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A Appendix1

In the supplementary material, we provide more experimental results summarized as follows:2

• In A.1, we use ResNet101 as the backbone network and compare our method with state-of-3

the-art methods, demonstrating that our method achieves consistent top results on different4

backbones.5

• In A.2, we provide more t-SNE visualization results for a comprehensive analysis on the6

feature space learned from different models.7

• In A.3, we study the effect of the image-to-image translation model on the performance of8

domain adaptive semantic segmentation.9

• In A.4, we discuss the limitations of our method and provide the URL link of code to10

reproduce the main experimental results.11

A.1 Comparison with State-of-the-art Methods12

Table 1: Comparison with state-of-the-art method-
s on multi-target domain adaptation. “V ” and “R”
indicate the method using VGG16 and ResNet101
backbone networks, respectively.
Method Backbone rainy snowy cloudy overcast Average
OCDA [2] V 22.0 22.9 27.0 27.9 25.0
DHA [3] V 27.0 26.3 30.7 32.8 29.2
Our MTDA V 31.5 30.2 33.0 35.0 33.2
Our MTDA R 32.3 33.3 39.2 41.9 37.9

In the main paper, we report results using VGG1613

as the backbone for both settings: single-target14

and multi-target domain adaptation. Here we15

further provide comparisons on ResNet101 [1].16

For the single-target setting, in Table 2, we com-17

pare our method with 13 state-of-the-art meth-18

ods, which all use ResNet101 as the backbone.19

It can be seen that our method for single-target20

domain adaptation (STDA) achieves 51.9% on21

mIoU, outperforming previous state-of-the-art22

methods. These results further demonstrate that23

our proposed method achieves consistent top re-24

sults on different backbones.25

For the multi-target setting, since previous methods do not provide results on ResNet101, in Table 126

we report our results on ResNet101 to show that further improvements of 4.7% (w.r.t mIoU) can be27

obtained on a stronger backbone.28

We also provide some qualitative semantic segmentation results in Figure. 1, where we observe29

obvious improvements against the source only method. These quantitative and qualitative results30

demonstrate the effectiveness of our method built on different backbone networks.31
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Table 2: Comparison with state-of-the-art methods (ResNet101) for single-target domain adaptation.
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LSE [4] 90.2 40.0 83.5 31.9 26.4 32.6 38.7 37.5 81.0 34.2 84.6 61.6 33.4 82.5 32.8 45.9 6.7 29.1 30.6 47.5
PLCA [5] 84.0 30.4 82.4 35.3 24.8 32.2 36.8 24.5 85.5 37.2 78.6 66.9 32.8 85.5 40.4 48.0 8.8 29.8 41.8 47.7
BDL [6] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
CrCDA [7] 92.4 55.3 82.3 31.2 29.1 32.5 33.2 35.6 83.5 34.8 84.2 58.9 32.2 84.7 40.6 46.1 2.1 31.1 32.7 48.6
DTST [8] 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2
LDR [9] 90.8 41.4 84.7 35.1 27.5 31.2 38.0 32.8 85.6 42.1 84.9 59.6 34.4 85.0 42.8 52.7 3.4 30.9 38.1 49.5
CCM [10] 93.5 57.6 84.6 39.3 24.1 25.2 35.0 17.3 85.0 40.6 86.5 58.7 28.7 85.8 49.0 56.4 5.4 31.9 43.2 49.9
FADA [11] 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1
LTIR [12] 92.0 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2
CAG [13] 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2
FDA [14] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5
PCE [15] 91.0 49.2 85.6 37.2 29.7 33.7 38.1 39.2 85.4 35.4 85.1 61.1 32.8 84.1 45.6 46.9 0.0 34.2 44.5 50.5
PIT [16] 87.5 43.4 78.8 31.2 30.2 36.3 39.9 42.0 79.2 37.1 79.3 65.4 37.5 83.2 46.0 45.6 25.7 23.5 49.9 50.6
Our STDA 88.4 50.8 82.7 39.4 24.9 34.6 43.7 46.6 84.3 38.6 81.7 61.3 41.9 77.8 50.4 39.0 5.4 40.3 53.2 51.9

(a)

(b)

Figure 1: Qualitative results of source only model and our method using VGG16 and ResNet101
backbones. (a) Single-target domain adaptation (i.e. GTA5→Cityscapes), and (b)multi-target domain
adaptation (i.e. GTA5→C-Driving).
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(a)

(b)

Figure 2: Comparison of feature space from source only, our STDA and MTDA models. In (a) and
(b), the representations of different categories on different domains are mapped to 2-D space via the
t-SNE toolbox.

Figure 3: Effect of the image translation quality on domain adaptive semantic segmentation. The
x-axis indicates the training stages of image translation model, and the y-axis is the performance of
domain adaptation using the latent data from different image translation models.

A.2 Contrastive Analysis on t-SNE Visualization Results32

Following [3, 17], we use the t-SNE [18] to map the high-dimensional features learned from different33

models to a 2-D space shown in Figure 2. From the results, we have the following observations: (1)34

The feature distributions of different categories are better distinguished in our STDA and MTDA35

than that in source only model. Compared to the source only model, our STDA and MTDA learn36

more discriminative representations for different categories, yielding more accurate predictions for37

semantic segmentation. (2) The feature distributions of different domains are better aligned in38

MTDA than that in STDA. Compared to STDA, our MTDA enforces the alignment of domain-level39

representations during outer-level optimization, yields more generalized domain-invariant features.40

A.3 Study the Effect of Image Translation on Domain Adaptation41

We conduct an experiment to study the effect of image-to-image translation model on domain42

adaptation. For different image translation methods, the performance of image translation is hard43

to evaluate by a standard metric. However, for a specific image translation method (e.g. the PCE44

model [15] used in our method), the translation performance is assumed to improve over training.45

In Figure 3, we provide the performance of domain adaptation at different training phase of PCE,46

where the baseline method directly performs domain adaptation without meta-learning on the pair of47

“latent→target”.48

From the results in Figure 3, we have two observations: (1) With the training of image translation49

continues, the performance of image translation becomes better, promoting the performance of50
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different domain adaptation methods. (2) The performance gain of our method compared to baseline51

model is consistent, demonstrating the robustness of our method that utilizes augmented latent images52

from different image translation models.53

A.4 Discussion54

The limitations of our proposed method lie in the following two aspects: (1) Although the inference55

time of our method is similar to previous works when using the same backbone network, our method56

costs more time to train the meta-learning framework (roughly takes 8 hours for each epoch during57

the STDA training). (2) As discussed in Section A.3, different image translation methods affects the58

performance of domain adaptation, and thus we rely on a strong image translation method to achieve59

good performance.60

To reproduce our main experimental results, we release the code at: Code link. The experimental61

environments are listed as follows:62

• Ubuntu 16.04 environment (Python 3.6, CUDA10.0, CuDNN7)63

• PyTorch=1.2.0 installed following the official instructions (https://pytorch.org)64

• Dependencies: pip install opencv-python/tqdm/yacs>=0.1.565
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