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Abstract

In Vision-and-Language Navigation (VLN) task, an agent is asked to navigate
inside 3D indoor environments following given instructions. Cross-modal align-
ment is one of the most critical challenges in VLN because the predicted trajec-
tory needs to match the given instruction accurately. In this paper, we address
the cross-modal alignment challenge from the perspective of fine-grain. Firstly, to
alleviate weak cross-modal alignment supervision from coarse-grained data, we
introduce a human-annotated fine-grained VLN dataset, namely Landmark-RxR.
Secondly, to further enhance local cross-modal alignment under fine-grained su-
pervision, we investigate the focal-oriented rewards with soft and hard forms, by
focusing on the critical points sampled from fine-grained Landmark-RxR. More-
over, to fully evaluate the navigation process, we also propose a re-initialization
mechanism that makes metrics insensitive to difficult points, which can cause the
agent to deviate from the correct trajectories. Experimental results show that our
agent has superior navigation performance on Landmark-RxR, en-RxR and R2R.
Our dataset and code are available at https://github.com/hekj/Landmark-RxR.

1 Introduction
Vision-and-language navigation (VLN) is an important task about cross-modal intelligence and can
be applied to service and rescue robots. Different from other cross-modal tasks like image/video
captioning [1, 2] and visual question answering [3], where the agent only needs to understand fixed
images or videos, VLN agent has to learn and reason by dynamically interacting with the real envi-
ronment guided by human instructions. Since Anderson et al. [4] first introduced the VLN task with
the coarse-grained dataset Room-to-Room (R2R), great progresses in this direction have been made,
ranging from the sequence-to-sequence models [4] combined with cross-modal grounding modules
[5–8] to Transformer-based models [7, 9–12].

Cross-modal alignment is one of the most critical challenges in VLN as the predicted trajectory
needs to match the given instruction accurately. However, it is difficult for the agent to learn very
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accurate visual and textual modality alignment from coarse-grained data, i.e., only coarse-level cor-
respondences between global instructions and trajectories are annotated, without finer ones between
sub-instructions and sub-trajectories. Works mentioned above [4–8, 10–12] tried attending on spe-
cific parts of the instructions during navigation to help the agent better align salient visual con-
tents with the textual modality. But only coarse-grained data like R2R are not capable of providing
enough supervising signals of accurate cross-modal alignment. Some recent works such as Fine-
Grained R2R [13] and BabyWalk [14] also found this same issue and proposed fine-grained datasets
based on R2R. However, their datasets are generated by heuristic rules and are not precise enough,
which inevitably limit the navigation performance. Although Room-across-Room (RxR) dataset
[15] includes word-level alignment between each word and point in the trajectory, it lacks segmenta-
tion tags to split an instruction into sub-instructions with independent meanings and to figure out the
landmarks in a trajectory, namely the marked end points of sub-trajectories. Since words in the same
sub-instruction are highly correlated, these important correlations are lost because no sub-instruction
exists in RxR. It is the same for the sub-trajectories. As a result, there is also an absence of the corre-
lation between the words in a sub-instruction and the points in corresponding sub-trajectories, which
should be an important cross-modal alignment supervision signal.

In addition to the dataset annotation, designing better rewards during reinforcement learning is an-
other important issue on cross-modal alignment learning. Currently, reward shaping has been well
investigated in VLN based on coarse-grained data to align instructions and trajectories globally, but
pays little attention to enhance local cross-modal alignment. The goal-oriented reward simply [6]
uses the arrival signal and the reduced distance to the goal point as the reward, guiding agent to find
the global goal points. The fidelity-oriented rewards [16, 17] help agent improve the similarity be-
tween the predicted trajectory and demonstration trajectory globally by taking intermediate points as
external supervision. However, some of the points in the trajectory have more detailed descriptions
and are more helpful to navigation process, i.e., they can assist agent in knowing the visual scenes
around these specific points in the trajectories could be better aligned with certain parts of the in-
structions than the trivial points, where the alignment is in a local to local manner. These points are
called critical points in this paper. Thus, an emphasis on these critical points in the reward shaping
for better local cross-modal alignment is essential.

In this paper, we address the challenges above from the perspective of fine-grain. Firstly, based
on the English Guide part of RxR (en-RxR), we introduce a fine-grained dataset Landmark-RxR,
which is human-annotated, landmark-based, fine-grained and currently the largest scale. With the
groundtruth fine-grained data, experiments demonstrate that agent generalizes better to unseen en-
vironments and instructions with domain gap. This indicates that the fine-grained data help agent
to align textual and visual modalities better. Secondly, we propose two kinds of focal-oriented re-
wards that encourage local alignment between instructions and critical points. Since the landmarks
in Landmark-RxR naturally meet the requirements of critical points, we just sampled critical points
from the landmark set in Landmark-RxR. The focal-oriented rewards outperform the commonly
used goal-oriented reward and fidelity-oriented reward. We also propose the re-initialization mech-
anism to fully evaluate the navigation process in a way that is insensitive to difficult points, which
can cause the deviation from the correct trajectory. With the fine-grained data and focal-oriented
rewards, our agent shows superior navigation performance on Landmark-RxR, en-RxR and R2R.

2 Related Work

Vision-and-Language Navigation Anderson et al. [4] first introduced the simulated, photo-
realistic VLN task with a benchmark Room-to-Room (R2R) and several sequence-to-sequence base-
lines. Fried et al. [5] utilized the speaker-driven data and panoramic action space to improve naviga-
tion performance. Wang et al. [18] proposed a planned-ahead hybrid reinforcement learning model
with model-free and model-based reinforcement learning for better generalization. Tan et al. [19]
first trained agent with mixed imitation learning and reinforcement learning and used unseen triplets
generated by environment dropout method for fine-tuning then. Jain et al. [16] and Ilharco et al.
[17] proposed the fidelity-oriented rewards to ensure the similarity between predicted trajectories
and demonstration trajectories. Kurita et al. [20] combined generative and discriminative policy to
enhance the navigation ability from different aspects. An et al. [21] fused neighbor visual contexts
both globally and locally to get visual features with richer semantics. Huang et al. [22] defined
two in-domain auxiliary tasks for representation learning which benefit the downstream navigation
task. Li et al. [7] leveraged the large-scale pretrained language models BERT [23] and GPT [24]
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for powerful text representation. Hao et al. [10] pretrained and finetuned generic transformer-based
model in VLN environment and the pretrained model generalizes well to other two navigation tasks.
Majumdar et al. [11] demonstrated that pretrained on image-text pairs from the web, the transformer-
based model can perform on VLN task well after fine-tuning. Hong et al. [12] proposed a Recurrent
Vision-and-Language BERT to process time-dependent tasks like VLN efficiently.

Fine-Grained VLN Wang et al. [6] designed a cross-modal grounding module to infer which part
of the instructions to focus on. Ma et al. [8] introduced a self-monitoring agent with a visual-textual
co-grounding module to locate the required part in instructions and a progress monitor to reflect
navigation progress. Qi et al. [25] decoupled instructions into object-aware and action-aware parts
for more accurate action prediction. Zhu et al. [14] adopted a two-stage method for navigation. The
given instruction is first split into several sub-instructions named baby-steps according to heuristic
rules and then the baby-steps which are much easier to navigate are fed to the agent one by one during
validation. Similar to [14], Hong et al. [13] first segmented instruction into sub-instructions using
a heuristic method. Then the agent navigates following these easy sub-instructions sequentially
with a shifting module inferring whether current sub-instruction has been completed. Ku et al.
[15] explored utilizing spatially-temporally aligned annotations to supervise the textual and visual
attention weights but got very few performance improvements. Different from these works, we
propose a human-annotated, fine-grained dataset Landmark-RxR to alleviate the weak cross-modal
alignment supervision from the coarse-grained data. Our experiments is designed to demonstrate the
supervision from fine-grained and coarse-grained data can complement each other to improve the
cross-modal alignment ability of the model itself. In addition, two kinds of focal-oriented rewards
using fine-grained supervision signals are proposed to enhance the local cross-modal alignment by
paying more attention to critical points which benefit the navigation process more.

3 Landmark-RxR Dataset

Our Landmark-RxR is built based on the English Guide split of RxR (en-RxR). It contains sub-
instruction and sub-trajectory pairs (sub pairs) split from instructions in en-RxR. To facilitate the
collection of sub pairs, we develop a 3D web-based collection tool. It allows the annotator to mark
the landmarks, namely the end points of sub-trajectories, in trajectories and split out the correspond-
ing sub-instructions. During annotation, the annotators can move between the discrete points or
change heading and evaluation continuously by mouse click, like what the agent will do in the VLN
task. In the following, we will describe the data collection and dataset analysis of Landmark-RxR.

3.1 Data Collection
The annotators are asked to read the complete instructions and then explore the 3D environments
following corresponding trajectories. If landmarks are found, annotators need to mark them and
split out the corresponding sub-instructions by interacting with the collection tool. As illustrated
in Figure 1 (a), the complete instruction and complete trajectory pair (complete pair) are sampled
from en-RxR. In Figure 1 (b), three landmarks in the complete trajectory are marked and the cor-
responding sub-instructions are also split out by annotators. These three sub pairs will be included
in our Landmark-RxR dataset. Five principles are proposed to ensure the annotation process more
standardized.

Matching Principle: The sub-trajectory should match the sub-instruction accurately.

Independent Meaning Principle: Each sub-instruction expresses an independent meaning.

Position Change Principle: The end point of each sub-trajectory should differ from the start point.

Clear End Point Principle: The end point should be described clearly in a sub-instruction. For
example, the sub-instruction go toward the door has a clear description of end point door, but no
end point is described in the sub-instruction go forward.

Minimum Granularity Principle: The sub-instruction and sub-trajectory pair should be the mini-
mum granularity which means it can not be split anymore.

After an annotator finishes the annotations, another annotator will verify the annotations again and
modify the inaccurate part to ensure the annotations satisfy the five principles. For some mistakes in
RxR, we also correct them in Landmark-RxR. Totally 30 annotators participated in the annotation
task, contributing about 2,700 hours.
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You are facing towards a 

bed, slightly turn right go 

forward on to the carpet. 

Go forward and exit the 

room passing through the 

opened door. 

Slightly turn left and go forward, 

slightly turn right and go downstairs 

until you reach the last step of the stairs. 

… … …

Landmark#1 Landmark#2 Landmark#3

(b)

You are facing towards a bed, slightly turn right go 

forward on to the carpet. Go forward and exit the 

room passing through the opened door. Slightly turn 

left and go forward, slightly turn right and go 

downstairs until you reach the last step of the stairs. 

(a)

Figure 1: Three landmarks are marked in the complete trajectory and the corresponding sub-
instructions are split out from the complete instruction. (a) An example of complete instruction
and complete trajectory pair in en-RxR. (b) An example of three sub-instruction and sub-trajectory
pairs split out from the complete instruction and complete trajectory pair. Each sub-instruction and
sub-trajectory pair will be included in Landmark-RxR.

3.2 Dataset Analysis

Table 1: Statistics on R2R, RxR, en-RxR and our Landmark-RxR. Edge means the number of edges
each trajectory contains on average.

Dataset Edge Instruction Trajectory
Train Validation Seen Validation Unseen Test Total

R2R [4] 5 14,025 1,020 2,349 4,173 21,567 7,189
RxR [15] 8 79,467 8,813 13,625 24,1641 126,069 16,522

en-RxR [15] 8 26,464 2,939 4,551 - 33,954 11,321
Landmark-RxR 1.6 133,602 13,591 19,547 - 166,740 46,645

Table 1 gives statistics on R2R, RxR, en-RxR and Landmark-RxR. The total number of sub-
instructions from Landmark-RxR is 166,740, which contains 133,602 sub-instructions in train split,
13,591 sub-instructions in validation seen split, and 19,547 sub-instructions in validation unseen
split. The average number of edges in a sub-trajectory is 1.6 with 21 words in the corresponding
sub-instruction on average. The number of sub-trajectories contained in Landmark-RxR is 46,645.
Landmark-RxR has the largest scale of instructions and trajectories and the minimum granularity
among current human-annotated datasets. The fine-grained annotations are essential to effective
cross-modal alignment learning and more accurate evaluation. In addition, because of the minimum
granularity principle, the dataset can be easily expanded to a larger scale with different granularities
by recombining the sub pairs.

4 Re-initialization Mechanism and Evaluation Metrics
4.1 Re-initialization Mechanism
An agent needs to navigate following the instructions strictly. So it is essential to evaluate the
fidelity between predicted trajectories and the instructions exactly. Current metrics like Coverage
weighted by Length Score (CLS) [16] and the normalized Dynamic Time Warping (nDTW) [17] try
to obtain the fidelity by computing the similarity between predicted trajectory and the demonstration

1 Note that the number of public instructions in RxR test split is 12,469.
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B

A

Figure 2: Agent deviates from the demonstration trajectory after encountering the difficult point.
The green points indicate points in the predicted trajectory. The light blue points indicate points
in the demonstration trajectory. The red triangle represents a difficult point in the demonstration
trajectory.

Suc.#2

Suc.#1

Suc.#2

Fail.#1

Suc.#1 Suc.#3

Suc.#4

Suc.#1

(a) Initialize

(c) Re-initialize (d) Finish

(b) Fail

Suc.#2

Fail.#1

Fail.#1

Figure 3: Re-initialization Mechanism. The green points mean the points in the predicted trajec-
tory. The light green points mean the predicted trajectory before the last re-initialization and dark
green points mean the predicted trajectory after the last re-initialization. The light blue points mean
points in the demonstration trajectory. The orange points mean the landmarks in the demonstration
trajectory. The red point represents the failure point where to re-initialize the agent.

trajectory. However, the nDTW and CLS scores are sensitive to the positions of difficult points, and
have a deviation as a result when evaluating the navigation ability. As illustrated in Figure 2, the
agent is initialized at point A and ready to follow the given instruction navigating to point B. Then
during navigation, the agent deviates from demonstration trajectory seriously after encountering the
difficult point and can only get a low fidelity score. The difficult point indicates the point where
next action is hard to choose because of the difficult visual scene, e.g., cluttered and similar objects
in Figure 2, or ambiguous expressions in an instruction. However, for the same agent navigating
from point B to point A, it is easy to finish the majority of the trajectory and get a higher fidelity
score because the difficult point is just near the end. The distributions of difficult points in trajectory
significantly impact current fidelity metrics, especially for the long trajectories.

Based on the landmark annotations in Landmark-RxR, we introduce the re-initialization mechanism
to alleviate the influence of difficult points sensitivity of the fidelity metrics. We define a trajectory as
T = [ST1, ST2, ..., ST|T |], where STi = [Pi1, Pi2, ..., Li], and corresponding instruction is defined
as I = [SI1, SI2, ..., SI|I|]. Pij means the jth point in the ith sub-trajectory STi. Li means the ith

landmark in the trajectory, in other words, the end point of the ith sub-trajectory and SIi means the
ith sub-instruction.
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As illustrated in Figure 3, if the agent reaches within 3 meters, which is a fixed threshold for success
metric defined in [4], of the landmark Li (i < |T |), or the agent can stop within 3 meters of the
landmark L|T | in π (π is set to 10 in this paper) steps from the last landmark, the navigation to
landmark Li is successful. The failure is defined that the agent fails to get within 3 meters of the
landmark Li (i < |T |) in π steps from the last landmark, or stops 3 meters away from the landmark
L|T |. If the agent fails in navigating to landmark Li (i < |T |), we re-initialize the agent at landmark
Li as the new start point, and reset the given instruction as Ireset = [SIi+1, ..., SI|I|].

Since the re-initialization mechanism can correct serious deviations in time, for a complete trajectory,
the averaged fidelity score of its sub-trajectories will be much less insensitive to the difficult points
and can better reflect the navigation ability no matter where the difficult points locate.

4.2 Evaluation Metrics
An agent should have high navigation accuracy and robustness, which means its trajectories should
match the instructions accurately and the agent should make as few mistakes as possible during nav-
igation. Based on the re-initialization mechanism which could effectively alleviate the influence of
difficult points when using fidelity metrics, Sub-Trajectory Accuracy (SA) and Success weighted by
Sub-Trajectory Accuracy (SSA) are defined to measure the navigation accuracy, and Loss Number
(LN) is defined to measure navigation robustness.

Sub-Trajectory Accuracy This metric is defined as normalized Dynamic Time Warping (nDTW)
[17] of the predicted sub-trajectory.

Success weighted by Sub-Trajectory Accuracy This metric is defined as normalized Dynamic
Time Warping (SDTW) [17] of the predicted sub-trajectory.

Loss Number Every time agent fails to navigate to the next landmark, Loss Number will add one.
The total numbers of landmarks in validation seen split and validation unseen split of Landmark-RxR
are 13,591 and 19,547 respectively.

5 Our Method
We implement our baseline with an encoder-decoder architecture similar to the RCM [6] imple-
mented in [14]. Please refer to supplemental material for more details about the baseline.

To enhance the local alignment between instructions and corresponding critical points, we propose
two kinds of focal-oriented rewards benefiting from the fine-grained supervision in Landmark-RxR.
The focal-oriented rewards emphasize the critical points in trajectories, which are more helpful for
an agent to identify navigation directions because of their more detailed descriptions in instructions.
Existing rewards are commonly based on either fidelity metric nDTW 2 or success metric SR. To
fully demonstrate the key role of critical points in reward shaping, we choose to modify these two
metrics to the focal-oriented rewards, namely soft focal-oriented reward and hard focal-oriented
reward respectively. Since the landmarks in Landmark-RxR naturally meet the requirements of
critical points, we sample the critical points for each trajectory from its landmark set annotated in
our fine-grained Landmark-RxR.

Soft focal-oriented reward In focal-oriented reward, all points in demonstration trajectories are
taken into consideration. We base soft focal-oriented reward on the nDTW metric, which is used to
identify the optimal alignment between predicted and demonstration trajectories in time order with
minimized cumulative distance. Then we add an importance factor λ to modify the nDTW metric.
The importance factor λ gives higher weight to the distances related to critical points, so it can bias
the predicted trajectories in a soft manner, making them closer to the demonstration trajectories at
positions of critical points especially.

Rsoft
focal(R,Q) = exp(−

minWΣ(ik,jk)∈W d(rik , qjk) · λik

|R| · dth
) (1)

λik =

{
10, rik ∈ SR

1, others
(2)

2 CLS is less used than nDTW because it is order-invariant and not ideal in some scenarios as described in [17].
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where W is a warping of the predicted trajectory and demonstration trajectory defined in [17], d is
a function that calculates distance between the two given points, R = {r1, r2, ..., r|R|} means the
demonstration trajectory consisting of point ri, Q = {q1, q2, ..., q|Q|} means the predicted trajectory
consisting of point qi and SR = {C1, C2, ..., C|SR|} means the set of sampled critical point Ci in
demonstration trajectory. By contrast, the λ is fixed to 1 in fidelity-oriented reward. So in the soft
focal-oriented reward, the agent is penalized more once it fails to reach the critical points.

Hard focal-oriented reward In hard focal-oriented reward, only the sampled critical points are
considered in the final reward. If the agent succeeds in reaching the sampled critical points, the
reward is positive to encourage a series of decisions during navigation. Otherwise, the reward is set
as a negative value for penalization. The hard focal-oriented reward function is defined as:

Rhard
focal(R,Q) = ΣC∈SR

I(minq∈Qd(q, C) < dth) (3)

I(x) =
{

1, x is True
−1, x is False

(4)

The hard focal-oriented reward encourages the agent to reach critical points during navigation and
gives the agent more flexibility in exploring the trajectories between the critical points.

Policy gradient We get loss from the non-differentiable reward as Equation 5:

L(θ) = −Σtlogp(at|st, θ) · (Re(at, st)−Reavg) (5)

where at is the chosen action, st is the visual and textual state, θ is the parameters of the network,
p is the probability of choosing the action at, Re is the reward and Reavg is the averaged reward.
Then the gradients to the network parameters are computed as:

∇θL(θ) = −Σt(Re(at, st)−Reavg)∇θlogp(at|st, θ) (6)

6 Experiment
6.1 Setup

Data The training data involves four parts: the sub-instruction and sub-trajectory pairs (sub pairs)
from Landmark-RxR, the synthesized instruction and synthesized trajectory pairs (synthesized pairs)
which are augmented data obtained by concatenating several continuous sub pairs like [16], the
complete instruction and complete trajectory pairs (complete pairs) from en-RxR, and the instruction
and trajectory pairs from R2R. In validation phase, for en-RxR and R2R, the agent is validated based
on their validation splits directly. For validation in Landmark-RxR, the agent navigates based on the
complete instructions which is same to en-RxR when initialized in the beginning and the instructions
synthesized by unfinished sub-instructions after re-initialization.

Training policy We warm the agent up by imitation learning with student-forcing strategy. Then
we switch to reinforcement learning to learn a more generalizable policy to unseen environments.
During the reinforcement learning phase, we adopt the focal-oriented rewards and policy gradient
[26] to update parameters in the network. Model training consumes about 1,600 minutes at the stage
of imitation learning and 3,400 minutes at the stage of reinforcement learning on a single GTX3090
GPU.

Hyper parameters We use the visual feature from the ResNet [27] trained on ImageNet [28] and
adopt panoramic action space like [5]. The word embedding is initialized by GloVe300 [29]. The
importance factor λ in soft focal-oriented reward is set to 10. For the focal-oriented reward, we
sample the same number of critical points in each trajectory to regularize the range of the reward
value for each episode. Rsoft

focal and Rhard
focal both sample 2 critical points from landmark set in each

trajectory, which has the best trade-off between SR and Loss Number metrics empirically. The
maximum navigation step π allowed for each sub-trajectory is set to 10. The batch size is set to 100
and learning rate is 1×10−4. The total iterations are 100,000 for imitation learning and 20,000 for
reinforcement learning.
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Table 2: Multitask [15] results on R2R validation split. sub means the sub pairs from Landmark-
RxR. co means the complete pairs from en-RxR.

Validation Seen Validation Unseen

# R2R sub co nDTW↑ SDTW↑ SR↑ nDTW↑ SDTW↑ SR↑
1

√
56.7 44.0 53.9 31.2 19.1 33.0

2
√

44.6 23.6 31.1 35.1 15.0 21.6
3

√
49.7 34.0 43.7 32.4 15.8 23.6

4
√ √

65.3 54.5 63.0 34.3 22.4 33.1
5

√ √ √
65.7 55.6 66.6 39.5 27.0 38.4

6
√ √

63.4 53.1 64.1 40.3 27.5 40.1

Evaluation metrics To fully demonstrate the effectiveness of fine-grained data and the focal-
oriented rewards, for R2R and en-RxR datasets, we adopt Success Rate (SR), the percentage of stop-
ping within 3 meters of the final goal, normalized Dynamic Time Warping (nDTW), measuring the
fidelity between predicted trajectory and the demonstration trajectory, Success weighted by normal-
ized Dynamic Time Warping (SDTW), measuring the success rate and trajectory fidelity meanwhile.
For Landmark-RxR dataset, we adopt Sub-Trajectory Accuracy (SA) and Success weighted by Sub-
Trajectory Accuracy (SSA), difficult points insensitive metrics measuring the navigation accuracy,
and Loss Number (LN), a difficult points insensitive metric measuring the navigation robustness.

6.2 Results and Analysis

Fine-grained data contribute to instruction domain generalization Table 2 shows the perfor-
mance of model#4 which is trained on R2R and the complete pairs of en-RxR is equivalent to
model#1 which is only trained on R2R in unseen environments on SR metric. This indicates the
complete pairs in en-RxR have little help for the navigation task in R2R because of the instruction
domain gap, which is firstly found in [15]. Once we replace the complete pairs of en-RxR to sub
pairs of Landmark-RxR as training data, the SR of model#6 improves 7.1% in unseen environments
compared to model#1. The better instruction domain generalization indicates that the supervision
from the fine-grained data do well with the domain of R2R. Since our Landmark-RxR can be ex-
tended to different granularities easily due to the minimum granularity principle, it can also benefit
the generalization to different instruction domains.

Fine-grained data contribute to unseen environments generalization As shown in Table 3,
trained on synthesized pairs, model#8 outperforms model#7, model#9 and even model#12 in un-
seen environments on all metrics. It implies that fine-grained data with suitable granularity boost
the performance in unseen environments most.

Table 3 and Table 4 show that, when we couple the complete pairs and sub pairs as training data
(model#11), we see that SR improves 5.5%, and LN reduces 700 times with SSA improving 3.5%
meanwhile compared to model#9. Trained on the joint granularity of sub pairs, synthetic pairs
and complete pairs, model#13 outperforms models#7-12 on all metrics in unseen environments.
These indicate cross-modal alignment supervision from coarse-grained data is not enough but the
supervision from fine-grained data and coarse-grained data can complement each other to enhance
the unseen environments generalization ability.

Focal-oriented rewards facilitate local cross-modal alignment We incorporate different re-
wards in the reinforcement learning phase, with results on en-RxR and Landmark-RxR recorded
in Table 3 and Table 4 respectively. Although model#14 which takes nDTW as reward has the high-
est fidelity scores in unseen environments, it gets the lowest SR and LN scores among all rewards.
This indicates that only considering the global alignment between instructions and trajectories make
agent just concern about the trajectories similarities but not the locations that instructions really
concern during navigation.

Compared to model#14, model#17 (soft focal-oriented reward) also bases on nDTW but modifies
it with more concern to the critical points. As illustrated in Table 3 and Table 4, the model#17
outperforms the model#14 by a significant margin with SR increasing from 29.3% to 33.7%, SSA
increasing from 52.6 to 53.3 and LN decreasing from 5500 to 5173. In addition, model#17 also
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Table 3: Results on en-RxR validation seen and validation unseen splits. syn means the synthesized
pairs augmented from Landmark-RxR.

IL Train RL Train Validation Seen Validation Unseen

# sub syn co Rsoft
focal Rhard

focal RnDTW RSR nDTW↑ SDTW↑ SR↑ nDTW↑ SDTW↑ SR↑

7
√

26.5 12.8 20.4 21.8 10.2 18.6
8

√
41.7 29.0 42.2 24.6 13.8 24.2

9
√

44.1 29.9 40.9 24.3 12.4 20.7
10

√ √
42.1 30.1 43.8 24.9 14.9 26.1

11
√ √

45.8 34.2 48.2 25.1 15.5 26.2
12

√ √
47.6 35.3 48.6 23.9 13.6 22.8

13
√ √ √

46.9 36.0 50.6 26.7 17.3 28.4
14

√ √ √ √
55.0 32.8 40.7 43.2 22.6 29.3

15
√ √ √ √

50.7 36.3 48.2 38.2 23.9 32.7
16

√ √ √ √ √
54.4 39.3 49.9 41.0 25.0 33.6

17
√ √ √ √

55.1 40.7 51.4 41.0 25.2 33.7
18

√ √ √ √
48.5 37.0 50.7 36.6 24.2 34.9

Table 4: Results on Landmark-RxR validation seen and validation unseen splits. syn means the
synthesized pairs augmented from Landmark-RxR.

IL Train RL Train Validation Seen Validation Unseen

# sub syn co Rsoft
focal Rhard

focal RnDTW RSR SA↑ SSA↑ LN↓ SA↑ SSA↑ LN↓

7
√

56.6 51.7 4337 (31.9) 49.4 44.1 7849 (40.2)
8

√
59.1 56.5 3267 (24.0) 49.7 46.2 7029 (36.0)

9
√

57.6 54.5 3566 (26.2) 48.0 43.8 7452 (38.1)
10

√ √
60.6 58.5 2899 (21.3) 50.4 47.3 6677 (34.2)

11
√ √

60.9 58.6 2899 (21.3) 50.5 47.1 6752 (34.5)
12

√ √
60.6 58.2 3039 (22.4) 49.0 45.3 7302 (37.4)

13
√ √ √

61.8 59.9 2589 (19.0) 51.7 48.9 6256 (32.0)
14

√ √ √ √
64.3 59.8 2764 (20.3) 58.4 52.6 5500 (28.1)

15
√ √ √ √

61.6 58.8 2661 (19.6) 55.5 51.7 5367 (27.5)
16

√ √ √ √ √
63.0 59.5 2622 (19.3) 57.2 52.5 5309 (27.2)

17
√ √ √ √

63.8 60.7 2423 (17.8) 57.6 53.3 5173 (26.5)
18

√ √ √ √
60.7 58.6 2360 (17.4) 54.7 51.8 4951 (25.3)

keeps a slight advantage over model#16 (fidelity-oriented reward3) with SSA increasing from 52.5
to 53.3 and LN down from 5309 to 5173, about a 0.7% drop of the total sub-trajectories number
19,547.

The soft focal-oriented reward is replaced by the hard form in model#18 (hard focal-oriented reward).
Compared with the model#15 (goal-oriented reward) which also uses SR4 as reward signal but only
on the final goal point, SR of model#18 increases from 32.7% to 34.9% and LN of model#18 de-
creases 416 times meanwhile, 2.2% of the total number. Compared with model#16, model#18 has
1.3% increased in SR and 358 decreased in LN during navigation, a 1.9% drop of the total number
19,547. As illustrated in Figure 4, model#18 gives more attention to critical point related words
like close door, and chooses the correct action, which indicates that model#18 performs local cross-
modal alignment better. The above experiments suggest that our focal-oriented rewards which focus
on local cross-modal alignment help the agent better understand what instructions concern and make
fewer mistakes during navigation.

Comparison with SoTA As shown in Table 5, on the en-RxR benchmark, The model Ourssoft
which is trained on the data with joint granularities and equipped with soft focal-oriented reward
outperforms RCMrxr on validation unseen split5, with 4.9 and 8.1% improvement on SDTW and
SR metrics respectively. In addition, the model Ourshard which is trained on the data with joint

3 We formulate the fidelity-oriented reward based on nDTW as ’fidelity metric + SR’, because experiment empir-
ically show that it performs better on Loss Number metric than using the gain in nDTW score after taking an
action as the reward signal like [17].

4 Since trajectories in RxR are not necessary the global shortest to the goal, the reduced distance related part is
not included in the goal-oriented reward here.

5 Note that monolingual agent is not allowed to test on RxR competition platform. We compare our methods to
the state-of-the-art method only on validation unseen split of en-RxR.

9



(a) fidelity-oriented reward (b) hard focal-oriented reward

Figure 4: Compare agents trained on fidelity-oriented reward and hard focal-oriented reward. Agent
trained on fidelity-oriented reward fails when choosing candidate action to close door, but agent
trained on hard focal-oriented reward succeed to align the instruction to the right candidate action.

Table 5: Comparison of performance with the state-of-the-art methods on en-RxR. RCMrxr is the
RCM[6] model trained on en-RxR implemented in [15]. Ourssoft and Ourshard are the same models
to model#17 and model#18 respectively.

Validation Unseen

Agent nDTW↑ SDTW↑ SR↑
RCMrxr [15] 41.3 20.3 25.6

Ourssoft 41.0 25.2 33.7
Ourshard 36.6 24.2 34.9

granularities and equipped with hard focal-oriented reward achieves the best result on SR metric
with 34.9% on validation unseen split, 9.3% definite improvement compared to RCMrxr.

7 Conclusion
Strong cross-modal alignment ability is the guarantee of successful navigation for a VLN agent.
In this paper, we first proposed a human-annotated, fine-grained dataset Landmark-RxR. Our
Landmark-RxR provides fine-grained supervision which can complement the weak cross-modal
alignment supervision from coarse-grained data. Then benefiting from the fine-grained annotations,
two kinds of focal-oriented rewards are proposed focusing on the local cross-modal alignment learn-
ing. In addition, the re-initialization mechanism is proposed for difficult points insensitive evaluation
on Landmark-RxR. Experiments show that our fine-grained data and focal-oriented rewards help the
agent gain superior navigation performance. However, this work is only a preliminary exploration
based on the fine-grained Landmark-RxR dataset. We believe that there is much room for further
investigation based on the Landmakr-RxR, like data augmentation, curriculum reinforcement learn-
ing and pretraining. In addition, our fine grain related work like focal-oriented rewards can not only
enlightens for VLN task, but also for research on other tasks that can be modeled as Markov decision
processes.
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