, 0)
βg
||βg||

)
g
, ProxτG(β) = β +X>(XX>)−1(y −Xβ),

and ProxτG0
(β) = y.

DR algorithm. We denoted the reflected proximal map as rProxτH(β) = 2 ProxτH(β)− β. For
some step size µ > 0 and weight 0 < γ < 2 (which is set to γ = 1 in our experiments), the iterates
(βk)k of DR are βk , ProxµG(zk) where zk satisfies

zk+1 = (1− γ

2
)zk +

γ

2
rProxµF (rProxµG(zk)).

PD algorithm. Denoting G∗0(u) = supβ〈β, u〉 − G0(β) the Legendre transform of G0, the PD
iterations read

wk+1 = ProxσG∗0 (wk + σX(β̃k))

βk+1 = ProxτF (βk − τK>(wk+1))

β̃k+1 = βk+1 + θ(βk+1 − βk).

8

In our case, one hasG∗0(u) = 〈u, y〉 so that ProxσG∗0 (u) = u−τy. Convergence of the PD algorithm
is ensure as long as τσ||X||2 < 1 where ||X|| is the operator norm, and 0 < θ 6 1 (we use θ = 1 in
the numerical simulation). In our numerical simulation, we set τσ||X||2 = 0.9 and tuned the value of
the parameter σ.

F Non-convex optimisation with `q quasi-norms

As mentioned, for q ∈ (0, 2), R(β) , ||β||qq =
∑
j |βj |q has a quadratic variational form. In the case

where q > 2/3, we have the following bilevel smooth formulation:
Corollary 1. When q > 2/3, (Pλ) is equivalent to

inf
v∈Rn

f(v) , inf
u∈Rn

1

2
||u||22 +

Cq
2

n∑
j=1

|vj |
2q

2−q +
1

λ
L(X(u� v), y) (3)

where Cq = (2 − q)qq/(2−q). The function f is differentiable function provided that q > 2/3. Its
gradient can be computed as in Theorem 2.
Remark 1 (Existing approaches). Existing approaches to `q minimisation are typically iterative thresh-
olding/proximal algorithms Bredies et al. [2015], IRLS Chartrand and Staneva [2008], Daubechies
et al. [2004] or iterative reweighted `1 algorithms Foucart and Lai [2009]. Iterative thresholding
algorithms are applicable only for the case where the loss function is differentiable, and hence not
applicable for Basis pursuit problems which we describe below. Moreover, computation of the
proximal operation requires solving a nonlinear equation. For iterative reweighted algorithms, they
require gradually decreasing an additional regularisation parameter ε > 0. This can be problematic
in practice and for finite ε, one does not solve the original optimisation problem.
Remark 2. Since we have a differentiable unconstrained problem, the problem (3) can be handled
using descent algorithms and convergence analysis is standard. For example, since f is coercive,
for any descent algorithm applied to f , we can assume that the generated sequence vk is uniformly
bounded and ∇f(vk) is also uniformly bounded. So, by applying standard results [Bertsekas,
1997, Proposition 1.2.1], we can conclude that all limit points of sequences vk generated by descent
methods under line search on the stepsize are stationary points. In fact, since we have an unconstrained
minimisation problem with a continuously differentiable f which is also semialgebraic (for rational
q) and hence satisfy the KL inequality Attouch et al. [2013], convergence of the full sequence by
descent methods with line search can be guaranteed Noll and Rondepierre [2013].

F.1 Basis pursuit

In this section, we focus on the basis pursuit problem with q ∈ (2/3, 1),

min
β
||β||qq where Xβ = y.

The set of local minimums are all β for which Xβ = y and there exists α such that
(
X>α

)
i

=

q|βi|q−1 sign(βi) on the support of β. When q > 2/3 and f is differentiable with

∇f(v) = q
2

2−q |v|γ−1 sign(v)− v � |X>α|2, where γ , 2q/(2− q) > 1.

At a stationary point v, letting β = −v2 �X>α, we have Xβ = y and∇f(v) = 0 implies that on
the support of v, q|v|2 = |β|2−q and so,

X>α = −v−2β = −q sign(β)� |β|q−1,
which is precisely the optimality condition of the original problem.

Illustrations for Basis pursuit In Figure 4, we show that gradient descent dynamics for f in the
case of the indicator function L(·, y) = ι{y} and a random Gaussian matrix X ∈ R10×20, that is

vk+1 = vk − τ∇f(vk) = vk − τ
(
q

2
2−q |vk|

3q−2
2−q � sign(v)− vk � |X>αk|2

)
where

X diag(vk � vk)X>αk = −y.

9

β
k

v k

q=0.7 q=0.8 q=1

Figure 4: Evolution of 20 coefficients for Basis pursuit with `q regularisation. The same stepsize τ is
used for all plots. Top row show the evolution of βk and the bottom row show the evolution of vk.

Figure 5: Number of successful recovery by `q minimisation.

Observe that as q → 2/3, the evolution paths of vk becomes increasingly linear.

In Figure 5, we follow the experiment setup of Chartrand and Staneva [2008] and generate 100
problem instances (X̄, ȳ, β̄). Each problem instance consist of a matrix X̄ ∈ Rm×n with m = 140
rows and n = 256 columns whose entries are identical independent distributed Gaussian random
variable with mean 0 and variance, a vector β̄ of size n with K = 40 entries uniformly distributed on
{1, . . . , n} and whose nonzero entries are iid Gaussian with mean 0 and variance 1 and ȳ , X̄β̄. For
each problem, we carry out the following procedure. For each m ∈ {60, . . . , 140} ∩ 2N, we let X
be the matrix from the first m rows of X̄ , and y be the first m entries of ȳ. We then compute β by
minimising f for this X and y using BFGS with 10 randomly generated starting points and declare
“success" if ||β − β̄||2 6 10−3 for one of these starting points.

References
H. Attouch, J. Bolte, and B. F. Svaiter. Convergence of descent methods for semi-algebraic and

tame problems: proximal algorithms, forward–backward splitting, and regularized gauss–seidel
methods. Mathematical Programming, 137(1):91–129, 2013.

J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA journal of numerical
analysis, 8(1):141–148, 1988.

S. Becker, J. Fadili, and P. Ochs. On quasi-newton forward-backward splitting: Proximal calculus
and convergence. SIAM Journal on Optimization, 29(4):2445–2481, 2019.

D. P. Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):
334–334, 1997.

R. Bhatia. Positive definite matrices. Princeton university press, 2009.

10

K. Bredies, D. A. Lorenz, and S. Reiterer. Minimization of non-smooth, non-convex functionals by
iterative thresholding. Journal of Optimization Theory and Applications, 165(1):78–112, 2015.

R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained
optimization. SIAM Journal on scientific computing, 16(5):1190–1208, 1995.

R. Chartrand and V. Staneva. Restricted isometry properties and nonconvex compressive sensing.
Inverse Problems, 24(3):035020, 2008.

I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint. Communications on Pure and Applied Mathematics: A Journal
Issued by the Courant Institute of Mathematical Sciences, 57(11):1413–1457, 2004.

S. Foucart and M.-J. Lai. Sparsest solutions of underdetermined linear systems via `q-minimization
for 0 < q 6 1. Applied and Computational Harmonic Analysis, 26(3):395–407, 2009.

T. Goldstein and S. Setzer. High-order methods for basis pursuit. UCLA CAM Report, pages 10–41,
2010.

K. Koh, S.-J. Kim, and S. Boyd. An interior-point method for large-scale l1-regularized logistic
regression. Journal of Machine learning research, 8(Jul):1519–1555, 2007.

M. Massias, A. Gramfort, and J. Salmon. Celer: a fast solver for the lasso with dual extrapolation. In
International Conference on Machine Learning, pages 3315–3324. PMLR, 2018.

D. Noll and A. Rondepierre. Convergence of linesearch and trust-region methods using the kurdyka–
łojasiewicz inequality. In Computational and analytical mathematics, pages 593–611. Springer,
2013.

A. Ruhe and P. Å. Wedin. Algorithms for separable nonlinear least squares problems. SIAM review,
22(3):318–337, 1980.

T. van Leeuwen and A. Aravkin. Non-smooth variable projection. arXiv preprint arXiv:1601.05011,
2016.

11

	Pseudocode for gradient descent implementation
	Proofs and additional results for Section 2
	Functions on matrices

	Proof of Section 3
	Supplementary to Section 4
	Remarks on numerical experiments
	Additional examples

	Douglas-Rachford and Primal-Dual Algorithms
	Non-convex optimisation with q quasi-norms
	Basis pursuit

