Appendices

A Proofs in Section 3

A. 1 Proof of Lemma 1

1. When $e \notin W_{\Phi}$, we have $E=\mathbb{R}^{d}$ and $W_{\Phi, E}=W_{\Phi}$. By Theorem 1 in [10], we know that the projected Bellman equation (3.4) has a unique fixed point θ^{*}. Thus, $\mathcal{L}=\left\{\theta^{*}\right\}$.
2. When $e \in W_{\Phi}, \theta_{e}$ is a unique solution to $\Phi \theta=e$ as Φ is full column rank. We first show that the set of solutions to the projected Bellman equation (3.4) takes the form $\left\{\tilde{\theta}+c \theta_{e} \mid c \in \mathbb{R}\right\}$, where $\tilde{\theta}$ is any solution to (3.4). Let $\theta:=\tilde{\theta}+c \theta_{e}$ for any scalar c. Then,

$$
\begin{aligned}
\Pi_{D, W_{\Phi}} T^{(\lambda)} \Phi \theta & =\Pi_{D, W_{\Phi}} T^{(\lambda)} \Phi\left(\tilde{\theta}+c \theta_{e}\right) \\
& =\Pi_{D, W_{\Phi}} T^{(\lambda)}(\Phi \tilde{\theta}+c e) \\
& =\Pi_{D, W_{\Phi}} T^{(\lambda)} \Phi \tilde{\theta}+c e \\
& =\Phi \tilde{\theta}+c \Phi \theta_{e} \\
& =\Phi\left(\tilde{\theta}+c \theta_{e}\right) \\
& =\Phi \theta .
\end{aligned}
$$

On the other hand, suppose that θ is not of the form $\tilde{\theta}+c \theta_{e}$. Then,

$$
\begin{aligned}
\Pi_{D, W_{\Phi}} T^{(\lambda)} \Phi \theta & =\Pi_{D, W_{\Phi}} T^{(\lambda)} \Phi(\theta-\tilde{\theta}+\tilde{\theta}) \\
& =\Pi_{D, W_{\Phi}} T^{(\lambda)} \Phi \tilde{\theta}+\Pi_{D, W_{\Phi}} P^{(\lambda)} \Phi(\theta-\tilde{\theta}) \\
& =\Phi \tilde{\theta}+\Pi_{D, W_{\Phi}} P^{(\lambda)} \Phi(\theta-\tilde{\theta}) \\
& \neq \Phi \tilde{\theta}+\Phi(\theta-\tilde{\theta}) \\
& =\Phi \theta,
\end{aligned}
$$

where the "not equal to" is due to Lemma 2 in [10] and the non-expansiveness of the projection $\Pi_{D, W_{\Phi}}$.
As the set of solutions to Eq. (3.4) is a line parallel to the subspace $\left\{c \theta_{e} \mid c \in \mathbb{R}\right\}$ and E is the orthogonal complement of $\left\{c \theta_{e} \mid c \in \mathbb{R}\right\}$, there is a unique solution of Eq. (3.4) that lies in E. We refer to this particular solution as θ^{*}. It then follows that θ^{*} is also a solution to $\Phi \theta=\Pi_{D, W_{\Phi, E}} T^{(\lambda)} \Phi \theta$.

Now we just need to show that the solution to $\Phi \theta=\Pi_{D, W_{\Phi, E}} T^{(\lambda)} \Phi \theta$ is unique. We notice that the equation $\Phi \theta=\Pi_{D, W_{\Phi, E}} T^{(\lambda)} \Phi \theta$ is equivalent to

$$
\underbrace{\Pi_{2, E} \Phi^{\top} D\left(P^{(\lambda)}-I\right) \Phi \theta=\underbrace{\Pi_{2, E} \Phi^{\top} D\left[\frac{r(\mu)}{1-\lambda} e-\mathcal{R}^{(\lambda)}\right]}_{b^{\prime}},}_{A^{\prime}}
$$

where $\mathcal{R}^{(\lambda)}=(1-\lambda) \sum_{m=0}^{\infty} \lambda^{m} \sum_{k=0}^{m} P^{k} \mathcal{R}$.
Suppose θ^{*} is a solution of the equation $\Phi \theta=\Pi_{D, W_{\Phi, E}} T^{(\lambda)} \Phi \theta$. Then we know that θ^{*} must lie in the subspace E. Thus, we have $\Phi \theta^{*}=\Phi \Pi_{2, E} \theta^{*}$. By the definition of the projection operator $\Pi_{D, W_{\Phi, E}}$, we have

$$
\Pi_{D, W_{\Phi, E}} V=\operatorname{argmin}_{\bar{V} \in\{\Phi \theta \mid \theta \in E\}}\|V-\bar{V}\|_{D}=\operatorname{argmin}_{\bar{V} \in\left\{\Phi \Pi_{2, E} \theta \mid \theta \in R^{d}\right\}}\|V-\bar{V}\|_{D}
$$

Therefore, using $\Phi \theta^{*}=\Phi \Pi_{2, E} \theta^{*}$, the equation $\Phi \theta^{*}=\Pi_{D, W_{\Phi, E}} T^{(\lambda)} \Phi \theta^{*}$ is equivalent to

$$
\Phi \Pi_{2, E} \theta^{*} \in \operatorname{argmin}_{\bar{V} \in\left\{\Phi \Pi_{2, E} \theta \mid \theta \in R^{d}\right\}}\left\|T^{(\lambda)} \Phi \Pi_{2, E} \theta^{*}-\bar{V}\right\|_{D} .
$$

Thus, by the first-order optimality condition and the definition of $T^{(\lambda)}$, we have

$$
\Pi_{2, E} \Phi^{\top} D\left[\mathcal{R}^{(\lambda)}-\frac{r(\mu)}{1-\lambda} e+P^{(\lambda)} \Phi \Pi_{2, E} \theta^{*}-\Phi \Pi_{2, E} \theta^{*}\right]=0
$$

Using $\Phi \theta^{*}=\Phi \Pi_{2, E} \theta^{*}$ again and rearranging terms, we have

$$
\Pi_{2, E} \Phi^{\top} D\left(P^{(\lambda)}-I\right) \Phi \theta=\Pi_{2, E} \Phi^{\top} D\left[\frac{r(\mu)}{1-\lambda} e-\mathcal{R}^{(\lambda)}\right]
$$

On the other hand, suppose θ^{*} is in the subspace E and satisfies

$$
\Pi_{2, E} \Phi^{\top} D\left(P^{(\lambda)}-I\right) \Phi \theta=\Pi_{2, E} \Phi^{\top} D\left[\frac{r(\mu)}{1-\lambda} e-\mathcal{R}^{(\lambda)}\right]
$$

Then, following the same arguments above reversely, we can show that θ^{*} is a solution of the equation

$$
\Phi \theta=\Pi_{D, W_{\Phi, E}} T^{(\lambda)} \Phi \theta
$$

For any $\theta \in E$, we have

$$
\begin{aligned}
\theta^{\top} A^{\prime} \theta & =\theta^{\top} \Pi_{2, E} \Phi^{\top} D\left(P^{(\lambda)}-I\right) \Phi \theta \\
& =\theta^{\top} \Pi_{2, E}^{\top} \Phi^{\top} D\left(P^{(\lambda)}-I\right) \Phi \theta \\
& =\left(\Pi_{2, E} \theta\right)^{\top} \Phi^{\top} D\left(P^{(\lambda)}-I\right) \Phi \theta \\
& =\theta^{\top} \Phi^{\top} D\left(P^{(\lambda)}-I\right) \Phi \theta \\
& \leq-\Delta\|\theta\|_{2}^{2}
\end{aligned}
$$

where the last inequality is due to Lemma 2. Suppose $A^{\prime} \theta_{1}=b^{\prime}$ and $A^{\prime} \theta_{2}=b^{\prime}$ for some $\theta_{1}, \theta_{2} \in E$. Then, $0=\left(\theta_{1}-\theta_{2}\right)^{\top} A^{\prime}\left(\theta_{1}-\theta_{2}\right) \leq-\Delta\left\|\theta_{1}-\theta_{2}\right\|_{2}^{2}$, which implies $\theta_{1}=\theta_{2}$. Therefore, $\Phi \theta=$ $\Pi_{D, W_{\Phi, E}} T^{(\lambda)} \Phi \theta$ has a unique solution.

A. 2 Proof of Lemma 2

For every $\theta \in E$, we have $\Phi \theta \neq e$. This is because
(1) if $e \notin W_{\Phi}$, then there is no $\theta \in \mathbb{R}^{d}=E$ satisfying $\Phi \theta=e$.
(2) if $e \in W_{\Phi}$, then $\theta_{e} \notin E$ is the unique solution to $\Phi \theta=e$.

Thus $V_{\theta}:=\Phi \theta$ is a non-constant vector in $\mathbb{R}^{|\mathcal{S}|}$ for any $\theta \in E$. Using the fact proved in Lemma 7 of [10] that $J^{\top} D\left(I-P^{(\lambda)}\right) J>0$ for any non-constant vector $J \in \mathbb{R}^{|\mathcal{S}|}$, for any non-zero $\theta \in E$, we have

$$
\theta^{\top} \Phi^{\top} D\left(I-P^{(\lambda)}\right) \Phi \theta=V_{\theta}^{\top} D\left(I-P^{(\lambda)}\right) V_{\theta}>0
$$

Since the set $\left\{\theta \in E \mid\|\theta\|_{2}=1\right\}$ is nonempty and compact, by the extreme value theorem, we have

$$
\Delta:=\min _{\|\theta\|_{2}=1, \theta \in E} \theta^{\top} \Phi^{\top} D\left(I-P^{(\lambda)}\right) \Phi \theta>0
$$

Under Assumption 1, the steady-state expectations $A:=\mathbb{E}_{\pi}\left[A\left(X_{t}\right)\right]$ is given by

$$
A=\left[\begin{array}{cc}
-c_{\alpha} & 0 \\
-\frac{1}{1-\lambda} \Phi^{\top} D e & \Phi^{\top} D\left(P^{(\lambda)}-I\right) \Phi
\end{array}\right]
$$

We first rewrite the minimization problem $\min _{\|\Theta\|_{2}=1, \Theta \in \mathbb{R} \times E}-\Theta^{\top} A \Theta$ as

$$
\min _{\sqrt{\bar{r}^{2}+\|\theta\|_{2}^{2}}=1, \bar{r} \in \mathbb{R}, \theta \in E} c_{\alpha} \bar{r}^{2}+\frac{\bar{r}}{1-\lambda} \theta^{\top} \Phi^{\top} D e+\theta^{\top} \Phi^{\top} D\left(I-P^{(\lambda)}\right) \Phi \theta
$$

Since

$$
\begin{aligned}
\left|\frac{\bar{r}}{1-\lambda} \theta^{\top} \Phi^{\top} D e\right| & =\frac{|\bar{r}|}{1-\lambda}\left|\theta^{\top} \Phi^{\top} D e\right| \\
& =\frac{|\bar{r}|}{1-\lambda}\left|(\Phi \theta)^{\top} \pi\right| \\
& \leq \frac{|\bar{r}|}{1-\lambda}\|\pi\|_{1}\|\Phi \theta\|_{\infty} \\
& =\frac{|\bar{r}|}{1-\lambda}\|\Phi \theta\|_{\infty} \\
& \leq \frac{|\bar{r}|}{1-\lambda} \max _{i \in \mathcal{S}}\|\phi(i)\|_{2}\|\theta\|_{2} \\
& \leq \frac{|\bar{r}|\|\theta\|_{2}}{1-\lambda}, \quad \forall \bar{r} \in \mathbb{R}, \theta \in E
\end{aligned}
$$

and

$$
\theta^{\top} \Phi^{\top} D\left(I-P^{(\lambda)}\right) \Phi \theta \geq \Delta\|\theta\|_{2}^{2}, \quad \forall \theta \in E
$$

then we have

$$
\begin{aligned}
& \min _{\sqrt{\bar{r}^{2}+\|\theta\|_{2}^{2}}=1, \bar{r} \in \mathbb{R}, \theta \in E} c_{\alpha} \bar{r}^{2}+\frac{\bar{r}}{1-\lambda} \theta^{\top} \Phi^{\top} D e+\theta^{\top} \Phi^{\top} D\left(I-P^{(\lambda)}\right) \Phi \theta \\
& \geq \min _{\sqrt{\bar{r}^{2}+\|\theta\|_{2}^{2}}=1, \bar{r} \in \mathbb{R}, \theta \in E} c_{\alpha} \bar{r}^{2}-\frac{|\bar{r}|\|\theta\|_{2}}{1-\lambda}+\Delta\|\theta\|_{2}^{2} \\
& =\min _{\bar{r} \in[-1,1]} c_{\alpha}|\bar{r}|^{2}-\frac{1}{1-\lambda}|\bar{r}| \sqrt{1-|\bar{r}|^{2}}+\Delta\left(1-|\bar{r}|^{2}\right) \\
& =\min _{x \in[0,1]} c_{\alpha} x-\frac{1}{1-\lambda} \sqrt{x(1-x)}+\Delta(1-x) \\
& =\Delta+\min _{x \in[0,1]}\left(c_{\alpha}-\Delta\right) x-\frac{1}{1-\lambda} \sqrt{x(1-x)}
\end{aligned}
$$

When $c_{\alpha} \geq \Delta+\sqrt{\frac{1}{\Delta^{2}(1-\lambda)^{4}}-\frac{1}{(1-\lambda)^{2}}}$, we have

$$
\min _{x \in[0,1]}\left(c_{\alpha}-\Delta\right) x-\frac{1}{1-\lambda} \sqrt{x(1-x)} \geq-\frac{\Delta}{2}
$$

which implies that

$$
\min _{\|\Theta\|_{2}=1, \Theta \in \mathbb{R} \times E}-\Theta^{\top} A \Theta \geq \frac{\Delta}{2}
$$

A. 3 Proof of Theorem 1

Proof. Part (1): auxiliary algorithm. Suppose the sequence of iterates $\left\{\left(\bar{r}_{t}, \theta_{t}\right)\right\}$ is generated by Algorithm 1. Then, the sequence of iterates $\left\{\left(\bar{r}_{t}, \Pi_{2, E} \theta_{t}\right)\right\}$ can be generated by the following auxiliary algorithm

$$
\begin{equation*}
\bar{r}_{t+1}=\bar{r}_{t}+c_{\alpha} \beta_{t}\left(\mathcal{R}\left(s_{t}\right)-\bar{r}_{t}\right) \text { and } \theta_{t+1}=\theta_{t}+\beta_{t} \delta_{t}\left(\theta_{t}\right) \Pi_{2, E} z_{t} \tag{A.1}
\end{equation*}
$$

with initial values \bar{r}_{0} and $\Pi_{2, E} \theta_{0}$. Note that the iterates $\left\{\left(\bar{r}_{t}, \theta_{t}\right)\right\}$ uniquely determines the iterates $\left\{\left(\bar{r}_{t}, \Pi_{2, E} \theta_{t}\right)\right\}$.
The auxiliary algorithm (A.1) can be rewritten in the following vector form

$$
\begin{equation*}
\Theta_{t+1}=\Theta_{t}+\beta_{t}\left[\tilde{A}\left(X_{t}\right) \Theta_{t}+\tilde{b}\left(X_{t}\right)\right] \tag{A.2}
\end{equation*}
$$

where

$$
\tilde{A}\left(X_{t}\right)=\left[\begin{array}{cc}
-c_{\alpha} & 0 \\
-\Pi_{2, E} z_{t} & \Pi_{2, E} z_{t}\left(\phi\left(s_{t+1}\right)^{\top}-\phi\left(s_{t}\right)^{\top}\right)
\end{array}\right]
$$

and

$$
\tilde{b}\left(X_{t}\right)=\left[\begin{array}{c}
c_{\alpha} \mathcal{R}\left(s_{t}\right) \\
\mathcal{R}\left(s_{t}\right) \Pi_{2, E} z_{t}
\end{array}\right] .
$$

If we define

$$
\Pi:=\left[\begin{array}{cc}
1 & 0 \\
0 & \Pi_{2, E}
\end{array}\right]
$$

then we have $\tilde{A}\left(X_{t}\right)=\Pi A\left(X_{t}\right)$ and $\tilde{b}\left(X_{t}\right)=\Pi b\left(X_{t}\right)$.
Under Assumption 1, the steady-state expectations $\tilde{A}:=\mathbb{E}_{\pi}\left[\tilde{A}\left(X_{t}\right)\right]$ and $\tilde{b}:=\mathbb{E}_{\pi}\left[\tilde{b}\left(X_{t}\right)\right]$ are given by

$$
\tilde{A}=\Pi A=\left[\begin{array}{cc}
-c_{\alpha} & 0 \\
-\frac{1}{1-\lambda} \Pi_{2, E} \Phi^{\top} D e & \Pi_{2, E} \Phi^{\top} D\left(P^{(\lambda)}-I\right) \Phi
\end{array}\right]
$$

and

$$
\tilde{b}=\Pi b=\left[\begin{array}{c}
c_{\alpha} r(\mu) \\
\Pi_{2, E} \Phi^{\top} D \mathcal{R}^{(\lambda)}
\end{array}\right]
$$

Stochastic approximation theory shows that the asymptotic behavior of the sequence $\left\{\left(\bar{r}_{t}, \Pi_{2, E} \theta_{t}\right)\right\}$ generated by (A.1) is closely linked with the corresponding ordinary differential equation $\dot{\Theta}_{t}=$ $\tilde{A} \Theta_{t}+\tilde{b}$ and the limit point of $\left\{\left(\bar{r}_{t}, \Pi_{2, E} \theta_{t}\right)\right\}$ should satisfies the equation $\tilde{A} \Theta+\tilde{b}=0$. Solving this equation, we have the limit point of $\left\{\left(\bar{r}_{t}, \Pi_{2, E} \theta_{t}\right)\right\}$ is $\left(r(\mu), \theta^{*}\right)$.
We notice that

$$
\begin{aligned}
& \min _{\|\Theta\|_{2}=1, \Theta \in \mathbb{R} \times E}-\Theta^{\top} \tilde{A} \Theta \\
= & \min _{\sqrt{\bar{r}^{2}+\|\theta\|_{2}^{2}}=1, \bar{r} \in \mathbb{R}, \theta \in E} c_{\alpha} \bar{r}^{2}+\frac{\bar{r}}{1-\lambda} \theta^{\top} \Pi_{2, E} \Phi^{\top} D e+\theta^{\top} \Pi_{2, E} \Phi^{\top} D\left(I-P^{(\lambda)}\right) \Phi \theta \\
= & \min _{\sqrt{\bar{r}^{2}+\|\theta\|_{2}^{2}}=1, \bar{r} \in \mathbb{R}, \theta \in E} c_{\alpha} \bar{r}^{2}+\frac{\bar{r}}{1-\lambda} \theta^{\top} \Phi^{\top} D e+\theta^{\top} \Phi^{\top} D\left(I-P^{(\lambda)}\right) \Phi \theta \\
= & \min _{\|\Theta\|_{2}=1, \Theta \in \mathbb{R} \times E}-\Theta^{\top} A \Theta \geq \frac{\Delta}{2} .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
\left\|\tilde{A}\left(X_{t}\right)\right\|_{2} & =\left\|\Pi A\left(X_{t}\right)\right\|_{2} \\
& \leq\left\|A\left(X_{t}\right)\right\|_{2} \\
& \leq\left\|A\left(X_{t}\right)\right\|_{F} \\
& =\sqrt{c_{\alpha}^{2}+\left\|z_{t}\right\|_{2}^{2}+\left\|z_{t}\left[\phi\left(s_{t+1}\right)^{\top}-\phi\left(s_{t}\right)^{\top}\right]\right\|_{F}^{2}} \\
& \leq \sqrt{c_{\alpha}^{2}+\left\|z_{t}\right\|_{2}^{2}+\left\|z_{t}\left[\phi\left(s_{t+1}\right)^{\top}-\phi\left(s_{t}\right)^{\top}\right]\right\|_{2}^{2}} \\
& \leq \sqrt{c_{\alpha}^{2}+\left\|z_{t}\right\|_{2}^{2}+\left(\left\|z_{t}\right\|_{2}\left\|\phi\left(s_{t+1}\right)\right\|_{2}+\left\|z_{t}\right\|_{2}\left\|\phi\left(s_{t}\right)\right\|_{2}\right)^{2}} \\
& \leq \sqrt{c_{\alpha}^{2}+\frac{1}{(1-\lambda)^{2}}+\frac{4}{(1-\lambda)^{2}}} \\
& =\sqrt{c_{\alpha}^{2}+\frac{5}{(1-\lambda)^{2}}},
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|\tilde{b}\left(X_{t}\right)\right\| & =\left\|\Pi b\left(X_{t}\right)\right\|_{2} \\
& \leq\left\|b\left(X_{t}\right)\right\|_{2} \\
& \leq \sqrt{\left(c_{\alpha} \mathcal{R}\left(s_{t}\right)\right)^{2}+\mathcal{R}\left(s_{t}\right)^{2}\left\|z_{t}\right\|_{2}^{2}} \\
& \leq \sqrt{c_{\alpha}^{2}+\frac{1}{(1-\lambda)^{2}}} .
\end{aligned}
$$

Part (2): general finite-time bound. For ease of notation, we let

$$
\mathbb{E}_{t}[\cdot]:=\mathbb{E}\left[\cdot \mid \Theta_{t-\tau\left(\beta_{t}\right)}, X_{t-\tau\left(\beta_{t}\right)}\right],
$$

and

$$
\beta_{t_{1}, t_{2}}:=\sum_{k=t_{1}}^{t_{2}} \beta_{k}
$$

Note that in this part, $\Theta_{t}:=\left[\begin{array}{c}\bar{r}_{t} \\ \Pi_{2, E} \theta_{t}\end{array}\right], \Theta^{*}:=\left[\begin{array}{c}r(\mu) \\ \theta^{*}\end{array}\right], A\left(X_{t}\right):=\tilde{A}\left(X_{t}\right), A:=\tilde{A}, b\left(X_{t}\right):=\tilde{b}\left(X_{t}\right)$, $b:=\tilde{b}, A_{\max }:=\sqrt{c_{\alpha}^{2}+\frac{5}{(1-\lambda)^{2}}}, b_{\max }:=\sqrt{c_{\alpha}^{2}+\frac{1}{(1-\lambda)^{2}}}, \eta:=\sqrt{c_{\alpha}^{2}+\frac{5}{(1-\lambda)^{2}}}$.
The step size sequence $\left\{\beta_{t}\right\}$ satisfies the following conditions: (i) $\left\{\beta_{t}\right\}$ are positive and nonincreasing; (ii) there exists a smallest positive integer t^{*} such that $\beta_{0, t^{*}-1} \leq \frac{1}{2 \eta}$, and for all $t \geq t^{*}$, $\beta_{t-\tau\left(\beta_{t}\right), t-1} \leq \min \left\{\frac{1}{4 \eta}, \frac{\Delta}{228 \eta^{2}}\right\}$ and $\frac{\beta_{t-\tau\left(\beta_{t}\right), t-1}}{\tau\left(\beta_{t}\right) \beta_{t}} \leq 2$.
For ant $t \geq 0$, we have

$$
\begin{aligned}
& \mathbb{E}_{t}\left[\left\|\Theta_{t+1}-\Theta^{*}\right\|_{2}^{2}-\left\|\Theta_{t}-\Theta^{*}\right\|_{2}^{2}\right] \\
= & \mathbb{E}_{t}\left[\left\|\Theta_{t+1}-\Theta_{t}+\Theta_{t}-\Theta^{*}\right\|_{2}^{2}-\left\|\Theta_{t}-\Theta^{*}\right\|_{2}^{2}\right] \\
= & \mathbb{E}_{t}\left[\left\|\Theta_{t+1}-\Theta_{t}\right\|_{2}^{2}+2\left(\Theta_{t}-\Theta^{*}\right)^{\top}\left(\Theta_{t+1}-\Theta_{t}\right)\right] \\
= & \mathbb{E}_{t}\left[\left\|\Theta_{t+1}-\Theta_{t}\right\|_{2}^{2}\right]+2 \beta_{t} \mathbb{E}_{t}\left[\left(\Theta_{t}-\Theta^{*}\right)^{\top}\left(A\left(X_{t}\right) \Theta_{t}+b\left(X_{t}\right)\right)\right] \\
= & \beta_{t}^{2} \mathbb{E}_{t}\left[\left\|A\left(X_{t}\right) \Theta_{t}+b\left(X_{t}\right)\right\|_{2}^{2}\right] \\
+ & 2 \beta_{t} \mathbb{E}_{t}\left[\left(\Theta_{t}-\Theta^{*}\right)^{\top}\left(A\left(X_{t}\right) \Theta_{t}+b\left(X_{t}\right)-A \Theta_{t}-b\right)\right] \\
+ & 2 \beta_{t} \mathbb{E}_{t}\left[\left(\Theta_{t}-\Theta^{*}\right)^{\top}\left(A \Theta_{t}+b\right)\right]
\end{aligned}
$$

step 1. Bounding $\left\|A\left(X_{t}\right) \Theta_{t}+b\left(X_{t}\right)\right\|_{2}^{2}$
Since $A\left(X_{t}\right)$ and $b\left(X_{t}\right)$ are uniformly bounded by $A_{\max }$ and $b_{\max }$ respectively, we then have

$$
\begin{aligned}
\left\|A\left(X_{t}\right) \Theta_{t}+b\left(X_{t}\right)\right\|_{2} & \leq\left\|A\left(X_{t}\right)\right\|_{2}\left\|_{t}\right\|_{2}+\left\|b\left(X_{t}\right)\right\|_{2} \\
& \leq A_{\max }\left\|\Theta_{t}\right\|_{2}+b_{\max } \\
& \leq \eta\left(\left\|\Theta_{t}\right\|_{2}+1\right)
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\left\|A\left(X_{t}\right) \Theta_{t}+b\left(X_{t}\right)\right\|_{2}^{2} & \leq \eta^{2}\left(\left\|\Theta_{t}-\Theta^{*}+\Theta^{*}\right\|_{2}+1\right)^{2} \\
& \leq \eta^{2}\left(\left\|\Theta_{t}-\Theta^{*}\right\|_{2}+\left\|\Theta^{*}\right\|_{2}+1\right)^{2} \\
& \leq 2 \eta^{2}\left[\left\|\Theta_{t}-\Theta^{*}\right\|_{2}^{2}+\left(\left\|\Theta^{*}\right\|_{2}+1\right)^{2}\right]
\end{aligned}
$$

step 2. Bounding $\left(\Theta_{t}-\Theta^{*}\right)^{\top}\left(A \Theta_{t}+b\right)$

Since $A \Theta^{*}+b=0$ and $\min _{\|\Theta\|_{2}=1, \Theta \in \mathbb{R} \times E}-\Theta^{\top} A \Theta \geq \frac{\Delta}{2}$

$$
\begin{aligned}
\left(\Theta_{t}-\Theta^{*}\right)^{\top}\left(A \Theta_{t}+b\right) & =\left(\Theta_{t}-\Theta^{*}\right)^{\top}\left(A \Theta_{t}-A \Theta^{*}\right) \\
& =\left(\Theta_{t}-\Theta^{*}\right)^{\top} A\left(\Theta_{t}-\Theta^{*}\right) \\
& \leq-\frac{\Delta}{2}\left\|\Theta_{t}-\Theta^{*}\right\|_{2}^{2}
\end{aligned}
$$

step 3. Bounding $\mathbb{E}_{t}\left[\left(\Theta_{t}-\Theta^{*}\right)^{\top}\left(A\left(X_{t}\right) \Theta_{t}+b\left(X_{t}\right)-A \Theta_{t}-b\right)\right]$

$$
\begin{aligned}
& \mathbb{E}_{t}\left[\left(\Theta_{t}-\Theta^{*}\right)^{\top}\left(A\left(X_{t}\right) \Theta_{t}+b\left(X_{t}\right)-A \Theta_{t}-b\right)\right] \\
= & \mathbb{E}_{t}\left[\left(\Theta_{t}-\Theta_{t-\tau\left(\beta_{t}\right)}+\Theta_{t-\tau\left(\beta_{t}\right)}-\Theta^{*}\right)^{\top}\left(A\left(X_{t}\right) \Theta_{t}+b\left(X_{t}\right)-A \Theta_{t}-b\right)\right] \\
= & \underbrace{\mathbb{E}_{t}\left[\left(\Theta_{t}-\Theta_{\left.\left.t-\tau\left(\beta_{t}\right)\right)^{\top}\left(A\left(X_{t}\right) \Theta_{t}+b\left(X_{t}\right)-A \Theta_{t}-b\right)\right]}\right.\right.}_{\left(A_{1}\right)} \begin{aligned}
\mathbb{E}_{t}\left[\left(\Theta_{t-\tau\left(\beta_{t}\right)}-\Theta^{*}\right)^{\top}\left(A\left(X_{t}\right) \Theta_{t}+b\left(X_{t}\right)-A \Theta_{t}-b\right)\right]
\end{aligned}
\end{aligned}
$$

$$
\left(A_{1}\right) \leq \mathbb{E}_{t}\left[\left|\left(\Theta_{t}-\Theta_{t-\tau\left(\beta_{t}\right)}\right)^{\top}\left(A\left(X_{t}\right) \Theta_{t}+b\left(X_{t}\right)-A \Theta_{t}-b\right)\right|\right]
$$

$$
\leq \mathbb{E}_{t}\left[\left\|\left(\Theta_{t}-\Theta_{t-\tau\left(\beta_{t}\right)}\right)\right\|_{2}\left\|A\left(X_{t}\right) \Theta_{t}+b\left(X_{t}\right)-A \Theta_{t}-b\right\|_{2}\right]
$$

$$
\leq 2 \eta \mathbb{E}_{t}\left[\left(\left\|\Theta_{t}\right\|_{2}+1\right)\left\|\Theta_{t}-\Theta_{t-\tau\left(\beta_{t}\right)}\right\|_{2}\right]
$$

$$
\leq 8 \eta^{2} \beta_{t-\tau\left(\beta_{t}\right), t-1} \mathbb{E}_{t}\left[\left(\left\|\Theta_{t}\right\|_{2}+1\right)^{2}\right]
$$

$$
\leq 8 \eta^{2} \beta_{t-\tau\left(\beta_{t}\right), t-1} \mathbb{E}_{t}\left[\left(\left\|\Theta_{t}-\Theta^{*}\right\|_{2}+\left\|\Theta^{*}\right\|_{2}+1\right)^{2}\right]
$$

$$
\leq 16 \eta^{2} \beta_{t-\tau\left(\beta_{t}\right), t-1} \mathbb{E}_{t}\left[\left\|\Theta_{t}-\Theta^{*}\right\|_{2}^{2}+\left(\left\|\Theta^{*}\right\|_{2}+1\right)^{2}\right]
$$

The 4th inequality holds because for any $0 \leq t_{1}<t_{2}$ satisfying $\beta_{t_{1}, t_{2}-1} \leq \frac{1}{4 \eta}$, the following inequality (see lemma 2.3 in [16] for a proof) hold:

$$
\left\|\Theta_{t_{2}}-\Theta_{t_{1}}\right\|_{2} \leq 4 \eta \beta_{t_{1}, t_{2}-1}\left(\left\|\Theta_{t_{2}}\right\|_{2}+1\right)
$$

Since we have assumed that $\beta_{t-\tau\left(\beta_{t}\right), t-1} \leq \frac{1}{4 \eta}$, then we have

$$
2 \eta \mathbb{E}_{t}\left[\left(\left\|\Theta_{t}\right\|_{2}+1\right)\left\|\Theta_{t}-\Theta_{t-\tau\left(\beta_{t}\right)}\right\|_{2}\right] \leq 8 \eta^{2} \beta_{t-\tau\left(\beta_{t}\right), t-1} \mathbb{E}_{t}\left[\left(\left\|\Theta_{t}\right\|_{2}+1\right)^{2}\right] .
$$

Note that

$$
\begin{aligned}
& A\left(X_{t}\right) \Theta_{t}+b\left(X_{t}\right)-A \Theta_{t}-b \\
&= A\left(X_{t}\right) \Theta_{t-\tau\left(\beta_{t}\right)}-A \Theta_{t-\tau\left(\beta_{t}\right)}+b\left(X_{t}\right)-b \\
&+ A\left(X_{t}\right) \Theta_{t}-A \Theta_{t}-A\left(X_{t}\right) \Theta_{t-\tau\left(\beta_{t}\right)}+A \Theta_{t-\tau\left(\beta_{t}\right)} \\
&=\left[\left(A\left(X_{t}\right)-A\right) \Theta_{t-\tau\left(\beta_{t}\right)}+b\left(X_{t}\right)-b\right]+\left(A\left(X_{t}\right)-A\right)\left(\Theta_{t}-\Theta_{t-\tau\left(\beta_{t}\right)}\right) \\
&\left(A_{2}\right)= \mathbb{E}_{t}\left[\left(\Theta_{t-\tau\left(\beta_{t}\right)}-\Theta^{*}\right)^{\top}\left\{\left[\left(A\left(X_{t}\right)-A\right) \Theta_{t-\tau\left(\beta_{t}\right)}+b\left(X_{t}\right)-b\right]+\left(A\left(X_{t}\right)-A\right)\left(\Theta_{t}-\Theta_{t-\tau\left(\beta_{t}\right)}\right)\right\}\right] \\
& \leq \underbrace{\left|\left(\Theta_{t-\tau\left(\beta_{t}\right)}-\Theta^{*}\right)^{\top} \mathbb{E}_{t}\left[\left(A\left(X_{t}\right)-A\right) \Theta_{t-\tau\left(\beta_{t}\right)}+b\left(X_{t}\right)-b\right]\right|}_{\left(A_{2,2}\right)} \\
&+ \underbrace{\left|\left(\Theta_{t-\tau\left(\beta_{t}\right)}-\Theta^{*}\right)^{\top} \mathbb{E}_{t}\left[\left(A\left(X_{t}\right)-A\right)\left(\Theta_{t}-\Theta_{t-\tau\left(\beta_{t}\right)}\right)\right]\right|}_{\left(A_{2,1}\right)}
\end{aligned}
$$

Since

$$
\begin{aligned}
\left(A_{2,1}\right) & \leq\left\|\Theta_{t-\tau\left(\beta_{t}\right)}-\Theta^{*}\right\|_{2}\left(\left\|\mathbb{E}_{t}\left[A\left(X_{t}\right)\right]-A\right\|_{2}\left\|\Theta_{t-\tau\left(\beta_{t}\right)}\right\|_{2}+\left\|\mathbb{E}_{t}\left[b\left(X_{t}\right)\right]-b\right\|_{2}\right) \\
& \leq \beta_{t} \mathbb{E}_{t}\left[\left\|\Theta_{t-\tau\left(\beta_{t}\right)}-\Theta^{*}\right\|_{2}\left(\left\|\Theta_{t-\tau\left(\beta_{t}\right)}\right\|_{2}+1\right)\right] \\
& =\beta_{t} \mathbb{E}_{t}\left[\left\|\Theta_{t-\tau\left(\beta_{t}\right)}-\Theta_{t}+\Theta_{t}-\Theta^{*}\right\|_{2}\left(\left\|\Theta_{t-\tau\left(\beta_{t}\right)}-\Theta_{t}+\Theta_{t}-\Theta^{*}+\Theta^{*}\right\|_{2}+1\right)\right] \\
& \leq \beta_{t} \mathbb{E}_{t}\left[\left(\left\|\Theta_{t}-\Theta_{t-\tau\left(\beta_{t}\right)}\right\|_{2}+\left\|\Theta_{t}-\Theta^{*}\right\|_{2}\right)\left(\left\|\Theta_{t}-\Theta_{t-\tau\left(\beta_{t}\right)}\right\|_{2}+\left\|\Theta_{t}-\Theta^{*}\right\|_{2}+\left\|\Theta^{*}\right\|_{2}+1\right)\right] \\
& \leq \beta_{t} \mathbb{E}_{t}\left[\left(\left\|\Theta_{t}\right\|_{2}+\left\|\Theta_{t}-\Theta^{*}\right\|_{2}+1\right)\left(\left\|\Theta_{t}\right\|_{2}+\left\|\Theta_{t}-\Theta^{*}\right\|_{2}+\left\|\Theta^{*}\right\|_{2}+2\right)\right] \\
& \leq \beta_{t} \mathbb{E}_{t}\left[\left(\left\|\Theta^{*}\right\|_{2}+2\left\|\Theta_{t}-\Theta^{*}\right\|_{2}+1\right)\left(2\left\|\Theta_{t}-\Theta^{*}\right\|_{2}+2\left\|\Theta^{*}\right\|_{2}+2\right)\right] \\
& \leq 4 \beta_{t} \mathbb{E}_{t}\left[\left(\left\|\Theta_{t}-\Theta^{*}\right\|_{2}+\left\|\Theta^{*}\right\|_{2}+1\right)^{2}\right] \\
& \leq 8 \beta_{t} \mathbb{E}_{t}\left[\left\|\Theta_{t}-\Theta^{*}\right\|_{2}^{2}+\left(\left\|\Theta^{*}\right\|_{2}+1\right)^{2}\right] \\
& \leq 8 \eta^{2} \beta_{t-\tau\left(\beta_{t}\right), t-1} \mathbb{E}_{t}\left[\left\|\Theta_{t}-\Theta^{*}\right\|_{2}^{2}+\left(\left\|\Theta^{*}\right\|_{2}+1\right)^{2}\right]
\end{aligned}
$$

The 4th inequality holds because for any $0 \leq t_{1}<t_{2}$ satisfying $\beta_{t_{1}, t_{2}-1} \leq \frac{1}{4 \eta}$, the following inequality (see lemma 2.3 in [16] for a proof) hold:

$$
\left\|\Theta_{t_{2}}-\Theta_{t_{1}}\right\|_{2} \leq\left\|\Theta_{t_{2}}\right\|_{2}+1
$$

Since we have assumed that $\beta_{t-\tau\left(\beta_{t}\right), t-1} \leq \frac{1}{4 \eta}$, then we have $\left\|\Theta_{t}-\Theta_{t-\tau\left(\beta_{t}\right)}\right\|_{2} \leq\left\|\Theta_{t}\right\|_{2}+1$. Thus, $\beta_{t} \mathbb{E}_{t}\left[\left(\left\|\Theta_{t}-\Theta_{t-\tau\left(\beta_{t}\right)}\right\|_{2}+\left\|\Theta_{t}-\Theta^{*}\right\|_{2}\right)\left(\left\|\Theta_{t}-\Theta_{t-\tau\left(\beta_{t}\right)}\right\|_{2}+\left\|\Theta_{t}-\Theta^{*}\right\|_{2}+\left\|\Theta^{*}\right\|_{2}+1\right)\right] \leq$ $\beta_{t} \mathbb{E}_{t}\left[\left(\left\|\Theta_{t}\right\|_{2}+\left\|\Theta_{t}-\Theta^{*}\right\|_{2}+1\right)\left(\left\|\Theta_{t}\right\|_{2}+\left\|\Theta_{t}-\Theta^{*}\right\|_{2}+\left\|\Theta^{*}\right\|_{2}+2\right)\right]$.

$$
\begin{aligned}
\left(A_{2,2}\right) & \leq 2 \eta \mathbb{E}_{t}\left[\left\|\Theta_{t-\tau\left(\beta_{t}\right)}-\Theta^{*}\right\|_{2}\left\|\Theta_{t}-\Theta_{t-\tau\left(\beta_{t}\right)}\right\|_{2}\right] \\
& \leq 8 \eta^{2} \beta_{t-\tau\left(\beta_{t}\right), t-1} \mathbb{E}_{t}\left[\left\|\Theta_{t-\tau\left(\beta_{t}\right)}-\Theta^{*}\right\|_{2}\left(\left\|\Theta_{t}\right\|_{2}+1\right)\right] \\
& \leq 8 \eta^{2} \beta_{t-\tau\left(\beta_{t}\right), t-1} \mathbb{E}_{t}\left[\left(\left\|\Theta_{t}-\Theta_{t-\tau\left(\beta_{t}\right)}\right\|_{2}+\left\|\Theta_{t}-\Theta^{*}\right\|_{2}\right)\left(\left\|\Theta_{t}\right\|_{2}+1\right)\right] \\
& \leq 8 \eta^{2} \beta_{t-\tau\left(\beta_{t}\right), t-1} \mathbb{E}_{t}\left[\left(\left\|\Theta_{t}-\Theta_{t-\tau\left(\beta_{t}\right)}\right\|_{2}+\left\|\Theta_{t}-\Theta^{*}\right\|_{2}\right)\left(\left\|\Theta_{t}\right\|_{2}+1\right)\right] \\
& \leq 8 \eta^{2} \beta_{t-\tau\left(\beta_{t}\right), t-1} \mathbb{E}_{t}\left[\left(\left\|\Theta_{t}\right\|_{2}+\left\|\Theta_{t}-\Theta^{*}\right\|_{2}+1\right)\left(\left\|\Theta_{t}\right\|_{2}+1\right)\right] \\
& \leq 8 \eta^{2} \beta_{t-\tau\left(\beta_{t}\right), t-1} \mathbb{E}_{t}\left[\left(\left\|\Theta^{*}\right\|_{2}+2\left\|\Theta_{t}-\Theta^{*}\right\|_{2}+1\right)\left(\left\|\Theta^{*}\right\|_{2}+\left\|\Theta_{t}-\Theta^{*}\right\|_{2}+1\right)\right] \\
& \leq 16 \eta^{2} \beta_{t-\tau\left(\beta_{t}\right), t-1} \mathbb{E}_{t}\left[\left(\left\|\Theta_{t}-\Theta^{*}\right\|_{2}+\left\|\Theta^{*}\right\|_{2}+1\right)^{2}\right] \\
& \leq 32 \eta^{2} \beta_{t-\tau\left(\beta_{t}\right), t-1} \mathbb{E}_{t}\left[\left\|\Theta_{t}-\Theta^{*}\right\|_{2}^{2}+\left(\left\|\Theta^{*}\right\|_{2}+1\right)^{2}\right]
\end{aligned}
$$

then we have

$$
\begin{aligned}
\left(A_{2}\right) & =\left(A_{2,1}\right)+\left(A_{2,2}\right) \\
& \leq 40 \eta^{2} \beta_{t-\tau\left(\beta_{t}\right), t-1} \mathbb{E}_{t}\left[\left\|\Theta_{t}-\Theta^{*}\right\|_{2}^{2}+\left(\left\|\Theta^{*}\right\|_{2}+1\right)^{2}\right]
\end{aligned}
$$

Finally,

$$
\begin{aligned}
(A) & =\left(A_{1}\right)+\left(A_{2}\right) \\
& \leq 56 \eta^{2} \beta_{t-\tau\left(\beta_{t}\right), t-1} \mathbb{E}_{t}\left[\left\|\Theta_{t}-\Theta^{*}\right\|_{2}^{2}+\left(\left\|\Theta^{*}\right\|_{2}+1\right)^{2}\right]
\end{aligned}
$$

step 4. Putting together.

$$
\begin{aligned}
& \mathbb{E}_{t}\left[\left\|\Theta_{t+1}-\Theta^{*}\right\|_{2}^{2}-\left\|\Theta_{t}-\Theta^{*}\right\|_{2}^{2}\right] \\
\leq & 2 \eta^{2} \beta_{t} \beta_{t-\tau\left(\beta_{t}\right), t-1} \mathbb{E}_{t}\left[\left\|\Theta_{t}-\Theta^{*}\right\|_{2}^{2}+\left(\left\|\Theta^{*}\right\|_{2}+1\right)^{2}\right] \\
+ & 112 \eta^{2} \beta_{t} \beta_{t-\tau\left(\beta_{t}\right), t-1} \mathbb{E}_{t}\left[\left\|\Theta_{t}-\Theta^{*}\right\|_{2}^{2}+\left(\left\|\Theta^{*}\right\|_{2}+1\right)^{2}\right] \\
- & \Delta \beta_{t} \mathbb{E}_{t}\left[\left\|\Theta_{t}-\Theta^{*}\right\|_{2}^{2}\right] \\
\leq & \left(114 \eta^{2} \beta_{t} \beta_{t-\tau\left(\beta_{t}\right), t-1}-\Delta \beta_{t}\right) \mathbb{E}_{t}\left[\left\|\Theta_{t}-\Theta^{*}\right\|_{2}^{2}\right]+114 \eta^{2}\left(\left\|\Theta^{*}\right\|_{2}+1\right)^{2} \beta_{t} \beta_{t-\tau\left(\beta_{t}\right), t-1}
\end{aligned}
$$

Hence, for any $t \geq t^{*}$, we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|\Theta_{t+1}-\Theta^{*}\right\|_{2}^{2}\right] & \leq\left(1+114 \eta^{2} \beta_{t} \beta_{t-\tau\left(\beta_{t}\right), t-1}-\Delta \beta_{t}\right) \mathbb{E}\left[\left\|\Theta_{t}-\Theta^{*}\right\|_{2}^{2}\right] \\
& +114 \eta^{2}\left(\left\|\Theta^{*}\right\|_{2}+1\right)^{2} \beta_{t} \beta_{t-\tau\left(\beta_{t}\right), t-1}
\end{aligned}
$$

Since for any $t \geq t^{*}$ we have assumed

$$
\beta_{t-\tau\left(\beta_{t}\right), t-1} \leq \frac{\Delta}{228 \eta^{2}} \text {, i.e., } 228 \eta^{2} \beta_{t} \beta_{t-\tau\left(\beta_{t}\right), t-1}-\Delta \beta_{t} \leq 0
$$

and

$$
\frac{\beta_{t-\tau\left(\beta_{t}\right), t-1}}{\tau\left(\beta_{t}\right) \beta_{t}} \leq 2, \text { i.e., } \beta_{t} \beta_{t-\tau\left(\beta_{t}\right), t-1} \leq 2 \tau\left(\beta_{t}\right) \beta_{t}^{2}
$$

then

$$
\mathbb{E}\left[\left\|\Theta_{t+1}-\Theta^{*}\right\|_{2}^{2}\right] \leq\left(1-\frac{\Delta}{2} \beta_{t}\right) \mathbb{E}\left[\left\|\Theta_{t}-\Theta^{*}\right\|_{2}^{2}\right]+\frac{\xi_{2}}{2} \tau\left(\beta_{t}\right) \beta_{t}^{2}
$$

Recursively using the preceding inequality, we have for all $T \geq t^{*}$

$$
\mathbb{E}\left[\left\|\Theta_{T}-\Theta^{*}\right\|_{2}^{2}\right] \leq \mathbb{E}\left[\left\|\Theta_{t^{*}}-\Theta^{*}\right\|_{2}^{2}\right] \prod_{t=t^{*}}^{T-1}\left(1-\frac{\Delta}{2} \beta_{t}\right)+\frac{\xi_{2}}{2} \sum_{t=t^{*}}^{T-1} \tau\left(\beta_{t}\right) \beta_{t}^{2} \prod_{j=t+1}^{T-1}\left(1-\frac{\Delta}{2} \beta_{j}\right)
$$

Since we have assumed that $\beta_{0, t^{*}-1} \leq \frac{1}{2 \eta}$, then we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|\Theta_{t^{*}}-\Theta^{*}\right\|_{2}^{2}\right] & \leq \mathbb{E}\left[\left(\left\|\Theta_{t^{*}}-\Theta_{0}\right\|_{2}+\left\|\Theta_{0}-\Theta^{*}\right\|_{2}\right)^{2}\right] \\
& \leq\left(\left\|\Theta_{0}\right\|_{2}+\left\|\Theta_{0}-\Theta^{*}\right\|_{2}+1\right)^{2} \\
& =\xi_{1}
\end{aligned}
$$

which gives the desired finite-time bound:

$$
\mathbb{E}\left[\left\|\Theta_{T}-\Theta^{*}\right\|_{2}^{2}\right] \leq \xi_{1} \prod_{t=t^{*}}^{T-1}\left(1-\frac{\Delta}{2} \beta_{t}\right)+\frac{\xi_{2}}{2} \sum_{t=t^{*}}^{T-1} \tau\left(\beta_{t}\right) \beta_{t}^{2} \prod_{j=t+1}^{T-1}\left(1-\frac{\Delta}{2} \beta_{j}\right)
$$

Part (3): Theorem 1(a). Since

$$
\prod_{t=\tau(\beta)}^{T-1}\left(1-\frac{\Delta}{2} \beta\right)=\left(1-\frac{\Delta}{2} \beta\right)^{T-\tau(\beta)}
$$

and

$$
\begin{aligned}
\sum_{t=\tau(\beta)}^{T-1} \tau(\beta) \beta^{2} \prod_{j=t+1}^{T-1}\left(1-\frac{\Delta}{2} \beta\right) & =\beta^{2} \tau(\beta) \sum_{j=\tau(\beta)}^{T-1}\left(1-\frac{\Delta}{2} \beta\right)^{T-j-1} \\
& \leq \beta^{2} \tau(\beta) \sum_{j=0}^{\infty}\left(1-\frac{\Delta}{2} \beta\right)^{j} \\
& \leq \frac{\beta \tau(\beta)}{\frac{\Delta}{2}}
\end{aligned}
$$

then we have for all $T \geq \tau(\beta)$

$$
\begin{aligned}
& \mathbb{E}\left[\left(\bar{r}_{T}-r(\mu)\right)^{2}\right]+\mathbb{E}\left[\left\|\Pi_{2, E}\left(\theta_{T}-\theta^{*}\right)\right\|_{2}^{2}\right] \\
& =\mathbb{E}\left[\left\|\Theta_{T}-\Theta^{*}\right\|_{2}^{2}\right] \\
& \leq \xi_{1}\left(1-\frac{\Delta}{2} \beta\right)^{T-\tau(\beta)}+\xi_{2} \frac{\beta \tau(\beta)}{\Delta}
\end{aligned}
$$

Part (4): Theorem 1(b). We first bound the term $\prod_{t=t^{*}}^{T-1}\left(1-\frac{\Delta}{2} \beta_{t}\right)$.

$$
\begin{aligned}
\prod_{t=t^{*}}^{T-1}\left(1-\frac{\Delta}{2} \beta_{t}\right) & =\prod_{t=t^{*}}^{T-1}\left(1-\frac{\Delta}{2} \frac{c_{1}}{t+c_{2}}\right) \\
& \leq \prod_{t=t^{*}}^{T-1} e^{-\frac{\Delta}{2} \frac{c_{1}}{t+c_{2}}} \\
& =e^{-\frac{\Delta}{2} c_{1} \sum_{t=t^{*}}^{T-1} \frac{1}{t+c_{2}}}
\end{aligned}
$$

Since

$$
\begin{aligned}
\sum_{t=t^{*}}^{T-1} \frac{1}{t+c_{2}} & \geq \int_{t^{*}}^{T} \frac{1}{x+c_{2}} d x \\
& =\ln \left(\frac{T+c_{2}}{t^{*}+c_{2}}\right)
\end{aligned}
$$

then we have

$$
\begin{aligned}
\prod_{t=t^{*}}^{T-1}\left(1-\frac{\Delta}{2} \beta_{t}\right) & \leq e^{-\frac{\Delta}{2} c_{1} \ln \left(\frac{T+c_{2}}{t^{*}+c_{2}}\right)} \\
& =\left(\frac{t^{*}+c_{2}}{T+c_{2}}\right)^{\frac{\Delta}{2} c_{1}}
\end{aligned}
$$

Next we bound the term $\sum_{t=t^{*}}^{T-1} \tau\left(\beta_{t}\right) \beta_{t}^{2} \prod_{j=t+1}^{T-1}\left(1-\frac{\Delta}{2} \beta_{j}\right)$.
Since $\tau_{\beta_{t}} \leq \tau_{\beta_{T}} \leq K \ln \left(\frac{1}{\beta_{T}}\right)=K\left[\ln \left(T+c_{2}\right)-\ln \left(c_{1}\right)\right]$ for all $t^{*} \leq t \leq T-1$, we have

$$
\sum_{t=t^{*}}^{T-1} \tau\left(\beta_{t}\right) \beta_{t}^{2} \prod_{j=t+1}^{T-1}\left(1-\frac{\Delta}{2} \beta_{j}\right) \leq K\left[\ln \left(T+c_{2}\right)-\ln \left(c_{1}\right)\right] \sum_{t=t^{*}}^{T-1} \beta_{t}^{2} \prod_{j=t+1}^{T-1}\left(1-\frac{\Delta}{2} \beta_{j}\right)
$$

Moreover,

$$
\begin{aligned}
\prod_{j=t+1}^{T-1}\left(1-\frac{\Delta}{2} \frac{c_{1}}{j+c_{2}}\right) & \leq e^{-\frac{\Delta}{2} c_{1} \sum_{j=t+1}^{T-1} \frac{1}{t+c_{2}}} \\
& \leq\left(\frac{t+c_{2}+1}{T+c_{2}}\right)^{\frac{\Delta}{2} c_{1}}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\sum_{t=t^{*}}^{T-1} \beta_{t}^{2} \prod_{j=t+1}^{T-1}\left(1-\frac{\Delta}{2} \beta_{j}\right) & =\sum_{t=t^{*}}^{T-1} \frac{c_{1}^{2}}{\left(t+c_{2}\right)^{2}} \prod_{j=t+1}^{T-1}\left(1-\frac{\Delta}{2} \frac{c_{1}}{j+c_{2}}\right) \\
& \leq \sum_{t=t^{*}}^{T-1} \frac{c_{1}^{2}}{\left(t+c_{2}\right)^{2}}\left(\frac{t+c_{2}+1}{T+c_{2}}\right)^{\frac{\Delta}{2} c_{1}} \\
& =\frac{c_{1}^{2}}{\left(T+c_{2}\right)^{\frac{\Delta}{2} c_{1}}} \sum_{t=t^{*}}^{T-1}\left(\frac{t+c_{2}+1}{t+c_{2}}\right)^{2}\left(t+c_{2}+1\right)^{\frac{\Delta}{2} c_{1}-2} \\
& \leq \frac{4 c_{1}^{2}}{\left(T+c_{2}\right)^{\frac{\Delta}{2} c_{1}}} \sum_{t=t^{*}}^{T-1}\left(t+c_{2}+1\right)^{\frac{\Delta}{2} c_{1}-2}
\end{aligned}
$$

When $\frac{\Delta}{2} c_{1}>1$, we have

$$
\begin{aligned}
\sum_{t=t^{*}}^{T-1}\left(t+c_{2}+1\right)^{\frac{\Delta}{2} c_{1}-2} & \leq \int_{0}^{T}\left(x+c_{2}+1\right)^{\frac{\Delta}{2} c_{1}-2} d x \\
& =\frac{1}{\frac{\Delta}{2} c_{1}-1}\left[\left(T+c_{2}+1\right)^{\frac{\Delta}{2} c_{1}-1}-\left(c_{2}+1\right)^{\frac{\Delta}{2} c_{1}-1}\right] \\
& \leq \frac{1}{\frac{\Delta}{2} c_{1}-1}\left(T+c_{2}+1\right)^{\frac{\Delta}{2} c_{1}-1}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\sum_{t=t^{*}}^{T-1} \beta_{t}^{2} \prod_{j=t+1}^{T-1}\left(1-\frac{\Delta}{2} \beta_{j}\right) & \leq \frac{4 c_{1}^{2}}{\frac{\Delta}{2} c_{1}-1} \frac{1}{T+c_{2}+1}\left(\frac{T+c_{2}+1}{T+c_{2}}\right)^{\frac{\Delta}{2} c_{1}} \\
& \leq \frac{4 c_{1}^{2}}{\frac{\Delta}{2} c_{1}-1} \frac{1}{T+c_{2}+1} e^{\frac{\frac{\Delta}{\frac{c}{c}}}{T+c_{2}}} \\
& =\frac{4 c_{1}^{2}}{\frac{\Delta}{2} c_{1}-1} \frac{1}{T+c_{2}+1} e^{\frac{\Delta}{2} \beta_{T}}
\end{aligned}
$$

Since

$$
\frac{\Delta}{2} \beta_{T} \leq \frac{\Delta}{2} \beta_{0}<1,
$$

we have

$$
\sum_{t=t^{*}}^{T-1} \beta_{t}^{2} \prod_{j=t+1}^{T-1}\left(1-\frac{\Delta}{2} \beta_{j}\right) \leq \frac{4 e c_{1}^{2}}{\frac{\Delta}{2} c_{1}-1} \frac{1}{T+c_{2}+1}
$$

Hence,

$$
\begin{aligned}
& \mathbb{E}\left[\left(\bar{r}_{T}-r(\mu)\right)^{2}\right]+\mathbb{E}\left[\left\|\Pi_{2, E}\left(\theta_{T}-\theta^{*}\right)\right\|_{2}^{2}\right] \\
& =\mathbb{E}\left[\left\|\Theta_{T}-\Theta^{*}\right\|_{2}^{2}\right] \\
& \leq \xi_{1}\left(\frac{t^{*}+c_{2}}{T+c_{2}}\right)^{\frac{2}{2} c_{1}}+\xi_{2} \frac{8 e c_{1}^{2} K}{\Delta c_{1}-2} \frac{\ln \left(T+c_{2}\right)-\ln \left(c_{1}\right)}{T+c_{2}+1}
\end{aligned}
$$

A. 4 Proof of Corollary 1

Proof. For the diminishing step-size $\beta_{t}=\frac{c_{1}}{t+c_{2}}$, we choose $c_{1}:=\frac{4}{\Delta}, c_{2}:=4$ and $c_{\alpha}:=\Delta+\frac{1}{\Delta(1-\lambda)^{2}}$. Then, from Theorem 1 (b), we have

$$
\mathbb{E}\left[\left(\bar{r}_{T}-r(\mu)\right)^{2}\right]+\mathbb{E}\left[\left\|\Pi_{2, E}\left(\theta_{T}-\theta^{*}\right)\right\|_{2}^{2}\right] \leq \xi_{1}\left(\frac{t^{*}+4}{T+4}\right)^{2}+\frac{64 e K \xi_{2}}{\Delta^{2}} \frac{\ln (T+4)-\ln \left(\frac{4}{\Delta}\right)}{T+5}
$$

For any $\epsilon>0$, to guarantee that $\mathbb{E}\left[\left|\bar{r}_{T}-r(\mu)\right|\right] \leq \epsilon$ and $\mathbb{E}\left[\left\|\Pi_{2, E}\left(\theta_{T}-\theta^{*}\right)\right\|_{2}\right] \leq \epsilon$, we can set

$$
\xi_{1}\left(\frac{t^{*}+4}{T+4}\right)^{2} \leq \frac{1}{2} \epsilon^{2}
$$

and

$$
\frac{64 e K \xi_{2}}{\Delta^{2}} \frac{\ln (T+4)-\ln \left(\frac{4}{\Delta}\right)}{T+5} \leq \frac{1}{2} \cdot \epsilon^{2}
$$

Then T needs to satisfy

$$
T=\tilde{\mathcal{O}}\left(\frac{K \log \left(\frac{1}{\Delta}\right)\left(1+\left\|\theta^{*}\right\|_{2}^{2}\right)}{\Delta^{4}(1-\lambda)^{4} \epsilon^{2}}\right)
$$

B Convergence with respect to Span Lyapunov Function

The main difficulty for analyzing average reward is the existence of some subspace \bar{E} for which the Bellman operator H is indifferent, i.e.,

$$
H(Q+x)-H(Q) \in \bar{E}, \quad \forall x \in \bar{E}
$$

So it is impossible to apply the finite time analysis in the literature to establish the convergence of the iterates to some fix point. In essence, H operates on sets of points defined by the indifferent subspace called equivalent classes:

$$
\mathcal{X}_{\bar{E}}:=\left\{x_{\bar{E}} \mid x \in \mathbb{R}^{n}\right\},
$$

where $x_{\bar{E}}:=\left\{y \in \mathbb{R}^{n}: y-x \in \bar{E}\right\}$. Thus we should analyze those equivalent classes rather than the points. Towards that end, we propose a new kind of Lyapunov function defined with respect to $\mathcal{X}_{\bar{E}}$.

B. 1 The Semi-Lyapunov Function

We tweak the smooth convex Lyapunov function M introduced in [18] to build a new Lyapunov function. Recall that M satisfies the following two important properties with respect to a smoothness norm $\|\cdot\|_{s}$ and a contraction norm $\|\cdot\|_{c}$:

1. Smoothness: $M(y) \leq M(x)+\langle\nabla M(x), y-x\rangle+\frac{L}{2}\|y-x\|_{s}^{2}, \forall x, y$ for some $L \geq 0$.
2. Uniform Approximation: For some constants $c_{l}, c_{u} \geq 0$, we have

$$
\begin{equation*}
c_{l} M(x) \leq \frac{1}{2}\|x\|_{c}^{2} \leq c_{u} M(x) \forall x \tag{B.1}
\end{equation*}
$$

Next we construct a Lyapunov function satisfying the above two properties with respect to equivalent classes. Consider the fellowing span norm induced by \bar{E} [44]:

$$
\|x\|_{c, \bar{E}}:=\inf _{e \in \bar{E}}\|x-e\|_{c},\|x\|_{s, \bar{E}}:=\inf _{e \in \bar{E}}\|x-e\|_{s} .
$$

Clearly they are functions defined on $\mathcal{X}_{\bar{E}}$ since any element of an equivalent class $x_{\bar{E}}$ is mapped to the same value.
A key observation is that they could be expressed equivalently as the infimal convolution with respect to indicator functions. More specifically, if $\delta_{\bar{E}}$ denote the indicator function with respect \bar{E},

$$
\delta_{\bar{E}}(x):= \begin{cases}0 & x \in \bar{E} \tag{B.2}\\ \infty & \text { otherwise }\end{cases}
$$

Then $\|x\|_{c, \bar{E}} \equiv\left(\|\cdot\|_{c} \square \delta_{\bar{E}}\right)(x),\|x\|_{s, \bar{E}} \equiv\left(\|\cdot\|_{s} \square \delta_{\bar{E}}\right)(x)$. Indeed, our new Lyapunov function $M_{\bar{E}}$ is defined as

$$
\begin{equation*}
M_{\bar{E}}(x):=\inf _{y} M(x-y)+\delta_{\bar{E}}(y) \equiv M \square \delta_{\bar{E}}(x) \tag{B.3}
\end{equation*}
$$

We call it a semi-Lyapunov function because $M_{\bar{E}}(x)=0 \forall x \in \bar{E}$. Notice that function $M_{\bar{E}}$ is a well-defined over $\mathcal{X}_{\bar{E}}$.
Now we show that $M_{\bar{E}}$ is a uniform approximation to the induced contraction norm $\|\cdot\|_{c, \bar{E}}$ and that it is smooth with respect to the induced smoothness norm $\|\cdot\|_{s, \bar{E}}$. First, the following properties for infimal convolution of an indicator function can be derived easily from the definition of infimal convolution.
Lemma 4. Let \bar{E} be a linear subspace in \mathbb{R}^{n} and let $\delta_{\bar{E}}$ be the indicator function associated with it (B.2). Then the following properties hold.
a) Monotonicity: If $f(x) \geq g(x)$, then $f \square \delta_{\bar{E}}(x) \geq g \square \delta_{\bar{E}}(x)$.
b) Scaling Invariance: $(\beta f) \square \delta_{\bar{E}} \equiv \beta\left(f \square \delta_{\bar{E}}\right)$ for any non-negative scalar β.
c) Commutativity $f \square g \equiv g \square f$.
d) Associativity: $(f \square g) \square h \equiv f \square(g \square h)$.
e) $\delta_{\bar{E}} \square \delta_{\bar{E}} \equiv \delta_{\bar{E}}$.
f) If f is L-smooth with respect to $\|\cdot\|_{s}$, then $f \square \delta_{\bar{E}}$ is also smooth with respect to $\|\cdot\|_{s}$.
g) If f is convex, then $f \square \delta_{\bar{E}}$ is also convex.

Proof. Properties f) and g) are the smoothing properties of infimal convolution and their derivations can be found in [45].

Then the uniform approximation property of $M_{\bar{E}}$ follows from that of M.
Proposition 1. If M satisfies $c_{l} M(x) \leq \frac{1}{2}\|x\|_{c}^{2} \leq c_{u} M(x)$ for some constants c_{l}, c_{u}, then $M_{\bar{E}}$ defined in (B.3) satisfies

$$
\begin{equation*}
c_{l} M_{\bar{E}}(x) \leq \frac{1}{2}\|x\|_{c, \bar{E}}^{2} \leq c_{u} M_{\bar{E}}(x), \quad \forall x . \tag{B.4}
\end{equation*}
$$

Proof. By the monotonicity of square for positive scalar, we have
$\|x\|_{c, \bar{E}}^{2}=\left(\inf _{y}\|x-y\|_{c}+\delta_{\bar{E}}(y)\right)^{2}=\inf _{y}\left(\|x-y\|_{c}+\delta_{\bar{E}}(y)\right)^{2} \stackrel{(a)}{=} \inf _{y}\|x-y\|_{c}^{2}+\delta_{\bar{E}}(y)=\|\cdot\|_{c}^{2} \square \delta_{\bar{E}}$,
where (a) follows from $\delta_{\bar{E}}$ being a support function. The monotonicity of the infimal convolution Lemma 4.a) implies that

$$
\left(c_{l} M\right) \square \delta_{\bar{E}}(x) \leq \frac{1}{2}\|\cdot\|_{c}^{2} \square \delta_{\bar{E}}(x) \leq\left(c_{u} M\right) \square \delta_{\bar{E}}(x), \quad \forall x .
$$

So the Lemma 4.b) implies

$$
c_{l}\left(M \square \delta_{\bar{E}}\right)(x) \leq \frac{1}{2}\|\cdot\|_{c, \bar{E}}^{2}(x) \leq c_{u}\left(M \square \delta_{\bar{E}}\right)(x), \quad \forall x,
$$

i.e.,

$$
c_{l} M_{\bar{E}}(x) \leq \frac{1}{2}\|x\|_{c, \bar{E}}^{2} \leq c_{u} M_{\bar{E}}(x), \quad \forall x .
$$

Moreover the smoothness of $M_{\bar{E}}$ also follows from that of M.
Proposition 2. If M is L-smooth with respect to $\|\cdot\|_{s}$,

$$
M(y) \leq M(x)+\langle\nabla M(x), y-x\rangle+\frac{L}{2}\|y-x\|_{s}^{2}, \forall x, y,
$$

then $M_{\bar{E}}$ is L-smooth with respect to $\|\cdot\|_{s, \bar{E}}$, i.e.,i.e,

$$
M_{\bar{E}}(y) \leq M_{\bar{E}}(x)+\left\langle\nabla M_{\bar{E}}(x), y-x\right\rangle+\frac{L}{2}\|y-x\|_{s, \bar{E}}^{2}, \forall x, y .
$$

Moreover, the gradient of $M_{\bar{E}}$ satisfies $\left\langle\nabla M_{\bar{E}}(x), e\right\rangle=0 \forall e \in E, \forall x$.

Proof. $\left\langle\nabla M_{\bar{E}}(x), e\right\rangle=0, \forall e \in E$ clearly holds because $M_{\bar{E}}$ always have the same value for any elements of $x_{\bar{E}}$. Now we show the smoothness property. First, by Lemma 4.f), if M is L-smooth with respect to $\|\cdot\|_{s}$, then $M_{\bar{E}}$ must also be L-smooth with respect to $\|\cdot\|_{s}$. Now consider arbitrary $x, y \in \mathbb{R}^{n}$. Let $\hat{e}=\arg \min _{e \in \bar{E}}\|x-y-e\|_{s}$, i.e., $\|x-y-\hat{e}\|_{s}=\|x-y\|_{s, \bar{E}}$. Then

$$
\begin{aligned}
M_{\bar{E}}(x) & =M_{\bar{E}}\left(x+\hat{e} \stackrel{(a)}{\leq} M_{\bar{E}}(y)+\left\langle\nabla M_{\bar{E}}(y), x+\hat{e}-y\right\rangle+\frac{L}{2}\|x+\hat{e}-y\|_{s}^{2}\right. \\
& =M_{\bar{E}}(y)+\left\langle\nabla M_{\bar{E}}(y), x-y\right\rangle+\frac{L}{2}\|x-y\|_{s, \bar{E}}^{2},
\end{aligned}
$$

where (a) follows from the L-smoothness of $M_{\bar{E}}$ with respect to $\|\cdot\|_{s}$.

B. 2 Recursive Bounds of the General Stochastic Approximation Scheme

Now let's analyze the iterates generated by the following stochastic approximation scheme for solving some fixed equivalent class equation $H(x)-x \in \bar{E}$:

$$
\begin{equation*}
x^{t+1} \leftarrow x^{t}+\eta_{t}\left(\hat{H}\left(x^{t}\right)-x^{t}\right), \tag{B.5}
\end{equation*}
$$

We make the following assumptions regarding the function H and its stochastic sample \hat{H}.

Assumption 4.

1. H is γ-contractive with respective to $\|\cdot\|_{c, \bar{E}}$ for some $\gamma<1$, i.e., $\|H(x)-H(y)\|_{c, \bar{E}} \leq$ $\gamma\|x-y\|_{c, \bar{E}}$.
2. Let $w^{t}:=\hat{H}\left(x^{t}\right)-H\left(x^{t}\right)$ denote the stochastic error associated with \hat{H} at iteration t and let $\mathcal{F}^{t}:=\left\{x^{1}, \ldots, x^{t}\right\}$ denote the filtration up to time t. Then w^{t} satisfies the following properties,

- Martingale noise: $\mathbb{E}\left[w^{t} \mid \mathcal{F}^{t}\right]=0$.
- Bounded variance: $\mathbb{E}\left[\left\|w^{t}\right\|_{c, \bar{E}}^{2} \mid \mathcal{F}^{t}\right] \leq A+B\left\|x^{t}-x^{*}\right\|_{c, \bar{E}}^{2}$ for some fixed constants A and B.

3. There exist a fixed equivalent class, i.e., x^{*} for which $\left\|H\left(x^{*}\right)-x^{*}\right\|_{c, \bar{E}}=0$.

We begin by analyzing the behavior of $M_{\bar{E}}$ for a fixed t using its L-smoothness property shown in Proposition 2:

$$
\begin{equation*}
M_{\bar{E}}\left(x^{t+1}-x^{*}\right) \leq M_{\bar{E}}\left(x^{t}-x^{*}\right)+\left\langle\nabla M_{\bar{E}}\left(x^{t}-x^{*}\right), x^{t+1}-x^{t}\right\rangle+\frac{L}{2}\left\|x^{t+1}-x^{t}\right\|_{s, \bar{E}}^{2} . \tag{B.6}
\end{equation*}
$$

First, we show the linear term above induces a negative drift.
Lemma 5. Let $M_{\bar{E}}$ be defined in (B.3). Then conditioned on \mathcal{F}^{t}, x^{t+1} satisfies

$$
\mathbb{E}\left[\left\langle\nabla M_{\bar{E}}\left(x^{t}-x^{*}\right), x^{t+1}-x^{t}\right\rangle\right] \leq-2 \beta \eta_{t} M_{\bar{E}}\left(x^{t}-x^{*}\right),
$$

with $\beta \geq\left(1-\gamma \sqrt{c_{u} / c_{l}}\right)$, where c_{u}, c_{l} are the uniform approximation parameters of M defined in (B.1).

Proof. First, due to the martingale noise assumption for \hat{H}, the following relation holds conditioned on \mathcal{F}^{t},
$\mathbb{E}\left[\left\langle\nabla M_{\bar{E}}\left(x^{t}-x^{*}\right), x^{t+1}-x^{t}\right\rangle\right]=\eta_{t} \mathbb{E}\left[\left\langle\nabla M_{\bar{E}}\left(x^{t}-x^{*}\right), H\left(x^{t}\right)-x^{t}+w^{t}\right\rangle\right]=\eta_{t}\left\langle\nabla M_{\bar{E}}\left(x^{t}-x^{*}\right), H\left(x^{t}\right)-x^{t}\right\rangle$.
Now we study the last term. The convexity of $M_{\bar{E}}$ implies that

$$
\begin{aligned}
\left\langle\nabla M_{\bar{E}}\left(x^{t}-x^{*}\right), H\left(x^{t}\right)-x^{t}\right\rangle & =\left\langle\nabla M_{\bar{E}}\left(x^{t}-x^{*}\right), H\left(x^{t}\right)-x^{*}+x^{*}-x^{t}\right\rangle \\
& \leq M_{\bar{E}}\left(H\left(x^{t}\right)-x^{*}\right)-M_{\bar{E}}\left(x^{t}-x^{*}\right) \\
& \stackrel{(a)}{\leq} \frac{1}{2 c_{l}}\left\|H\left(x^{t}\right)-H\left(x^{*}\right)\right\|_{c, \bar{E}}^{2}-M_{\bar{E}}\left(x^{t}-x^{*}\right) \\
& \stackrel{(b)}{\leq} \frac{\gamma^{2}}{2 c_{l}}\left\|x^{t}-x^{*}\right\|_{c, \bar{E}}^{2}-M_{\bar{E}}\left(x^{t}-x^{*}\right) \\
& \leq\left(\frac{\gamma^{2} c_{u}}{c_{l}}-1\right) M_{\bar{E}}\left(x^{t}-x^{*}\right) \leq-\left(1-\gamma \sqrt{c_{u} / c_{l}}\right) M_{\bar{E}}\left(x^{t}-x^{*}\right)
\end{aligned}
$$

where (a) follows from x^{*} belonging to a fixed equivalent class with respect to H and (b) follows from the contraction property of H.

Now let's focus on the last term in (B.6). In [18], the authors utilize norm equivalence to upper bound $\|x\|_{s}^{2}$ by some $l_{s}\|x\|_{c}^{2}$ so that it could be bounded by M. We apply the same technique in the next lemma. Notice that the monotonicity of infimal convolution (Lemma 4.a) and Lemma 4.b)) implies that $\|x\|_{s, \bar{E}}^{2} \leq l_{s}\|x\|_{c, \bar{E}}^{2}$.

Lemma 6. If $\|x\|_{s, \bar{E}}^{2} \leq l_{s}\|x\|_{c, \bar{E}}^{2}$, then conditioned on \mathcal{F}^{t}, x^{t+1} generated by (B.5) satisfies

$$
\mathbb{E}\left[\left\|x^{t+1}-x^{t}\right\|_{s, \bar{E}}^{2}\right] \leq(16+4 B) c_{u} l_{s} \eta_{t}^{2} M_{\bar{E}}\left(x^{t}-x^{*}\right)+2 A l_{s} \eta_{t}^{2}
$$

Proof. By update rule (B.5), we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|x^{t+1}-x^{t}\right\|_{s, \bar{E}}^{2}\right] & =\eta_{t}^{2} \mathbb{E}\left[\left\|H\left(x^{t}\right)+w^{t}-x^{t}\right\|_{s, \bar{E}}^{2}\right] \\
& \stackrel{(a)}{\leq} 2 \eta_{t}^{2} \mathbb{E}\left[\left\|H\left(x^{t}\right)-x^{t}\right\|_{s, \bar{E}}^{2}+\left\|w^{t}\right\|_{s, \bar{E}}^{2}\right] \\
& \leq 2 \eta_{t}^{2} l_{s} \mathbb{E}\left[\left\|H\left(x^{t}\right)-x^{t}\right\|_{c, \bar{E}}^{2}+\left\|w^{t}\right\|_{c, \bar{E}}^{2}\right] \\
& \leq 2 \eta_{t}^{2} l_{s} \mathbb{E}\left[2\left\|H\left(x^{t}\right)-H\left(x^{*}\right)\right\|_{c, \bar{E}}^{2}+2\left\|x^{t}-x^{*}\right\|_{c, \bar{E}}^{2}+\left\|w^{t}\right\|_{c, \bar{E}}^{2}\right] \\
& \leq \eta_{t}^{2} l_{s}(8+2 B)\left\|x^{t}-x^{*}\right\|_{c, \bar{E}}^{2}+\eta_{t}^{2} l_{s} 2 A \\
& \stackrel{(b)}{\leq} \eta_{t}^{2} l_{s} c_{u}(16+4 B) M_{\bar{E}}\left(x^{t}-x^{*}\right)+\eta_{t}^{2} l_{s} 2 A
\end{aligned}
$$

where (a) follows from the triangle inequality and (b) follows from the uniform approximation property of $M_{\bar{E}}$.

Putting them together, we get the following recursive relation.
Proposition 3. Let x^{t} be generated by (B.5) using \hat{H} satisfying Assumption 4 and let $\|x\|_{s, \bar{E}}^{2} \leq$ $l_{s}\|x\|_{c, \bar{E}}^{2}, \forall x$. Then the following relation holds conditioned on \mathcal{F}^{t},

$$
\begin{equation*}
\mathbb{E}\left[M_{\bar{E}}\left(x^{t+1}-x^{*}\right)\right] \leq\left(1-2 \alpha_{2} \eta_{t}+\alpha_{3} \eta_{t}^{2}\right) M_{\bar{E}}\left(x^{t}-x^{*}\right)+\alpha_{4} \eta_{t}^{2} \tag{B.7}
\end{equation*}
$$

where $\alpha_{2}:=\left(1-\gamma \sqrt{c_{u} / c_{l}}\right), \alpha_{3}:=(8+2 B) c_{u} l_{s} L, \alpha_{4}:=A l_{s} L$.
Proof. By substituting Lemma 5 and 6 into (B.6), we get $\mathbb{E}\left[M_{\bar{E}}\left(x^{t+1}-x^{*}\right)\right] \leq\left(1-2 \beta \eta_{t}+(8+\right.$ $\left.2 B) c_{u} l_{s} L \eta_{t}^{2}\right) M_{\bar{E}}\left(x^{t}-x^{*}\right)+A l_{s} \eta_{t}^{2}$.

Next, we suggest a specific stepsize η_{t} to calculate the convergence rate.
Theorem 3. Let α_{2}, α_{3} and α_{4} be defined in 3. If x^{t} is generated by (B.5) with an \hat{H} satisfying Assumption 4 and stepsizes $\eta_{t}:=\frac{1}{\alpha_{2}(t+K)}, K:=\max \left\{\alpha_{3} / \alpha_{2}, 3\right\}$,

$$
\begin{equation*}
\mathbb{E}\left[\left\|x^{N}-x^{*}\right\|_{c, \bar{E}}^{2}\right] \leq \frac{K^{2}}{(N+K)^{2}} \frac{c_{u}}{c_{l}}\left\|x^{0}-x^{*}\right\|_{c, \bar{E}}^{2}+\frac{8 \alpha_{4} c_{u}}{(N+K) \alpha_{2}^{2}}, \forall N \geq 1 \tag{B.8}
\end{equation*}
$$

Else if a constant stepsize eta with $\eta_{t} \alpha_{3} / \alpha_{2} \leq 1$, then

$$
\begin{equation*}
\mathbb{E}\left[\left\|x^{N}-x^{*}\right\|_{c, \bar{E}}^{2}\right] \leq \frac{c_{u}}{c_{l}}\left(1-\alpha_{2}\right)^{N}\left\|x^{0}-x^{*}\right\|_{c, \bar{E}}+\frac{c_{u} \alpha 4}{\alpha_{2}} \eta, \forall N \geq 1 \tag{B.9}
\end{equation*}
$$

Proof. Let's consider the decreasing stepsize first. Since η_{t} satisfies $\alpha_{3} \eta_{t}^{2} \leq \alpha_{2} \eta_{t}$, it follows from (B.7) that

$$
\mathbb{E}\left[M_{\bar{E}}\left(x^{t+1}-x^{*}\right)\right] \leq\left(1-\alpha_{2} \eta_{t}\right) M_{\bar{E}}\left(x^{t}-x^{*}\right)+\alpha_{4} \eta_{t}^{2}
$$

By letting $\Gamma_{t}:=\prod_{i=0}^{t-1}\left(1-\alpha_{2} \eta_{t}\right)$, we can obtain the N-step recursion relationship

$$
\mathbb{E}\left[M_{\bar{E}}\left(x^{t+1}-x^{*}\right)\right] \leq \Gamma_{N} M_{\bar{E}}\left(x^{t}-x^{*}\right)+\frac{\alpha_{4}}{\alpha_{2}} \Gamma_{N} \sum_{t=0}^{N-1}\left(\frac{1}{\Gamma_{t+1}}\right) \alpha_{2} \eta_{t}^{2}
$$

Then the algebraic relationship $\frac{1}{\Gamma_{t+1}}\left(\alpha_{2} \eta_{t}\right)=\frac{1}{\Gamma_{t+1}}-\frac{1}{\Gamma_{t}}$ implies that

$$
\mathbb{E}\left[M_{\bar{E}}\left(x^{t+1}-x^{*}\right)\right] \leq \Gamma_{N} M_{\bar{E}}\left(x^{t}-x^{*}\right)+\frac{\alpha_{4}}{\alpha_{2}} \Gamma_{N} \sum_{t=0}^{N-1}\left(\frac{1}{\Gamma_{t+1}}-\frac{1}{\Gamma_{t}}\right) \eta_{t} .
$$

Moreover a careful computation shows that

$$
\Gamma_{t}=\frac{(K-1)(K-2)}{(t+K-1)(t+K-2)}, \Gamma_{N} \leq \frac{K^{2}}{(N+K)^{2}}, \Gamma_{N} \sum_{t=0}^{N-1} \eta_{t}\left(\frac{1}{\Gamma_{t+1}}-\frac{1}{\Gamma_{t}}\right) \leq \frac{4}{\alpha_{2}(N+K)}
$$

Thus we can conclude (B.8) by noting that $M_{\bar{E}}$ is an uniform approximation of $\|\cdot\|_{c, \bar{E}}$, i.e., $c_{l} M_{\bar{E}}(x) \leq \frac{1}{2}\|x\|_{c, \bar{E}}^{2} \leq c_{u} M_{\bar{E}}(x)$.

Next, for the constant stepsize, again, we can recover from (B.7) that

$$
\begin{gathered}
\mathbb{E}\left[M_{\bar{E}}\left(x^{t+1}-x^{*}\right)\right] \leq\left(1-\alpha_{2} \eta\right) M_{\bar{E}}\left(x^{t}-x^{*}\right)+\alpha_{4} \eta^{2}, i . e ., \\
\mathbb{E}\left[M_{\bar{E}}\left(x^{N}-x^{*}\right)\right] \leq\left(1-\alpha_{2} \eta\right)^{N} M_{\bar{E}}\left(x^{t}-x^{*}\right)+\alpha_{4} \eta^{2} \sum_{t=0}^{N-1}\left(1-\alpha_{2} \eta\right)^{t} \leq\left(1-\alpha_{2} \eta\right)^{N} M_{\bar{E}}\left(x^{t}-x^{*}\right)+\frac{\alpha_{4}}{\alpha_{2}} \eta,
\end{gathered}
$$

from which (B.9) follows naturally.

B. 3 Convergence of the J-step Q-learning Algorithm

We establish the convergence of the J-step Q-learning algorithm in this subsection. With $\bar{E}:=\{c e$: $c \in \mathbb{R}\}$, the sample J-step Bellman operator \hat{H}^{J} satisfies Assumption 4:

1. H^{J} is γ-contractive with respective to span infinite norm with $0<\gamma<1$ i.e., $\left\|H^{J}(Q)-H^{J}(\bar{Q})\right\|_{\infty, \bar{E}} \leq \gamma\|Q-\bar{Q}\|_{\infty, E}$.
2. Let $w^{t}:=\hat{H}^{J}\left(Q_{t}\right)-H^{J}\left(Q_{t}\right)$ denote the stochastic error associated with \hat{H}^{J} at iteration t and let $\mathcal{F}^{t}:=\left\{Q_{1}, \ldots, Q_{t}\right\}$ denote the filtration up to time t . Then w^{t} satisfies the following properties,

- Martingale noise: $\mathbb{E}\left[w^{t} \mid \mathcal{F}^{t}\right]=0$.
- Bounded variance: $\mathbb{E}\left[\left\|w^{t}\right\|_{\infty, E}^{2} \mid \mathcal{F}^{t}\right] \leq \underbrace{2\left(J^{2}+\left\|Q^{*}\right\|_{\infty, \bar{E}}^{2}\right)}_{A}+\underbrace{2}_{B}\left\|Q_{t}-Q^{*}\right\|_{\infty, \bar{E}}^{2}$.

3. There exists a gain optimal Q^{*} for which $\left\|\hat{H}^{J}\left(Q^{*}\right)-Q^{*}\right\|_{\infty, E}=0$.

We choose the following l_{∞}-norm smoothing function introduced in [18] as our base Lyapunov function

$$
M(x):=\frac{1}{2}\left(\|\cdot\|_{\infty}^{2} \square \frac{1}{\mu}\|\cdot\|_{4 \log |S||A|}^{2}\right), \text { with } \mu=\left(\frac{1}{2}+\frac{1}{2 \gamma}\right)^{2}-1 .
$$

Then the following problem parameters for analyzing the convergence of the SA scheme can be derived:

$$
c_{u}=(1+\mu), c_{l}=(1+\mu / \sqrt{e}), L=\frac{4 \log |S||A|}{\mu}, l_{s}=\sqrt{e} .
$$

Following the same algebraic manipulation in Section A. 6 of [18], we get

$$
\begin{aligned}
\alpha_{1} & =c_{u} / c_{l} \leq \sqrt{e} \leq \frac{3}{2} \\
\alpha_{2} & =\left(1-\gamma \sqrt{c_{u} / c_{l}}\right) \geq 1-\gamma(1+\mu)^{1 / 2}=\frac{1-\gamma}{2}, \\
\alpha_{3} & =(8+2 B) c_{u} l_{s} L=12 \frac{1+\mu}{\mu} 4 \log (|S||A|) \sqrt{e} \leq \frac{144}{(1-\gamma)} \log (|S||A|) \\
\alpha_{4} c_{u} & =A c_{u} l_{s} L \leq 2\left(J^{2}+\left\|Q^{*}\right\|_{\infty, \bar{E}}^{2}\right) \frac{1+\mu}{\mu} 4 \log (|S||A|) \leq \frac{24 \log (|S||A|)}{(1-\gamma)}\left(J^{2}+\left\|Q^{*}\right\|_{\infty, \bar{E}}^{2}\right)
\end{aligned}
$$

Then the exact convergence rate of Algorithm 2 can obtained by merely substituting them into Theorem 3. And the convergence and sample complexity Theorem 2 in the main text is a simple corollary of the next result.

Proof. Proof of Theorem 2: The result follows from merely substituting the above estimates into (B.9) and (B.8). In particular, the following conservative estimates are used for calculation

$$
\alpha_{1}=\frac{3}{2}, \alpha_{2}=\frac{1-\gamma}{2}, \alpha_{3}=\frac{144}{(1-\gamma)} \log (|S||A|) \text { and } \alpha_{4} c_{u} \leq \frac{24 \log (|S||A|)}{(1-\gamma)}\left(J^{2}+\left\|Q^{*}\right\|_{\infty, \bar{E}}^{2}\right)
$$

C Implementation Detail for Numerical Experiments

C. 1 Setup

We consider an MRP with $|\mathcal{S}|=100$ states, where rewards and transition probabilities are generated as follows:
Rewards: The reward $\mathcal{R}(s)$ for each state is drawn from the uniform distribution on $[0,1]$.
Transition probabilities: For each state $s \in \mathcal{S}$, the transition probabilities $P\left(s, s^{\prime}\right)$ to each successor state $s^{\prime} \in \mathcal{S}$ are chosen as random partitions of the unit interval. That is, $|\mathcal{S}|-1$ numbers are chosen uniformly randomly between 0 and 1 , dividing that interval into $|\mathcal{S}|$ numbers that sum to one - the probabilities of the $|\mathcal{S}|$ successor states.
We first compute the stationary distribution π of the MRP, and then obtain the average-reward $r^{*}:=\pi^{\top} \mathcal{R}$, and the basic differential value function v^{*} by solving the following linear system of equations:

$$
(I-P) v^{*}=\mathcal{R}-r^{*} e \text { and } \pi^{\top} v^{*}=0
$$

For linear function approximation, we consider a feature matrix Φ with $d=20$ features for each state $s \in \mathcal{S}$. We first generate a matrix $\tilde{\Phi} \in \mathbb{R}^{|\mathcal{S}| \times(d-2)}$, where each element is drawn from the Bernoulli distribution with success probability $p=0.5$. Then, we construct $\Phi \in \mathbb{R}^{|\mathcal{S}| \times d}$ by stacking the all-ones vector e and the basic differential value function v^{*} as columns into the the matrix $\tilde{\Phi}$, i.e., $\Phi:=\left[\begin{array}{ccc}\tilde{\Phi} & e & v^{*}\end{array}\right]$. We repeat this process until we obtain a full column rank feature matrix. We further normalize the features to ensure $\|\phi(s)\| \leq 1$ for all $s \in \mathcal{S}$. With the above feature matrix, we can easily compute θ_{e} and θ^{*} by solving

$$
\Phi \theta_{e}=e \text { and } \Phi \theta^{*}=v^{*}
$$

C. 2 1st Experiment

In the first experiment, we show that the iterates θ_{t} of Alorithm 1 converge to different TD limit points when the initial points θ_{0} are different. We set $\lambda=0, c_{\alpha}=1, T=100,000, \beta_{t}=\frac{150}{t+1000}$ and $\bar{r}_{0}=0$. We draw $4 d$-dimensional vectors from the uniform distribution with lower bound $=-5$ and upper bound $=5$. We then use each of the samples as the initial guess θ_{0}, and plot $\mathbb{E}\left[\left\|\Pi_{2, E}\left(\theta_{t}-\theta^{*}\right)\right\|_{2}\right]$ and $\mathbb{E}\left[\left(\theta_{t}-\theta^{*}\right)^{\top} \frac{\theta_{e}}{\left\|\theta_{e}\right\|_{2}}\right]$ in Figure 1 and 2. Note that, each curve is average over 100 independent runs with the same θ_{0}.

C. 3 2nd Experiment

In the second experiment, we empirically verify the performance upper bounds of Alorithm 1 in Theorem 1. We set $c_{\alpha}=1, T=1,000,000, \beta_{t}=\frac{150}{t+1000}, \bar{r}_{0}=0$ and $\theta_{0}=0$ and consider $\lambda \in\{0,0.2,0.4,0.8\}$. In Figure 3, we plot $\mathbb{E}\left[\left(\bar{r}_{t}-r^{*}\right)^{2}+\left\|\Pi_{2, E}\left(\theta_{t}-\theta^{*}\right)\right\|_{2}^{2}\right]$ as a function of t for $t \in\left[0,10^{5}\right)$, and in Figure 4, we plot $\ln \mathbb{E}\left[\left(\bar{r}_{t}-r^{*}\right)^{2}+\left\|\Pi_{2, E}\left(\theta_{t}-\theta^{*}\right)\right\|_{2}^{2}\right]$ as a function of $\ln t$ for $t \in\left[5 \times 10^{5}, 10^{6}\right)$. Each curve is average over 100 independent runs with the same λ.

Figure 1: Convergence of the iterates θ_{t} to the set of TD limit points for 4 different initial points.

Figure 3: Convergence of the iterates $\left(\bar{r}_{t}, \theta_{t}\right)$ for $\lambda \in\{0,0.2,0.4,0.8\}$.

Figure 2: Convergence of the projection of the iterates θ_{t} onto the set of TD limit points for 4 different initial points.

Figure 4: Asymptotic convergence rate of the iterates $\left(\bar{r}_{t}, \theta_{t}\right)$ for $\lambda \in\{0,0.2,0.4,0.8\}$.

