Terra: Imperative-Symbolic Co-Execution of
Imperative Deep Learning Programs

Taebum Kim Eunji Jeong*
Seoul National University, FriendliAl Samsung Research
k.taebum@snu.ac.kr, eun-ji.jeong@samsung.com

ktaebum@friendli.ai

Geon-Woo Kim Yunmo Koo
Seoul National University, FriendliAl Seoul National University, FriendliAl
gwsshs22@snu.ac.kr, mpbb03@snu.ac.kr,
gwsshs22@friendli.ai yunmorning@friendli.ai
Sehoon Kim* Gyeong-In Yu
University of California, Berkeley Seoul National University
sehoonkim@berkeley.edu gyeongin@snu.ac.kr

Byung-Gon Chun'
Seoul National University, FriendliAl
bgchun@snu.ac.kr,
bgchun@friendli.ai

Abstract

Imperative programming allows users to implement their deep neural networks
(DNNGs) easily and has become an essential part of recent deep learning (DL) frame-
works. Recently, several systems have been proposed to combine the usability of
imperative programming with the optimized performance of symbolic graph execu-
tion. Such systems convert imperative Python DL programs to optimized symbolic
graphs and execute them. However, they cannot fully support the usability of imper-
ative programming. For example, if an imperative DL program contains a Python
feature with no corresponding symbolic representation (e.g., third-party library
calls or unsupported dynamic control flows) they fail to execute the program. To
overcome this limitation, we propose Terra, an imperative-symbolic co-execution
system that can handle any imperative DL programs while achieving the optimized
performance of symbolic graph execution. To achieve this, Terra builds a symbolic
graph by decoupling DL operations from Python features. Then, Terra conducts the
imperative execution to support all Python features, while delegating the decoupled
operations to the symbolic execution. We evaluated Terra’s performance improve-
ment and coverage with ten imperative DL programs for several DNN architectures.
The results show that Terra can speed up the execution of all ten imperative DL
programs, whereas AutoGraph, one of the state-of-the-art systems, fails to execute
five of them.

*Work done at Seoul National University
"Corresponding author

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

1 Introduction

The rapid evolution of deep neural networks (DNNs) has been fueled by the support of deep learning
(DL) frameworks [6l [32]. Such frameworks provide users with a programming layer to build and
execute DNNs, commonly adopting Python as their host language. Typically, they execute DL
programs with one of the two execution models: imperative or symbolic execution. In the former, the
Python interpreter executes a DL program as a normal program, invoking DL operations on-the-fly.
The invoked DL operations are executed on a separate DL accelerator asynchronously, and the Python
interpreter continues running the program. The dynamic control flows of the DL operations are
naturally expressed by the interpretation of the program, and users can utilize any functionalities of
Python (e.g., dynamic typing and third-party libraries [9, [16]) while executing DL operations. On
the other hand, in the latter model, the Python interpreter embeds DL operations into a symbolic
graph that represents the entire dataflow of a DNN. Thus, users should define their DL programs
only with existing symbolic operations that DL frameworks support. In other words, the dynamic
control flows of a DNN should be explicitly represented by control flow operations (e.g., tf.cond
and tf.while of TensorFlow). However, the symbolic execution can take advantages of various
optimization techniques because the symbolic graph contains a whole computation lineage of a DNN
architecture.

Although symbolic execution achieves higher performance compared to imperative execution, imper-
ative execution has been preferred because of its usability. Several systems [2, 13} 4} [15 19} 29} 139]
have been proposed to match the speed of symbolic execution while enjoying the benefit of imperative
execution. These systems attempt to generate a symbolic graph that represents an entire imperative
program and execute the graph instead of imperatively running the program. Methods for generating
the symbolic graph can be broadly classified into two approaches: single path tracing and static
compilation. The former approach generates a symbolic graph by imperatively executing a single
iteration of a program and recording the executed DL operations. Systems that adopt the latter
approach translate the abstract syntax tree (AST) of a program into a symbolic graph.

Unfortunately, both approaches can correctly handle only a subset of imperative DL programs. For
example, dynamic control flows in an imperative program are not captured by the single path tracing
approach. On the other hand, the static compilation approach cannot correctly generate a symbolic
graph if a target program contains an AST node that does not have a corresponding symbolic operation
such as try-excepts, generators, Python object mutations, and third-party library calls. As a result, it
is up to the users to clearly understand the limited usability of these systems.

In this paper, we propose Terra, an imperative-symbolic co-execution system that addresses the limi-
tations. While the previous approaches replace the imperative execution with the symbolic execution,
Terra maintains the imperative execution to support all Python features where DL operations are
delegated to the symbolic execution. Also, Terra generates a symbolic graph by utilizing multiple
traces of an imperative program. To be specific, Terra imperatively runs an imperative DL program
for several iterations and collects traces, each of which is a linear chain of DL operations sorted by
the execution order. The collected traces are merged into a TraceGraph, a directed acyclic graph
(DAG) that encapsulates the captured DL operations along with their diverse execution orders. Terra
stops collecting traces when the trace of the latest iteration is already embedded in the TraceGraph.
To generate an executable symbolic graph from the TraceGraph, Terra adds additional information to
the TraceGraph. First of all, Terra annotates the TraceGraph to enable communication between the
imperative execution and the symbolic execution. In addition, Terra further analyzes the TraceGraph
to insert control flow operations explicitly, so that a symbolic graph can be executed with the DL
operations in a certain trace. After generating a symbolic graph from the TraceGraph, Terra starts
the co-execution of a skeleton imperative program, in which DL operations are not performed, and
the symbolic graph that represents the DL operations. Here, Terra continually checks whether the
current trace is being expressed by the TraceGraph. If Terra detects a new trace, Terra discards the
symbolic graph and collects more traces by running the original program imperatively. Terra then
re-generates the symbolic graph and restarts the co-execution. Consequently, Terra is able to run
any imperative DL programs correctly and efficiently even if it contains the Python features that the
previous approaches cannot handle.

We have implemented Terra on TensorFlow v2.4.1 and compared Terra with TensorFlow’s imperative
execution [7]] and AutoGraph [29]. Our evaluation shows that Terra can train ten imperative DL
programs including convolutional neural networks, transformer-based networks, and generative

1 def train_step(x): 1 def generator(): 1 dr = Dropper()
2 y = library_calllQ) 2 for _ in tf.range(N): 2 dr.drop_prob = 0.0
3 loss = model(x, y) 3 yield tf.random.normal() 3 def train_step(step, x):
4 library_call2(4 4 if step > 100:
5 loss.numpy()) 5 def train_step(x): 5 dr.drop_prob = 0.8
6 for y in generator(): 6 x = tf.nn.dropout(
7 X =X+Yy 7 x, dr.drop_prob)
8 return x 8 return x
(a) third-party library call & (b) dynamic control flow (c) Python object mutation

tensor materialization

Figure 1: Simple examples that the static compilation approach cannot deal with. Note that AutoGraph
could silently produce an incorrect result in the Python object mutation case.

adversarial networks up to 1.73x faster than the original imperative execution. However, AutoGraph
fails to support five programs for three reasons: third-party library call, Python object mutation, and
tensor materialization during conversion, which we describe in §@}

2 Background & Related Works

2.1 Imperative and Symbolic Execution

The imperative execution (a.k.a. define-by-run) [30}32,/43]] treats a DL program entirely as a typical
Python program. Whenever the Python interpreter encounters a statement that declares a DL operation
(e.g., z = torch.matmul(x, YV)), the interpreter asynchronously invokes a corresponding compu-
tation kernel of a DL accelerator (typically GPU or TPU). The imperative execution highly improves
the programmability of DL programs because users can fully utilize the convenient language features
and rich ecosystem of Python, including built-in functions, dynamic control flows, dynamic typing,
and third-party libraries. However, since the imperative execution cannot obtain a whole view of
DNN computation, it misses optimization opportunities that the symbolic execution explained below
can carry out.

The symbolic execution (a.k.a. define-and-run) [6, (14} 42]] executes a pre-built symbolic graph. In
the symbolic execution, users should express their DNN architectures as symbolic graphs using the
three kinds of symbolic operations: DL operations, control flow operations, and auxiliary operations.
The DL operations are conventional compute-intensive operations (e.g., matrix multiplication or
convolutional layer), and the control flow operations determine which DL operations to be executed
based on a tensor value within the graph. Finally, to mitigate the limited usability of the symbolic
execution, it supports auxiliary operations (e.g., tf.print and tf.py_function of TensorFlow).
After the symbolic graph is constructed, graph optimizations could be applied such as operation
fusion [11} 20,126,311 135 141} 146,47, 48], parallelized execution [23} 31} 35]], device placement [27,
28 148]], layout optimization [20, 25]], and memory optimization [8} [17, [18]. Then, an optimized
graph executor such as TVM [[L1], TensorRT [31], TFRT [40], and XLA [41] undertakes the actual
execution of the symbolic graph.

2.2 Imperative Program with Symbolic Execution

There are two approaches to gain the usability of imperative execution and the performance of
symbolic execution simultaneously. They attempt to convert an imperative DL program to a symbolic
graph and exploit the symbolic execution with the converted graph. The single path tracing approach
(e.g., torch.trace [3l], JAX [15]], and tf.function [39]) executes an imperative DL program
once and records all DL operations that were executed. A single linear chain of the executed DL
operations, which is called a trace, becomes a symbolic graph of the imperative program. The
symbolic graph is executed instead of the imperative program for subsequent iterations. Although the
single path tracing approach looks very simple and intuitive, it is hard to capture dynamic control
flows of the imperative program with this approach. To reflect them correctly, users need to explicitly
declare the control flow operations for all dynamic control flows in their imperative programs, which
undermines the programmability of the imperative program. Moreover, Python features that do not
have corresponding symbolic operations (e.g., mutation of Python objects, use of third-party libraries)

are neither captured by the trace. It can yield an incorrect result since, in the following iterations, a
graph executor executes a symbolic graph, which does not contain the Python features.

The static compilation approach (e.g., TorchScript [4] and JANUS [19]) is proposed to resolve
the problem of the single path tracing approach. In contrast to the single path tracing approach,
the static compilation approach does not extract a trace to generate a symbolic graph. Instead, it
traverses an abstract syntax tree (AST) of the imperative program and directly converts each AST
node to a corresponding symbolic operation. Even if it guarantees the correctness of the program,
it fails to convert a program to a symbolic graph if the program contains a Python feature with no
corresponding symbolic operation. We classify the representative failure cases into four categories:
third-party library call, tensor materialization during conversion, dynamic control flow, and Python
object mutation. Figure [I| presents simple examples of the cases. The static compilation approach
cannot convert the third-party library calls of Figure [Ta]and fails when it attempts to materialize
the tensor data (Loss .numpy()) during the conversion. Figure@] shows the generator in Python
that the static compilation approach cannot convert. For Figure only JANUS handles it by
implementing custom auxiliary operations (i.e., GetAttr and SetAttr operations) that access the Python
heap during the symbolic execution.

To increase the practicality of the previous approaches, AutoGraph [29] combines the static compila-
tion approach with the single path tracing approach. AutoGraph converts AST nodes that correspond
to dynamic control flow such as if-else, for, and while to new AST nodes representing proper control
flow operations such as tf.cond and tf.while. Then, AutoGraph generates a symbolic graph
by applying the single path tracing approach to the converted AST. Unfortunately, it cannot fully
support various kinds of dynamic control flows such as generator and try-except of Python. Hence,
AutoGraph also entails the same correctness problem of the single path tracing approach when the
imperative DL program employs the features described in Figure[I]

When the static compilation approach detects unsupported features, it just raises an error and aborts
the program execution. To avoid this, users have to write their programs using only the supported
features or put in additional efforts such as annotating types and refactoring functions to use tensor
objects for their inputs and outputs. In this regard, AutoGraph [29] and TorchScript [4] provide the
official language references [1} 5] that users should be aware of before writing a target imperative
program. However, those references usually require expert knowledge to understand, imposing a
steep learning curve for new users. For example, the language document of AutoGraph [1]] spans
roughly twelve pages and divides features that AutoGraph does not support into four categories
and ten subcategories. TorchScript provides an official language specification [S]] by enumerating
supported features over eleven pages.

LazyTensor [36] is a concurrent work related to ours. It uses the lazy evaluation approach, in which
the Python interpreter and symbolic graph executor run alternately. The Python interpreter executes
an imperative DL program as it is and extracts a linear trace of operations. LazyTensor then checks
whether the extracted trace is already cached or not. If cached, LazyTensor directly executes the
cached graph. If not, it compiles and executes the new graph, then stores the graph for further
executions. With the lazy evaluation, LazyTensor could support all Python features while executing
the symbolic graph as Terra does. However, it has an unavoidable performance overhead due to the
alternate execution. In other words, the graph executor progresses only when the Python interpreter
finishes checking the existence of the cached graph. Similarly, the Python interpreter progresses after
finishing the graph execution. Moreover, if an imperative program has a dynamic control flow that is
not determined by a tensor value, LazyTensor fails to capture the control flow transparently. In this
case, LazyTensor would work inefficiently because the traces could be different for each iteration.

3 Our Approach: Imperative-Symbolic Co-Execution

To the best of our knowledge, no existing DL framework can completely convert an arbitrary
imperative DL program into a symbolic graph. We believe that a one-to-one mapping from all Python
features to corresponding symbolic operations should exist to support all imperative programs with
the approaches. In other words, building such a mapping is the same as covering all Python syntax
with symbolic operations. Moreover, the mapping should be updated as a new feature of Python
(e.g., pattern matching of Python 3.10 [33])) is introduced. Eventually, it is equal to building a new

Tracing Phase Co-Execution Phase

f GraphGenerator) f PythonRunner GraphRunner h
1
x=0) ? symbolic graph x=0) - .
y=foo() generated y=foo() trace
if x > 0: -—)p EEE—— if x > 0: |validation
x=(() ! merging / - X0 / o
z=@(x) v y fraces new trace z=)(x) b) - 1
w=@Q(x,y) (N) o detected w=O(x,y)‘\ [) e ~@
. . - Skeleton) e - Optimized
Imperative Program | Collected Traces TraceGraph Imperative Program TraceGraph Symbolic Graph

Figure 2: An overview of Terra. Each dotted arrow denotes a) the PythonRunner fetches a ten-
sor value from the GraphRunner, b) the PythonRunner informs the GraphRunner of the path that
the PythonRunner takes, and c) the PythonRunner feeds an external tensor to the GraphRunner.
Rectangle in the optimized symbolic graph denotes the control flow operation.

Python execution engine for a symbolic graph representing a Python program itself, which requires a
tremendous amount of time and effort.

Therefore, we take a different approach that does not replace the entire imperative execution with
the symbolic execution as the previous approaches do. Instead, we let the Python interpreter run an
imperative program to support all Python features naturally while separating only DL operations
from the imperative execution. As the Python interpreter executes the program except performing DL
operations, the decoupled DL operations are executed by a graph executor simultaneously. To enable
the co-execution, we generate a symbolic graph representing DL operations that would have been
launched by the Python interpreter. While the previous approaches have to build a complete symbolic
graph that encapsulates all semantics of the DL program for correctness, we construct a symbolic
graph solely based on collected traces of DL operations. Although we do not embed all semantics
of the DL program in the symbolic graph, it can handle any DL program by the co-execution of
the skeleton program complementing the symbolic execution. Within the skeleton program, DL
operations are not performed but all other Python features are preserved as the original imperative
program. Executing the symbolic graph in parallel with the skeleton program, we fully achieve
the usability of the imperative execution along with the optimized performance of the symbolic
execution.

4 System Design

Terra is a system that realizes our imperative-symbolic co-execution approach. In this section, we
describe how Terra implements the co-execution of a skeleton imperative program and a symbolic
graph in detail. There are two requirements to seamlessly maintain the imperative execution along
with executing the symbolic graph. First of all, Terra should allow exchanging tensor values between
the imperative execution and the symbolic execution when there exists data dependency between each
other (e.g., Figure[Ta). Furthermore, the imperative execution should inform the symbolic execution
of the correct choice of path to follow because the execution flow of the program is determined
by the Python interpreter. To achieve these, Terra implements new symbolic operations for such
communication and inserts them into the symbolic graph. In the following, we first describe the
entire process of the imperative-symbolic co-execution (§ {.T). Next, we explain how Terra merges
collected traces into the TraceGraph and generates a symbolic graph from it in detail (§ {.2).

4.1 Imperative-Symbolic Co-Execution

The co-execution of Terra consists of the following two phases: the tracing phase and the co-execution
phase. Terra begins execution in the tracing phase, as shown in Figure[2} In this phase, the conventional
imperative execution is carried out with the given imperative DL program. At the same time, the
GraphGenerator collects traces of each iteration. The GraphGenerator incrementally merges the
traces into the TraceGraph, a directed acyclic graph (DAG) that encapsulates all the collected traces.
Since the number of possible traces during the imperative execution cannot be determined, the
GraphGenerator collects traces until the trace of the latest iteration is fully covered in the TraceGraph.
In such a case, the GraphGenerator generates a symbolic graph from the TraceGraph.

. 0p0 0p0 ®:feed point
1 def func(inp, cond, N): @:fetch point
2 rval = random()
3 x0 = op@(inp) @ @
4 if cond:
5 x1 = opl(x@, rval) @ @
6 _, z = op2(inp) , LOOp,
7 else: e ‘
8 x1 = x0 @ 3 3
9 z, _ = op2(inp) Loop N\ : :
10 x2 = op3(x1, 2) : Lo
11 print(x2) @ Loop 1 @
12 for _ in range(N):
14 return x2 %

First Trace Second Trace

(a) Imperative DL Program (b) Collected Traces (c) Merged TraceGraph

Figure 3: Illustration of how the TraceGraph is merged from the imperative DL program.

With the generated symbolic graph, Terra enters the co-execution phase. In this phase, Terra uses the
PythonRunner and the GraphRunner. The PythonRunner executes a skeleton imperative program
that does not launch DL operations anymore. The GraphRunner executes the generated symbolic
graph with a separate graph executor. For each DL operation, the PythonRunner skips the actual
computation and creates an empty tensor object(s) as an output(s) of the operation. If the Python-
Runner has to materialize an empty tensor (e.g., print a loss value), it fetches the actual data from
the GraphRunner. Similarly, the GraphRunner might need an external tensor (e.g., an input data,
a Python primitive value) from the PythonRunner. Terra implements new symbolic operations to
establish the communication. For each communication, a Runner that needs the data from the other
waits until the required data becomes ready.

For every iteration in the co-execution phase, the PythonRunner keeps a trace being made by the
DL operations in the current iteration. The PythonRunner continuously compares the trace with
the TraceGraph to notify the GraphRunner of the current control flow and check the validity of
the symbolic graph in the GraphRunner. If the latest DL operation in the trace indicates that the
PythonRunner takes a specific path, it informs the GraphRunner of the path with a new symbolic
operation, which sets a conditional input of a corresponding control flow operation in the symbolic
graph. For example, if the PythonRunner takes the true path of the skeleton imperative program of
Figure[2|(i.e., if x > @:), the GraphRunner receives such information from the PythonRunner and
executes the operation of the true path. Furthermore, if the latest DL operation is not expressed in the
TraceGraph, Terra considers the current trace as a new trace that the existing symbolic graph cannot
handle. Terra then cancels the execution of the GraphRunner and falls back to the tracing phase.
Thereafter, the GraphGenerator collects more traces and generates a new symbolic graph covering
more traces than before to continue the co-execution.

4.2 Symbolic Graph Generation

In this section, we describe how the GraphGenerator merges the collected traces into the TraceGraph
and then generates a symbolic graph from the TraceGraph.

TraceGraph. Each node of the TraceGraph corresponds to a DL operation, and each edge denotes
an execution order between two nodes. For example, if a Conv2D operation is followed by another
ReLU operation in a single trace, the TraceGraph has a directed edge from a Conv2D node to a ReLU
node. For the first trace, the TraceGraph contains a single linear chain of nodes that have two extra
nodes; the start node and the end node. Those nodes do not correspond to DL operations but for
indicating the start point and the end point of the merging.

For subsequent traces, the GraphGenerator attempts to match each operation of the trace with
an existing node of the TraceGraph. The GraphGenerator uses a pointer that points to the latest
matched node of the TraceGraph, which initially points to the start node. For each operation, the
GraphGenerator checks whether there exists an equal node among the children of the latest matched
node. To check the equality, the GraphGenerator compares the type of operation (e.g., Conv2D and
MatMul), attributes of operation (e.g., a filter size and a kernel size of convolution), and whether
two operations were executed at the same location of the program. If the GraphGenerator finds the

Switch-Case
case 1 Loop

™~ Input Cond " While

Feeding

By —®
case 2

Case
Select

Output
Fetching

Figure 4: Generated symbolic graph from the TraceGraph of Figure

child node of the latest matched node which satisfies all criteria, the GraphGenerator updates the
latest matched node to that child node, not creating a new node. It then continues merging the next
operation of the trace. If all the operations are matched, the GraphGenerator sets the latest matched
node to the end node, denoting that the current trace is already captured by the TraceGraph. The
definition of the equality criteria is in Appendix A.

When the GraphGenerator fails to match the operation with the existing nodes, it denotes that a new
trace is detected. A new node is created by creating a new branch from the latest matched node.
While expanding the TraceGraph for the new trace, the expanded branch could be merged back into
the pre-existing branch if there is a node that is not a child of the latest matched node but satisfies
all criteria of equality. For example, Figure [3c|depicts the TraceGraph built from the program of
Figure @, which first took the true path (line 5-6) and took the false path (line 8-9) at the second
execution. From the program, the GraphGenerator collects two different traces as shown in Figure [3b]
When the GraphGenerator attempts to merge the second trace into the TraceGraph that contains the
first trace, Op2 of the second trace cannot be matched with Op/ and cannot be merged back into Op2
of the first trace because two Op2s were executed in different locations. Thus, the node for Op?2 is
created in the right branch of Figure[3c] and the branch is merged when the GraphGenerator succeeds
to match Op3.

As shown in Figure[3c] the GraphGenerator merges the nodes that are executed in the same loop of
the program. The GraphGenerator is aware of the loop because it compares the program location
where DL operations were executed. It then groups those nodes within an extra loop node and
conducts merging the nodes separately. For example, Loop I in Figure [3c]is the loop node for the
loop of Figure 32| (line 12-13). The GraphGenerator merges the second Op4 of the first trace with the
first Op4 of the first trace because they were executed in the same loop. Also, Op4 of the second trace
is merged to the same node.

Communication Point. To create the symbolic operations for data communication between the
PythonRunner and the GraphRunner, the GraphGenerator captures communication points and an-
notates such points in the TraceGraph. Those points are classified into feed points and fetch points.
The feed point is where the operation gets an input from the Python interpreter such as training data
and Python primitive values. Similarly, the fetch point is where the Python interpreter needs a value
of the DL tensor. For example, Op! in Figure [3a]receives rval as an input (line 5), and the Python
interpreter needs the value of x2 (line 11) to print it out. The GraphGenerator captures those points
and annotates them in the corresponding nodes of the TraceGraph.

Symbolic Graph Generation. The GraphGenerator converts the nodes in the TraceGraph to the
corresponding DL operations and creates additional Input Feeding and Output Fetching operations
to establish data communication during the co-execution. The Input Feeding operation corresponds
to the feed point of the TraceGraph, enabling the PythonRunner to feed an external tensor to
the GraphRunner. Similarly, the Output Fetching operation corresponds to the fetch point of the
TraceGraph, allowing the PythonRunner to fetch materialized DL tensor from the GraphRunner. As
a result, the GraphGenerator represents the entire computation lineage in the single graph with the
communication operations. Without those operations, the GraphGenerator should split the symbolic
graph into smaller subgraphs at every feed-fetch point, which cannot efficiently apply additional
optimizations.

To handle the diverse control flows in the TraceGraph, GraphGenerator utilizes the Switch-Case
operation (e.g., t£. case of TensorFlow), which allows executing only a single case that depends on a
particular condition. For the conditional input that informs the Switch-Case operation of which case to
execute, the GraphGenerator creates the Case Select operation along with the Switch-Case operation,

Program Reason of the failure

DropBlock [12] Python object mutation
MusicTransformer [21] Python object mutation

SDPoint [22] Python object mutation

BERT-CLS [24] third-party library call

FasterRCNN [44]] tensor materialization during conversion

Table 1: The programs that AutoGraph fails to execute and the reason for the failures. Note that Terra
can execute all of them.

as shown in Figure 4] When the PythonRunner takes a certain path, it notifies the GraphRunner
via the Case Select operation. Here, the GraphGenerator uses our case assignment algorithm that
takes the TraceGraph as an input, traverses the TraceGraph, and returns the Switch-Case operations
representing the control flows correctly. The formal description of the algorithm and the proof that
the algorithm can handle any DAGs are described in Appendix B.

Finally, the GraphGenerator creates the While operation (e.g., t£.while of TensorFlow) for a loop
node of the TraceGraph. As the Case Select operation, the GraphGenerator creates the Loop Cond
operation along with the While operation. The PythonRunner informs the GraphRunner of whether
the PythonRunner goes to the next iteration of the loop or exits the loop via the Loop Cond operation.
As an optimization, the GraphGenerator unrolls the While operation if the loop node took the same
number of iterations in the collected traces.

5 Evaluation

In this section, we evaluate Terra in the following two aspects:

* Can Terra exploit symbolic execution from imperative DL programs that AutoGraph, the
static-compilation-and-tracing approach, cannot? (§ [5.2))

* How much does Terra speed up imperative DL programs? (§ [5.3)
5.1 Implementation and Experiment Setup

Frameworks. We use TensorFlow [[6]] v2.4.1 as our baseline DL framework. We have built Terra
on TensorFlow v2.4.1, and our approach is applicable to other DL frameworks if they support both
imperative and symbolic execution (e.g., MXNet [[10] and PyTorch [32]). More details about the
implementation of Terra are described in Appendix C. All evaluated imperative DL programs are
implemented with the imperative API of TensorFlow, which has become the standard interface
since TensorFlow v2.0. We compare Terra with TensorFlow imperative execution and with Auto-
Graph [29], a state-of-the-art system that combines the static compilation approach with the single
path tracing approach. We compile a single training step function of each imperative DL program
(i.e., @tf . function(autograph=True)).

Environments. We conduct all the experiments on a single machine that is equipped with 8-core
AMD Ryzen 7 2700X @ 3.7GHz and an NVIDIA TITAN Xp GPU. We use Ubuntu 18.04, CUDA
11.0, cuDNN 8.0, and Python 3.8.8.

Imperative DL Programs. For the experiments, we use ten imperative DL programs collected
from open-source GitHub repositories: DropBlock [12], BERT-Q&A [13]], MusicTransformer [21]],
SDPoint [22], BERT-CLS [24], GPT2 [34], DCGAN [37], ResNet50 [38], FasterRCNN [44], and
YOLOV3 [45]].

5.2 Imperative Program Coverage

Terra handles all the benchmark programs successfully with the imperative-symbolic co-execution.
However, since AutoGraph does not support the entire set of Python features, it fails to execute five
out of ten programs. Table [I] shows why AutoGraph fails to handle the programs and the detailed
code snippets are described in Appendix D.

175 e 168 B Terra B AutoGraph X173
[Terra + XLA Il AutoGraph + XLA
ar 192 ECCTEEN L TensorFlow Imperative Execution
1.50 - . x1.39
x1.32

g B) » . x XL s a7 xL3|
o x1.14
e .
2100 Jerverrrnnrnnen " L. .. § W .
o
©
2
E 0.75
&

0.50

0.25

ool x x X x BEIX x X x x X X

ResNet50 YOLOv3 BERT DropBlock SDPoint FasterRCNN Music
CLS Transformer

Program

Figure 5: The training speed-up results of Terra, AutoGraph, and when applying XLA [41] to
both systems relative to TensorFlow imperative execution. The dotted line presents the training
throughput of the imperative execution. Note that Terra and AutoGraph share the same upper bound
of performance improvement from the symbolic execution of TensorFlow.

According to the AutoGraph language document [[I]], more failures could exist if an imperative
DL program contains unsupported Python features such as the use of Python generator, try-except,
and None type values. To resolve all the limitations in AutoGraph, new functions to handle each
failure should be implemented and it requires a huge engineering effort. Terra simply avoids the
conversion-related problems by the imperative-symbolic co-execution.

5.3 Training Throughput

Figure[5]presents the training speed-up of Terra compared to TensorFlow imperative execution. For all
programs, we measure the average training throughputs from 100 to 200 steps, and each experiment
is conducted ten times. Terra achieves higher performance than the imperative execution for every
program. To estimate whether Terra fully achieves the optimized performance of symbolic execution,
we also compare the performance of Terra with AutoGraph, which shares the same graph executor
of TensorFlow with Terra. AutoGraph closely follows the performance of the symbolic execution
because it totally replaces the imperative execution with the symbolic execution. For the five programs
that AutoGraph can execute, the performance improvements of Terra are on par with AutoGraph,
which shows that Terra highly achieves the symbolic execution’s optimized performance. Experiment
settings such as batch size and the dataset are included in Appendix E.

Since Terra generates a symbolic graph and utilizes the symbolic execution, we evaluate the perfor-
mance of Terra by applying XLA as shown in Figure[5] Compared to the imperative execution,
Terra improves the performance of seven programs by up to 1.73x when applying XLA. XLA is not
applicable to GPT2 and FasterRCNN due to the dynamic shape of the input data. For each training
iteration, the shapes of input data to the models can change. However, XL A cannot efficiently handle
dynamic shapes because it assumes static shapes. For YOLOv3, we profile the execution and find that
the current XL A fails to efficiently cluster operations for YOLOV3. To be more specific, YOLOvV3
includes some DL operations such as ResizeNearestNeighbor and Where, which are not supported
by XLA. Thus, XLA cannot efficiently fuse DL operations. In addition, we observe that Terra’s
performance decreases more than that of AutoGraph for YOLOV3 because the schedules of some
Output Fetching operations are reordered because of XLA kernels, causing a longer stall in the
PythonRunner. However, this problem can be addressed by extending XL A to support our custom
operations.

We profile the execution of both PythonRunner and GraphRunner to analyze the performance of
Terra. We focus on the performance analysis in the co-execution phase because Terra’s execution is
mostly in this phase. The number of transitions between the two phases and the overhead analysis for
the tracing phase are included in Appendix F. Figure [f] shows the performance breakdown of the two
Runners in a single training step. ‘PythonRunner Exec’ denotes the Python interpreter’s active running
time, such as executing user code or validating the symbolic graph. Both ‘PythonRunner Stall” and
‘GraphRunner Stall’ indicate the stall time in which the PythonRunner waits for the GraphRunner to
fetch the materialized tensor or vice versa. Finally, we measure GPU’s active time to run the CUDA
kernels along with the overhead of TensorFlow’s graph executor as ‘GraphRunner Exec’. For all

Terra

BB PythonRunner Exec BB GraphRunner Exec Program Terra L Eval
[PythonRunner Stall BEE GraphRunner Stall azykva

ResNet50 x1.25 x1.13
BERT Q&A x1.23 x0.94
DCGAN x1.56 x1.34

Time [ms]

ResNelS0 e YOROv PO 0PI RERT Propblock Spront FaserfoNy M 1able 2: Comparison of the training

Program speed-up between Terra and Terra with
lazy evaluation. The results are relative
speed-up to TensorFlow imperative ex-
ecution as Figure [5}

Figure 6: Performance breakdown within a single training
step for both the PythonRunner and the GraphRunner.

programs except for FasterRCNN, the GraphRunner is not stalled, implying that the GraphRunner
fully exploits the optimized performance of the symbolic execution. In FasterRCNN, the stall of the
GraphRunner occurs when the PythonRunner receives a materialized tensor from the GraphRunner
and feeds it back to the GraphRunner. For YOLOV3, the PythonRunner’s execution time is longer
than that of the GraphRunner, which yields the slightly larger performance gap between Terra and
AutoGraph in Figure 3]

Moreover, Figure |§| shows that the GraphRunner takes a longer time than the PythonRunner in most
cases. The result implies the reason why the performance improvements of Terra are comparable
to the performance improvements of AutoGraph. The execution of the PythonRunner is efficiently
concealed by the execution of the GraphRunner with the co-execution. To demonstrate the effect
of the co-execution, we serialize the execution of the PythonRunner and the GraphRunner then
evaluate the performance for the simple programs among our benchmarks. Within the serialized
execution, the GraphRunner does not start the execution along with the PythonRunner. Instead,
it starts the execution when the PythonRunner requires tensor data through the Quiput Fetching
operation. Eventually, the serialized execution is the same as the lazy evaluation that LazyTensor [36]
does. Our results in Table 2] show that the lazy evaluation cannot fully achieve high performance of
the symbolic execution. Even worse, it could become slower than the imperative execution when the
execution time of the GraphRunner is not much longer than the execution time of the PythonRunner.

6 Conclusion

We propose Terra, a novel approach to execute imperative Python DL programs. Terra performs
imperative-symbolic co-execution, which addresses the problem of converting an imperative program
to a symbolic graph completely. Terra generates a symbolic graph only from the DL operations of
an imperative DL program. It then carries out the imperative execution, simultaneously executing
the symbolic graph. Therefore, Terra achieves optimized performance while maintaining all Python
features of the imperative program. Our evaluation shows that Terra can speed up all imperative DL
programs, even for the programs that AutoGraph cannot handle.

Broader Impact

Our work aims to accelerate the execution of imperative DL programs while maintaining programma-
bility. Our work is not associated with a specific application because our approach is applicable for
any imperative DL programs. Thus, we believe our work does not have a significant impact on any
audience from either an ethical or societal perspective, at the application level.

Acknowledgements

We thank the reviewers for their valuable comments. We also thank Haeyoon Cho, Jae-Won Chung,
Jeongyoon Eo, Wonwook Song, Gyewon Lee, Soojeong Kim, Hokwen Joung, and Taegyun Kim for
their constructive feedback. This work was partly supported by Google Research Award and Institute
of Information & communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) [NO.2021-0-01343, Artificial Intelligence Graduate School Program
(Seoul National University)].

10

References

(1]

(2]
(3]

(4]
(3]

(6]

(71

(8]

(9]

(10]

(11]

[12]
(13]
(14]
[15]

[16]

(17]

(18]

Autograph Limitation Document. https://github.com/tensorflow/tensorflow/blob/
r2.4/tensorflow/python/autograph/g3doc/reference/limitations.md.

Gluon. http://gluon.mxnet.io/|

torch.jit.trace. https://pytorch.org/docs/stable/generated/torch. jit.tracel
htmll

TorchScript. https://pytorch.org/docs/stable/jit.htmll

TorchScript Language Reference. |https://pytorch.org/docs/stable/jit_language_
reference.html#language-reference.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Ghemawat, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A System for Large-scale Machine Learning. In
Proceedings of USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2016.

Akshay Agrawal, Akshay Naresh Modi, Alexandre Passos, Allen Lavoie, Ashish Agarwal, Asim Shankar,
Igor Ganichev, Josh Levenberg, Mingsheng Hong, Rajat Monga, and Shanqing Cai. TensorFlow Eager: A
Multi-Stage, Python-Embedded DSL for Machine Learning. In Proceedings of Conference on Systems and
Machine Learning (SysML), 2019.

Byung Hoon Ahn, Jinwon Lee, Jamie Menjay Lin, Hsin-Pai Cheng, Jilei Hou, and Hadi Esmaeilzadeh.
Ordering Chaos: Memory-Aware Scheduling of Irregularly Wired Neural Networks for Edge Devices. In
Proceedings of Conference on Machine Learning and Systems (MLSys), 2020.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel, Vlad
Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud
Joly, Brian Holt, and Gagl Varoquaux. API design for machine learning software: experiences from the
scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pages
108-122, 2013.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan
Zhang, and Zheng Zhang. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous
Distributed Systems. In Workshop on Machine Learning Systems in NIPS, 2015.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. TVM: An Automated
End-to-End Optimizing Compiler for Deep Learning. In Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2018.

DHZS. tf-dropblock. https://github.com/DHZS/tf-dropblockl
Hugging Face. Transformers. https://github.com/huggingface/transformers,
Facebook. Caffe2. https://caffe2.ail

Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling Machine Learning Programs via
High-Level Tracing. In Proceedings of Conference on Systems and Machine Learning (SysML), 2018.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Ferndndez del Rio,
Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with numpy. Nature,
585(7825):357-362, 2020.

Chienchin Huang, Gu Jin, and Jinyang Li. SwapAdvisor: Pushing Deep Learning Beyond the GPU Memory
Limit via Smart Swapping. In Proceedings of ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2019.

Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Joseph Gonzalez, Kurt Keutzer,
and Ion Stoica. Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization. In
Proceedings of Conference on Machine Learning and Systems (MLSys), 2020.

11

https://github.com/tensorflow/tensorflow/blob/r2.4/tensorflow/python/autograph/g3doc/reference/limitations.md
https://github.com/tensorflow/tensorflow/blob/r2.4/tensorflow/python/autograph/g3doc/reference/limitations.md
http://gluon.mxnet.io/
https://pytorch.org/docs/stable/generated/torch.jit.trace.html
https://pytorch.org/docs/stable/generated/torch.jit.trace.html
https://pytorch.org/docs/stable/jit.html
https://pytorch.org/docs/stable/jit_language_reference.html#language-reference
https://pytorch.org/docs/stable/jit_language_reference.html#language-reference
https://github.com/DHZS/tf-dropblock
https://github.com/huggingface/transformers
https://caffe2.ai

(19]

[20]

(21]

(22]

(23]

(24]
[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

[36]

Eunji Jeong, Sungwoo Cho, Gyeong-In Yu, Joo Seong Jeong, Dong-Jin Shin, and Byung-Gon Chun.
JANUS: Fast and Flexible Deep Learning via Symbolic Graph Execution of Imperative Programs. In
Proceedings of USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2019.

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken. TASO:
Optimizing Deep Learning Computation with Automatic Generation of Graph Substitutions. In Proceedings
of ACM Symposium on Operating Systems Principles (SOSP), 2019.

Kevin-Yang. MusicTransformer-tensorflow?2.0. https://github.com/jason9693/
MusicTransformer-tensorflow2.O0.

Jason Kuen. Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in
Convolutional Networks (SDPoint). https://github.com/xternalz/SDPoint,

Woosuk Kwon, Gyeong-In Yu, Eunji Jeong, and Byung-Gon Chun. Nimble: Lightweight and Parallel
GPU Task Scheduling for Deep Learning. In Proceedings of Advances in Neural Information Processing
Systems (NeurlIPS), 2020.

kyzhouhzau. NLPGNN. https://github.com/kyzhouhzau/NLPGNN,

Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang. Optimizing CNN Model Inference
on CPUs. In Proceedings of USENIX Annual Technical Conference (ATC), 2019.

Lingxiao Ma, Zhigiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang,
Lintao Zhang, and Lidong Zhou. Rammer: Enabling Holistic Deep Learning Compiler Optimizations with
rTasks. In Proceedings of USENIX Symposium on Operating Systems Design and Implementation (OSDI),
2020.

Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, and Jeff Dean. A Hierarchical
Model for Device Placement. In Proceedings of International Conference on Learning Representations
(ICLR), 2018.

Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Kumar,
Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device Placement Optimization with Reinforcement
Learning. In Proceedings of International Conference on Machine Learning (ICML), 2017.

Dan Moldovan, James M. Decker, Fei Wang, Andrew A. Johnson, Brian K. Lee, Zachary Nado, D. Sculley,
Tiark Rompf, and Alexander B. Wiltschko. AutoGraph: Imperative-style Coding with Graph-based
Performance. In Proceedings of Conference on Systems and Machine Learning (SysML), 2019.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios Anastasopoulos,
Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia
Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya,
Paul Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra, Swabha Swayamdipta, and Pengcheng
Yin. DyNet: The Dynamic Neural Network Toolkit. arXiv preprint arXiv: 1701.03980, 2017.

NVIDIA. NVIDIA TensorRT: Programmable Inference Accelerator. https://developer.nvidia,
com/tensorrt)

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In
Proceedings of Advances in Neural Information Processing Systems (NeurlPS), 2019.

Python Software Foundation. Pep 634: Structural pattern matching. https://docs.python.org/
3.10/whatsnew/3.10.html#pep-634-structural-pattern-matching.

Abhay Singh. gpt-2-tensorflow2.0. https://github.com/akanyaani/gpt-2-tensorflow2,
0.

Muthian Sivathanu, Tapan Chugh, Sanjay S. Singapuram, and Lidong Zhou. Astra: Exploiting Predictability
to Optimize Deep Learning. In Proceedings of ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), 2019.

Alex Suhan, Davide Libenzi, Ailing Zhang, Parker Schuh, Brennan Saeta, Jie Young Sohn, and Denys
Shabalin. Lazytensor: combining eager execution with domain-specific compilers. arxiv2102.13267, 2021.

12

https://github.com/jason9693/MusicTransformer-tensorflow2.0
https://github.com/jason9693/MusicTransformer-tensorflow2.0
https://github.com/xternalz/SDPoint
https://github.com/kyzhouhzau/NLPGNN
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://docs.python.org/3.10/whatsnew/3.10.html#pep-634-structural-pattern-matching
https://docs.python.org/3.10/whatsnew/3.10.html#pep-634-structural-pattern-matching
https://github.com/akanyaani/gpt-2-tensorflow2.0
https://github.com/akanyaani/gpt-2-tensorflow2.0

(37]

(38]
(391

[40]
[41]
(42]

[43]

[44]
[45]
[46]

[47]

(48]

TensorFlow. Deep Convolutional Generative Adversarial Network Tutorial. |https://www,
tensorflow.org/tutorials/generative/dcganl

TensorFlow. TensorFlow Model Garden. https://github.com/tensorflow/models.

TensorFlow. tf.function. https://www.tensorflow.org/api_docs/python/tf/
function.

TensorFlow. TFRT: A New TensorFlow Runtime. https://github.com/tensorflow/runtime.
TensorFlow. XLA: Optimizing Compiler for TensorFlow. https://www.tensorflow.org/xla,

Theano Development Team. Theano: A Python framework for fast computation of mathematical expres-
sions. arXiv preprint arXiv: 1605.02688, 2016.

Seiya Tokui, Ryosuke Okuta, Takuya Akiba, Yusuke Niitani, Toru Ogawa, Shunta Saito, Shuji Suzuki,
Kota Uenishi, Brian Vogel, and Hiroyuki Yamazaki Vincent. Chainer: A Deep Learning Framework for
Accelerating the Research Cycle. In Proceedings of ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2019.

Viredery. tf-eager-fasterrcnn. https://github.com/Viredery/tf-eager—fasterrcnnl
Zihao Zhang. yolov3-tf2. https://github.com/zzh8829/yolov3-t£f2l

Jie Zhao, Bojie Li, Wang Nie, Zhen Geng, Renwei Zhang, Xiong Gao, Bin Cheng, Chen Wu, Yun
Cheng, Zheng Li, Peng Di, Kun Zhang, and Xuefeng Jin. AKG: Automatic Kernel Generation for Neural
Processing Units using Polyhedral Transformations. In Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2021.

Zhen Zheng, Pengzhan Zhao, Guoping Long, Feiwen Zhu, Wenyi Zhao Kai Zhu, Lansong Diao, Jun Yang,
and Wei Lin. FusionStitching: Boosting Memory Intensive Computations for Deep Learning Workloads.
arXiv preprint arXiv: 2009.10924, 2020.

Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter Ma, Qiumin Xu, Hanxiao Liu,
Mangpo Phitchaya Phothilimtha, Shen Wang, Anna Goldie, Azalia Mirhoseini, and James Laudon. Trans-
ferable Graph Optimizers for ML Compilers. In Proceedings of Advances in Neural Information Processing
Systems (NeurlIPS), 2020.

13

https://www.tensorflow.org/tutorials/generative/dcgan
https://www.tensorflow.org/tutorials/generative/dcgan
https://github.com/tensorflow/models
https://www.tensorflow.org/api_docs/python/tf/function
https://www.tensorflow.org/api_docs/python/tf/function
https://github.com/tensorflow/runtime
https://www.tensorflow.org/xla
https://github.com/Viredery/tf-eager-fasterrcnn
https://github.com/zzh8829/yolov3-tf2

	Introduction
	Background & Related Works
	Imperative and Symbolic Execution
	Imperative Program with Symbolic Execution

	Our Approach: Imperative-Symbolic Co-Execution
	System Design
	Imperative-Symbolic Co-Execution
	Symbolic Graph Generation

	Evaluation
	Implementation and Experiment Setup
	Imperative Program Coverage
	Training Throughput

	Conclusion

