
A Proof of Proposition 1

LetM+ be a BAMDP. Then:
CVaRα(GM

+

π ) = min
δ:T→R≥0

ξ∈Ξ

E
[
G
M+

δ,ξ
π

]
, s.t. (14)

0 ≤ δ(Tp)ξp(s0, a0, s1)ξp(s1, a1, s2) · · · ξp(sH-1, aH-1, sH) ≤ 1

α
,

∀ Tp ∈ T , ∀(s0, a0, s1, a1, . . . , sH) ∈ HH .

Proof : We denote by PM+

π (hH) the probability of history hH in BAMDPM+, under policy π. This
probability can be expressed as

PM
+

π (hH) = T+
(
(s0, h0), π(h0), (s1, h1)

)
T+
(
(s1, h1), π(h1), (s2, h2)

)
. . . T+

(
(sH-1, hH-1), π(hH-1), (sH , hH)

)
.

(15)

By substituting in the transition function for the BAMDP from Equation 7 we have

PM
+

π (hH) =

∫
T

T (s0, π(h0), s1)P(T |h0)dT ·
∫
T

T (s1, π(h1), s2)P(T |h1)dT . . .∫
T

T (sH-1, π(hH-1), sH)P(T |hH−1)dT. (16)

Bayes’ rule states that

P(T |h1) =
T (s0, π(h0), s1) · P(T |h0)∫

T ′
T ′(s0, π(h0), s1) · P(T ′|h0)dT ′

. (17)

Substituting Bayes’ posterior update into Equation 16 we have

PM
+

π (hH) =

∫
T

T (s0, π(h0), s1)P(T |h0)dT ·
∫
T

T (s1, π(h1), s2)
T (s0, π(h0), s1) · P(T |h0)∫

T ′
T ′(s0, π(h0), s1) · P(T ′|h0)dT ′

dT . . .∫
T

T (sH-1, π(hH-1), sH)P(T |hH−1)dT =

∫
T

T (s0, π(h0), s1) ·T (s1, π(h1), s2) ·P(T |h0)dT . . .∫
T

T (sH-1, π(hH-1), sH)P(T |hH−1)dT. (18)

Repeating this process of substitution and cancellation we get

PM
+

π (hH) =

[∫
T

T (s0, π(h0), s1) · T (s1, π(h1), s2) . . . T (sH-1, π(hH-1), sH) · P(T |h0)dT

]
.

(19)

Define T to be the support of P(T |h0), and let Tp ∈ T be a plausible transition function. Now
consider a perturbation of the prior distribution over transition functions δ : T → R≥0 such
that

∫
Tp
δ(Tp)P(Tp|h0)dTp = 1. Additionally, for Tp ∈ T , consider a perturbation of Tp, ξp :

S × A × S → R≥0 such that
∑
s′∈S ξp(s, a, s

′) · Tp(s, a, s′) = 1 ∀s, a. We denote the set of all
possible perturbations of Tp as Ξp, and the set of all perturbations over T as Ξ = ×Tp∈T Ξp. For
BAMDP M+, δ : T → R≥0, and ξ ∈ Ξ, we define M+

δ,ξ as the BAMDP, obtained from M+,
with perturbed prior distribution Pδ(Tp|h0) = δ(Tp) · P(Tp|h0) and perturbed transition functions
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T ξp (s, a, s′) = ξp(s, a, s
′) · Tp(s, a, s′). We denote by P

M+
δ,ξ

π (hH) the probability of hH in the
perturbed BAMDP,M+

δ,ξ, which can be expressed as follows

P
M+

δ,ξ
π (hH) =

[∫
Tp

T ξp (s0, π(h0), s1)·T ξp (s1, π(h1), s2)) . . . T ξp (sH-1, π(hH-1), sH)·Pδ(Tp|h0)dTp

]

=

[∫
Tp

ξp(s0, π(h0), s1) · Tp(s0, π(h0), s1) · ξp(s1, π(h1), s2) · Tp(s1, π(h1), s2)) . . .

· ξp(sH-1, π(hH-1), sH) · Tp(sH-1, π(hH-1), sH) · δ(Tp) · P(Tp|h0)dTp

]

=

[∫
Tp

ξp(s0, π(h0), s1) · ξp(s1, π(h1), s2) . . . ξp(sH-1, π(hH-1), sH) · δ(Tp)·

Tp(s0, π(h0), s1) · Tp(s1, π(h1), s2)) . . . Tp(sH-1, π(hH-1), sH) · P(Tp|h0)dTp

]
(20)

Let κδ,ξ(hH) = P
M+
δ,ξ

π (hH)

PM+
π (hH)

denote the total perturbation to the probability of any path. Provided that
the perturbations satisfy the condition

0 ≤ δ(Tp)ξp(s0, a0, s1)ξp(s1, a1, s2) · · · ξp(sH-1, aH-1, sH) ≤ 1

α
,

∀ Tp ∈ T , ∀(s0, a0, s1, a1, . . . , sH) ∈ HH ,

we observe from Equation 20 that the perturbation to the probability of any path is bounded by

0 ≤ κδ,ξ(hH) ≤ 1

α
. (21)

The expected value of the perturbation to the probability of any path is

E[κδ,ξ(hH)] =
∑

hH∈HH

[
PM

+

π (hH) · κδ,ξ(hH)
]

=
∑

hH∈HH

[
PM

+

π (hH)
P
M+

δ,ξ
π (hH)

PM+

π (hH)

]
=

∑
hH∈HH

[
P
M+

δ,ξ
π (hH)

]
= 1, (22)

where the last equality holds because the conditions
∑
s′∈S ξp(s, a, s

′) ·Tp(s, a, s′) = 1 ∀s, a, p and∫
Tp
δ(Tp)P(Tp|h0)dTp = 1 ensure that the distribution over paths in the perturbed BAMDP,M+

δ,ξ,
is a valid probability distribution. Therefore,

min
δ:T→R≥0

ξ∈Ξ

E
[
G
M+

δ,ξ
π

]
= min
δ:T→R≥0

ξ∈Ξ

∑
hH

[
P
M+

δ,ξ
π (hH) · r̃(hH)

]
=

min
κδ,ξ, s.t.

0≤κδ,ξ(hH)≤ 1
α

E[κδ,ξ(hH)]=1

∑
hH

[
PM

+

π (hH) · κδ,ξ(hH) · r̃(hH)
]

= CVaRα(GM
+

π ) (23)

where r̃(hH) indicates the total sum of rewards for history hH , and the last equality holds from the
CVaR dual representation theorem stated in Equations 2 and 3 [34, 37]. �
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B Proof of Proposition 2

Formulation of CVaR optimisation in BAMDPs as a stochastic game.

max
π∈ΠM+

CVaRα(GM
+

π ) = max
π∈ΠG+

min
σ∈ΣG+

E
[
GG

+

(π,σ)

]
. (24)

Proof : Proposition 2 directly extends Proposition 1 in [8] to BAMDPs. Let PM+

π (hH) denote the
probability of history hH in BAMDPM+ under policy π as defined in Equation 15. We denote by
PG+

π,σ(hH) the probability of history hH by following policy π and adversary perturbation policy σ in
BA-CVaR-SG, G+. This probability can be expressed as

PG
+

π,σ(hH) = T+
(
(s0, h0), π(h0), (s1, h1)

)
·ξ
(
(s0, h0), π(h0), s1

)
·T+

(
(s1, h1), π(h1), (s2, h2)

)
·ξ
(
(s1, h1), π(h1), s2

)
. . . T+

(
(sH-1, hH-1), π(hH-1), (sH , hH)

)
· ξ
(
(sH-1, hH-1), π(hH-1), sH

)
, (25)

where ξ
(
(s, h), a, s′

)
indicates the perturbation applied by σ for successor state s′ after action a is

executed in augmented state (s, h).

Let κσ(hH) denote the total perturbation by the adversary to the probability of any history in the
BAMDP,

κσ(hH) =
PG+

π,σ(hH)

PM+

π (hH)
= ξ
(
(s0, h0), π(h0), s1

)
·ξ
(
(s1, h1), π(h1), s2

)
. . . ξ

(
(sH-1, hH-1), π(hH-1), sH

)
.

(26)

By the definition of the admissible adversary perturbations in Equation 11 the perturbation to the
probability of any path is bounded by

0 ≤ κσ(hH) ≤ 1

α
. (27)

The expected value of the perturbation to the probability of any path is

E[κσ(hH)] =
∑

hH∈HH

[
PM

+

π (hH) · κσ(hH)
]

=
∑

hH∈HH

[
PM

+

π (hH)
PG+

π,σ(hH)

PM+

π (hH)

]
=

∑
hH∈HH

[
PG

+

π,σ(hH)
]

= 1, (28)

where the last equality holds because Equation 11 ensures that the perturbed transition probabilities
are a valid probability distribution. Therefore, the perturbed distribution over histories is also a valid
probability distribution. Therefore,

max
π∈ΠG+

min
σ∈ΣG+

E
[
GG

+

(π,σ)

]
= max
π∈ΠG+

min
σ∈ΣG+

∑
hH∈HH

[
PG

+

π,σ(hH) · r̃(hH)
]

=

max
π∈ΠG+

min
κσ, s.t.

0≤κσ(hH)≤ 1
α

E[κσ(hH)]=1

∑
hH

[
PM

+

π (hH) · κσ(hH) · r̃(hH)
]

= max
π∈ΠG+

CVaRα(GM
+

π ). (29)

where r̃(hH) indicates the total sum of rewards for history hH , and the last equality holds from the
CVaR dual representation theorem stated in Equations 2 and 3 [34, 37]. �
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C Proof of Proposition 3

Let δ ∈ (0, 1). Provided that cbo is chosen appropriately (details in the appendix), as the number of
perturbations expanded approaches∞, a perturbation within any ε > 0 of the optimal perturbation
will be expanded by the Bayesian optimisation procedure with probability ≥ 1− δ.

Proof : Consider an adversary decision node, v, associated with augmented state (s, ha, y) in the BA-
CVaR-SG. Let Q((s, ha, y), ξ) denote the true minimax optimal value of applying adversary pertur-
bation ξ at augmented state (s, ha, y) in the BA-CVaR-SG. We begin by proving that Q((s, ha, y), ξ)
is continuous with respect to ξ. Define a function d : S → R, such that ξ + d produces a valid
adversary perturbation. We can write Q((s, ha, y), ξ + d) as a sum over successor states

Q((s, ha, y), ξ+d) =
∑
s′

(ξ(s′) +d(s′)) ·T+((s, h), a, (s′, has′)) ·V (s′, has′, y · (ξ(s′) +d(s′))),

(30)

where V (s, h, y) denotes the optimal expected value in the BA-CVaR-SG at augmented state (s, h, y).
Because V (s, h, y) equals the CVaR at confidence level y when starting from (s, h), and CVaR is
continuous with respect to the confidence level [34], we have that

lim
(d(s1),...,d(s|S|))→(0,...,0)

Q((s, ha, y), ξ+d) =
∑
s′

ξ(s′)·T+((s, h), a, (s′, has′))·V (s′, has′, y·ξ(s′))

= Q((s, ha, y), ξ). (31)

Therefore, Q((s, ha, y), ξ) is continuous with respect to ξ. Now, consider the Gaussian kernel which
we use for Bayesian optimisation, k : Ξ×Ξ→ R, where Ξ is the compact set of admissible adversary
actions according to Equation 11

k(ξ, ξ′) = exp
(
− ||ξ − ξ

′||2

2l2

)
. (32)

Because the Gaussian kernel is a “universal” kernel [23], the reproducing kernel Hilbert space
(RKHS),Hk, corresponding to kernel k is dense in C(Ξ), the set of real-valued continuous functions
on Ξ. Because Q((s, ha, y), ξ) is continuous with ξ, Q((s, ha, y), ξ) belongs to the RKHS of k.
Because the true underlying function that we are optimising belongs to the RKHS of the kernel,
Theorem 3 from [41] applies.

Consider minimising the true underlying functionQ((s, ha, y), ξ) by using GP Bayesian optimisation
to decide the next adversary perturbation ξ ∈ Ξ to sample. Our prior is GP (0, k(ξ, ξ′)), and noise
model N(0, σ2

n). For each perturbation expanded so far at v, ξ ∈ Ξ̃(v), we assume that the Q
value of ξ estimated using MCTS, Q̂((s, ha, y), ξ), is a noisy estimate of the true optimal Q value,
i.e. Q̂((s, ha, y), ξ) = Q((s, ha, y), ξ) + εn, where the noise is bounded by εn < σn. For each
round, t = 1, 2, . . ., we choose the new perturbation to be expanded using a lower confidence bound,
ξt = arg minξ[µt−1(ξ) − cboσt−1(ξ)], where µt−1(ξ), and σt−1(ξ) are the mean and standard
deviation of the GP posterior distribution after performing Bayesian updates using the Q-value
estimates, Q̂((s, ha, y), ξ), up to t− 1.

We define the cumulative regret after T rounds of expanding new perturbation actions as

RT =

T∑
t=1

Q((s, ha, y), ξt)−Q((s, ha, y), ξ∗), (33)

where ξ∗ is the optimal adversary perturbation at (s, ha, y). Theorem 3 from [41] states the following.
Let δ ∈ (0, 1). Assume ||Q((s, ha, y), ·)||2k ≤ B, where ||f ||k denotes the RKHS norm of f
induced by k. Set the exploration parameter in the lower confidence bound acquisition function
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to cbo =
√

2B + 300γt log(t/δ)3, where γt is the maximum information gain at round t, which is
defined and bounded in [41]. Then the following holds

Pr
{
RT ≤

√
C1TβT γT ∀T ≥ 1

}
≥ 1− δ, (34)

where C1 = 8/ log(1 + σ2
n). Observe that Equation 34 implies that with probability of at least

1 − δ the cumulative regret is sublinear, i.e. limT→∞RT /T = 0. Now we complete the proof
via contradiction. Consider any ε > 0. Suppose that with probability greater than δ, limT→∞
Q((s, ha, y), ξT ) ≥ Q((s, ha, y), ξ∗) + ε. If this is the case, then with probability greater than δ the
regret will be linear with T , contradicting Theorem 3 from [41]. This completes the proof that for
any ε > 0, limT→∞ Q((s, ha, y), ξT ) < Q((s, ha, y), ξ∗) + ε with probability of at least 1− δ. �

In our experiments, we used cbo = 2 as described in Section 5. The GP parameters that used in the
experiments are described in Section D.2.

D Additional Experiment Details

D.1 Autonomous Car Navigation Domain

An autonomous car must navigate along roads to a destination as illustrated in Figure 1 by choosing
from actions {up, down, left, right}. There are four types of roads: {highway, main road, street, lane}
with different transition duration characteristics. The transition duration distribution for each type of
road is unknown. Instead, the prior belief over the transition duration distribution for each road type
is modelled by a Dirichlet distribution. Thus, the belief is represented by four Dirichlet distributions.
Upon traversing each section of road, the agent receives reward −time where time is the transition
duration for traversing that section of road. Upon reaching the destination, the agent receives a reward
of 80.

For each type of road, it is assumed that there are three possible outcomes for the transition to the
next junction, {fast, medium, slow}. For each type of road, the prior parameters for the Dirichlet
distribution are {αfast = 1, αmedium = 1, αslow = 0.4}. The transition duration associated with
each outcome varies between each of the road types as follows:

• highway: {timefast = 1, timemedium = 2, timeslow = 18}

• main road: {timefast = 2, timemedium = 4, timeslow = 13}

• street: {timefast = 4, timemedium = 5, timeslow = 11}

• lane: {timefast = 7, timemedium = 7, timeslow = 8}

The prior over transition duration distributions implies a tradeoff between risk and expected reward.
According to the prior, the highway road type is the fastest in expectation, but there is a risk of
incurring very long durations. The lane road type is the slowest in expectation, but there is no
possibility of very long durations. The main road and street types are in between these two extremes.

After executing a transition along a road and receiving reward −time, the agent updates the Dirichlet
distribution associated with that road type, refining its belief over the transition duration distribution
for that road type.

D.2 Gaussian Process Details

We found that optimising the GP hyperparameters online at each node was overly computationally
demanding. Instead, for all experiments we set the observation noise to σ2

n = 1 and the length scale
to l = 1

5y , where y is the state factor representing the adversary budget. These parameters were found
to work well empirically.

The prior mean for the GP was set to zero, which is optimistic for the minimising adversary. The
Shogun Machine Learning toolbox [40] was used for GP regression.
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D.3 Policy Gradient Method Details

The method CVaR BAMDP PG applies the CVaR gradient policy update from [45] with the vectorised
belief representation for BAMDPs with linear function approximation proposed in ([15], Section 3.3).
The function approximation enables generalisation between similar beliefs.

Following the belief representation proposed by [15], we draw a set M of MDP samples from the root
belief. For each sample, Tm ∈M , we associate a particle weight zm(h). The vector z(h) containing
the particle weights is a finite-dimensional approximate representation of the belief. The weights
are initialised to be zm(h0) = 1

|M | . During each simulation, as transitions are observed the particle
weights are updated, zm(has′) ∝ Tm(s, a, s′)zm(h). We combine the belief feature vector, z(h),
with a feature vector representing the state-action pair, φ(s, a), in a bilinear form

F (h, s, a,W) = z(h)TWφ(s, a) (35)

where W is a learnable parameter matrix. As we address problems with finite state and action spaces,
for the state-action feature vector, φ(s, a), we chose to use a binary feature for each state-action pair.
The action weighting, F (h, s, a,W) defines a softmax stochastic action selection policy

f(a|h, s,W) =
exp(F (h, s, a,W))∑
a′ exp(F (h, s, a′,W))

(36)

where f(a|h, s,W) is the probability of choosing action a at history h, state s, and current parameter
matrix W. To perform a simulation, we sample a model from the prior belief using root sampling [15]
and simulate an episode by choosing actions according to f(a|h, s,W).

After performing a minibatch of simulations, we update the parameter matrix

W←W + λ∇CVaR (37)

where∇CVaR is the Monte Carlo estimate of the CVaR gradient from ([45], Equation 6) and λ is the
learning rate.

We use |M | = 25, as this number of particles performed well in [15]. Following [45], we used
a minibatch size of 1000 simulations for each update. To initialise the parameter matrix, we first
computed the policy for the CVaR VI Expected MDP method. We denote by W(s, a,m) the parameter
matrix entry associated with s, a,m. We set W(s, a,m) = 2 for all m if a is chosen at s by CVaR VI
Expected MDP, and W(s, a,m) = 1 for all m otherwise.

E Additional Results

E.1 Comparison with Random Action Expansion

Table 2 includes results for RA-BAMCP when the actions for the adversary are expanded randomly,
rather than using Bayesian optimisation. For these results with random action expansions, we used
double the number of trials that were used with Bayesian optimisation: 200,000 trials at the root node,
and 50,000 trials per step thereafter. This means that the total computational resources used with and
without Bayesian optimisation was comparable. Even with a comparable amount of computation
time, RA-BAMCP with random action expansions performed worse than RA-BAMCP using Bayesian
optimisation to select actions to expand.
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Method Time (s) CVaR0.03 CVaR0.2 Expected Value
RA-BAMCP (Random expansions, α= 0.03) 29.2 (0.1) 8.24 (0.29) 9.94 (0.06) 10.73 (0.05)
RA-BAMCP (Random expansions, α= 0.2) 72.6 (0.1) 0.0 (0.0) 18.39 (0.99) 54.29 (0.53)

(a) Betting Game domain

Method Time (s) CVaR0.03 CVaR0.2 Expected Value
RA-BAMCP (Random expansions, α= 0.03) 214.7 (0.1) 16.06 (0.35) 24.63 (0.25) 36.92 (0.20)
RA-BAMCP (Random expansions, α= 0.2) 221.5 (0.2) 12.05 (0.46) 26.84 (0.38) 43.15 (0.26)

(b) Autonomous Car Navigation domain

Table 2: Results from evaluating the returns over 2000 episodes for RA-BAMCP using random action
expansions for the adversary. Brackets indicate standard error of the mean. Time indicates average
total computation time per episode to perform simulations.

E.2 Return Distribution in Betting Game

The histograms in Figure 3 show the return distributions for RA-BAMCP and BAMCP in the Betting
Game domain.

Figure 3: Histogram of returns received in the Betting Game domain.

E.3 Hyperparameter Tuning for Policy Gradient Method

Table 3 presents results for CVaR BAMDP PG after 2 × 106 training simulations using a range of
learning rates. A learning rate of 0.001 performed the best across both domains and α values that we
tested on. A learning rate of λ = 0.01 performed worse on the betting game with α = 0.2, and a
learning rate of λ = 0.0001 performed worse across both domains and confidence levels. Therefore,
the results presented in the main body of the paper use a learning rate of λ = 0.001. Training curves
using this learning rate can be found in Section E.4.
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Method CVaR0.03 CVaR0.2 Expected Value
CVaR BAMDP PG (λ = 0.01, α = 0.03) 3.00 (0.0) 10.86 (0.33) 27.31 (0.24)
CVaR BAMDP PG (λ = 0.001, α = 0.03) 2.90 (0.06) 10.57 (0.33) 27.34 (0.24)
CVaR BAMDP PG (λ = 0.0001, α = 0.03) 2.31 (0.14) 8.74 (0.28) 26.19 (0.25)

CVaR BAMDP PG (λ = 0.01, α = 0.2) 0.0 (0.0) 18.03 (0.91) 35.73 (0.27)
CVaR BAMDP PG (λ = 0.001, α = 0.2) 0.00 (0.0) 19.85 (0.97) 46.65 (0.37)
CVaR BAMDP PG (λ = 0.0001, α = 0.2) 0.0 (0.0) 14.72 (0.76) 43.14 (0.53)

(a) Betting Game domain

Method CVaR0.03 CVaR0.2 Expected Value
CVaR BAMDP PG (Learning rate= 0.01, α = 0.03) 24.0 (0.0) 25.02 (0.04) 28.97 (0.05)
CVaR BAMDP PG (Learning rate= 0.001, α = 0.03) 23.92 (0.08) 25.38 (0.05) 28.97 (0.05)
CVaR BAMDP PG (Learning rate= 0.0001, α = 0.03) 20.11 (2.12) 24.86 (0.34) 29.00 (0.09)

CVaR BAMDP PG (Learning rate= 0.01, α = 0.2) 3.7 (0.97) 24.88 (0.60) 51.78 (0.36)
CVaR BAMDP PG (Learning rate= 0.001, α = 0.2) 10.05 (0.74) 24.70 (0.39) 49.67 (0.36)
CVaR BAMDP PG (Learning rate= 0.0001, α = 0.2) -13.25 (2.78) 19.94 (0.91) 51.19 (0.42)

(b) Autonomous Car Navigation domain

Table 3: Results from evaluating the returns over 2000 episodes for CVaR BAMDP PG after training
for 2× 106 simulations using different learning rates. Brackets indicate standard error of the mean.

E.4 Training Curves for Policy Gradient Method

The training curves presented Figures 4-7 illustrate the performance of the policy throughout training
using the policy gradient approach, with the learning rate set to λ = 0.001. To generate the curves,
after every 20,000 training simulations the policy is executed for 2,000 episodes and the CVaR is
evaluated based on these episodes.

Figure 4: Training curve for policy gradient
optimisation in the betting game domain with
α = 0.03.

Figure 5: Training curve for policy gradient
optimisation in the betting game domain with
α = 0.2.

Figure 6: Training curve for policy gradient
optimisation in the navigation domain with α =
0.03.

Figure 7: Training curve for policy gradient
optimisation in the navigation domain with α =
0.2.
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