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Abstract

In comparison to the interpretation of classification models, the explanation of
sequence generation models is also an important problem, however it has seen little
attention. In this work, we study model-agnostic explanations of a representative
text generation task — dialogue response generation. Dialog response generation
is challenging with its open-ended sentences and multiple acceptable responses.
To gain insights into the reasoning process of a generation model, we propose a
new method, local explanation of response generation (LERG), that regards the
explanations as the mutual interaction of segments in input and output sentences.
LERG views the sequence prediction as uncertainty estimation of a human response
and then creates explanations by perturbing the input and calculating the certainty
change over the human response. We show that LERG adheres to desired properties
of explanation for text generation, including unbiased approximation, consistency,
and cause identification. Empirically, our results show that our method consistently
improves other widely used methods on proposed automatic- and human- evaluation
metrics for this new task by 4.4-12.8%. Our analysis demonstrates that LERG can
extract both explicit and implicit relations between input and output segments. !

1 Introduction

As we use machine learning models in daily tasks, such as medical diagnostics [6, 19], speech
assistants [31] etc., being able to trust the predictions being made has become increasingly important.
To understand the underlying reasoning process of complex machine learning models a sub-field
of explainable artificial intelligence (XAI) [2, 17, 36] called local explanations, has seen promising
results [35]. Local explanation methods [27, 39] often approximate an underlying black box model
by fitting an interpretable proxy, such as a linear model or tree, around the neighborhood of individual
predictions. These methods have the advantage of being model-agnostic and locally interpretable.

Traditionally, off-the-shelf local explanation frameworks, such as the Shapley value in game the-
ory [38] and the learning-based Local Interpretable Model-agnostic Explanation (LIME) [35] have
been shown to work well on classification tasks with a small number of classes. In particular, there has
been work on image classification [35], sentiment analysis [8], and evidence selection for question an-
swering [32]. However, to the best of our knowledge, there has been less work studying explanations
over models with sequential output and large class sizes at each time step. An attempt by [1] aims at
explaining machine translation by aligning the sentences in source and target languages. Nonetheless,
unlike translation, where it is possible to find almost all word alignments of the input and output
sentences, many text generation tasks are not alignment-based. We further explore explanations over
sequences that contain implicit and indirect relations between the input and output utterances.

'Our code is available at https://github.com/Pascalson/LERG.
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In this paper, we study explanations over a set of representative conditional text generation models —
dialogue response generation models [45, 55]. These models typically aim to produce an engaging
and informative [3, 24] response to an input message. The open-ended sentences and multiple
acceptable responses in dialogues pose two major challenges: (1) an exponentially large output space
and (2) the implicit relations between the input and output texts. For example, the open-ended prompt
“How are you today?” could lead to multiple responses depending on the users’ emotion, situation,
social skills, expressions, etc. A simple answer such as “Good. Thank you for asking.” does not have
an explicit alignment to words in the input prompt. Even though this alignment does not exist, it is
clear that “good” is the key response to “how are you”. To find such crucial corresponding parts in
a dialogue, we propose to extract explanations that can answer the question: “Which parts of the
response are influenced the most by parts of the prompt?”

To obtain such explanations, we introduce LERG, a novel yet simple method that extracts the sorted
importance scores of every input-output segment pair from a dialogue response generation model.
We view this sequence prediction as the uncertainty estimation of one human response and find
a linear proxy that simulates the certainty caused from one input segment to an output segment.
We further derive two optimization variations of LERG. One is learning-based [35] and another is
the derived optimal similar to Shapley value [38]. To theoretically verify LERG, we propose that
an ideal explanation of text generation should adhere to three properties: unbiased approximation,
intra-response consistency, and causal cause identification. To the best of our knowledge, our work is
the first to explore explanation over dialog response generation while maintaining all three properties.

To verify if the explanations are both faithful (the explanation is fully dependent on the model being
explained) [2] and interpretable (the explanation is understandable by humans) [14], we conduct
comprehensive automatic evaluations and user study. We evaluate the necessity and sufficiency of
the extracted explanation to the generation model by evaluating the perplexity change of removing
salient input segments (necessity) and evaluating the perplexity of only salient segments remaining
(sufficiency). In our user study, we present annotators with only the most salient parts in an input and
ask them to select the most appropriate response from a set of candidates. Empirically, our proposed
method consistently outperforms baselines on both automatic metrics and human evaluation.

Our key contributions are:

* We propose a novel local explanation method for dialogue response generation (LERG).

* We propose a unified formulation that generalizes local explanation methods towards se-
quence generation and show that our method adheres to the desired properties for explaining
conditional text generation.

* We build a systematic framework to evaluate explanations of response generation including
automatic metrics and user study.

2 Local Explanation

Local explanation methods aim to explain predictions of an arbitrary model by interpreting the
neighborhood of individual predictions [35]. It can be viewed as training a proxy that adds the
contributions of input features to a model’s predictions [27]. More formally, given an example with
input features = = {z;} ,, the corresponding prediction y with probability f(z) = Pp(Y = y|z)
(the classifier is parameterized by ), we denote the contribution from each input feature x; as
¢; € R and denote the concatenation of all contributions as ¢ = [¢1, ..., pas]T € RM. Two popular
local explanation methods are the learning-based Local Interpretable Model-agnostic Explanations
(LIME) [35] and the game theory-based Shapley value [38].

LIME interprets a complex classifier f based on locally approximating a linear classifier around a
given prediction f(z). The optimization of the explanation model that LIME uses adheres to:

(o) = argmin[L(f, . 7) + ()], n

where we sample a perturbed input Z from 7, (%) = exp(—D(z, Z)?/0?) taking D(z, %) as a distance
function and o as the width. € is the model complexity of the proxy . The objective of &(z) is to
find the simplest ( that can approximate the behavior of f around x. When using a linear classifier
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Figure 1: The motivation of local explanation for dialogue response generation. (c) = (a)+(b).

¢ as the ¢ to minimize () [35], we can formulate the objective function as:

¢ = argmin Esr, (Py(Y = y|7) — $pT2)?, 2)

where z € {0,1}M is a simplified feature vector of & by a mapping function h such that z =
h(z,%) = {1(z; € #)}},. The optimization means to minimize the classification error in the
neighborhood of x sampled from 7,. Therefore, using LIME, we can find an interpretable linear
model that approximates any complex classifier’s behavior around an example x.

Shapley value takes the input features © = {z;}, as M independent players who cooperate to
achieve a benefit in a game [38]. The Shapley value computes how much each player x; contributes
to the total received benefit:

o= Y PECEE Y py—pp e - R =em). @

To reduce the computational cost, instead of computing all combinations, we can find surrogates ¢;
proportional to ¢; and rewrite the above equation as an expectation over x sampled from P(Z):

|z]

6= oo = Banr[PoY = ol 0 {ai) = oY =3l Vi, @
where P(Z) = W is the perturb function.? We can also transform the above formulation
z= %]
into argmin:
¢s = argmin By pa) ([Po(Y = y|2 U {a:}) = Po(Y = y|2)] - $i)?. (5)

3 Local Explanation for Dialogue Response Generation

We aim to explain a model’s response prediction to a dialogue history one at a time and call it the
local explanation of dialogue response generation. We focus on the local explanation for a more
fine-grained understanding of the model’s behavior.

3.1 Task Definition

As depicted in Figure 1, we draw inspiration from the notions of controllable dialogue generation
models (Figure 1a) and local explanation in sentiment analysis (Figure 1b). The first one uses a
concept in predefined classes as the relation between input text and the response; the latter finds the
features that correspond to positive or negative sentiment. We propose to find parts within the input
and output texts that are related by an underlying intent (Figure 1c).

We first define the notations for dialogue response generation, which aims to predict a response
Yy = Y1Y2...yN given an input message xr = T1x2...Tpr. T; iS the i-th token in sentence x with
length M and y; is the j-th token in sentence y with length N. To solve this task, a typical
sequence-to-sequence model f parameterized by 6 produces a sequence of probability masses
<Py(y1|z), Po(y2]z,y1), -, Po(yn|z, y<n)> [45]. The probability of y given x can then be com-
puted as the product of the sequence Py (y|z) = Py(y1|x)Po(ye|z,y1)...Po(yn|z, y<n).

2 ~\ 1 z|—1\ __ 1 x|—1 z|—-1\ _ (Jz|—1) __ .
Zigx\{wi} P(z) = (Jz|—1) Zigx\{xi} 1/(‘ |Lz| ) R IED) Z\il (‘ ‘Lﬂ )/(‘ |Lz| ) = (el=n) = 1. This
affirms that the P(Z) is a valid probability mass function.




To explain the prediction, we then define a new explanation model ® € R™*¥ where each column
D, c RM linearly approximates single sequential prediction at the j-th time step in text generation.
To learn the optimal @, we sample perturbed inputs 2 from a distribution centered on the original
inputs x through a probability density function & = 7(z). Finally, we optimize @ by ensuring
u((D]Tz) ~ ¢(Z) whenever z is a simplified embedding of Z by a mapping function z = h(x, ),
where we define g as the gain function of the target generative model f, u as a transform function of
® and 7 and L as the loss function. Note that z can be a vector or a matrix and g(-), u(-) can return a
scalar or a vector depending on the used method. Therefore, we unify the local explanations (LIME
and Shapley value) under dialogue response generation as:

Definition 1: A Unified Formulation of Local Explanation for Dialogue Response Generation

®; = argmin L(g(y;1%, y<;), w(®] h(2))), for j = 1,2,..., N . (6)
J

The proofs of unification into Equation 6 can be found in Appendix A. However, direct adaptation
of LIME and Shapley value to dialogue response generation fails to consider the complexity of
text generation and the diversity of generated examples. We develop disciplines to alleviate these
problems.

3.2 Proposed Method

Our proposed method is designed to (1) address the exponential output space and diverse responses
built within the dialogue response generation task and (2) compare the importance of segments within
both input and output text.

First, considering the exponential output space and diverse responses, recent work often generates
responses using sampling, such as the dominant beam search with top-k sampling [11]. The generated
response is therefore only a sample from the estimated probability mass distribution over the output
space. Further, the samples drawn from the distribution will inherently have built-in errors that
accumulate along generation steps [34]. To avoid these errors we instead explain the estimated
probability of the ground truth human responses. In this way, we are considering that the dialogue
response generation model is estimating the certainty to predict the human response by Py(y|x).
Meanwhile, given the nature of the collected dialogue dataset, we observe only one response per
sentence, and thus the mapping is deterministic. We denote the data distribution by P and the
probability of observing a response y given input x in the dataset by P(y|z). Since the mapping of =
and y is deterministic in the dataset, we assume P(y|z) = 1.

Second, if we directly apply prior explanation methods of classifiers on sequential generative models,
it turns into a One-vs-Rest classification situation for every generation step. This can cause an unfair
comparison among generation steps. For example, the impact from a perturbed input on y; could end
up being the largest just because the absolute certainty Py(y;|z, y<;) was large. However, the impact
from a perturbed input on each part in the output should be how much the certainty has changed after
perturbation and how much the change is compared to other parts.

Therefore we propose to find explanation in an input-response pair (x,y) by comparing the inter-
actions between segments in (z, y). To identify the most salient interaction pair (z;, y;) (the i-th
segment in z and the j-th segment in y), we anticipate that a perturbation x impacts the j-th part
most in y if it causes

D(Po(y;|Z, y<j) |1 Pa(yjlz, y<;j)) > D(Po(yjr|Z, y<j)l| Poyjrle, y<jo)),Vi' # 3, (7)

where D represents a distance function measuring the difference between two probability masses.
After finding the different part x; in x and &, we then define an existing salient interaction in (z,y) is
(i Yj)-

In this work, we replace the distance function D in Equation 7 with Kullback-Leibler divergence
(Dk1) [20]. However, since we reduce the complexity by considering Py(y|z) as the certainty
estimation of y, we are limited to obtaining only one point in the distribution. We transfer the equation
by modeling the estimated joint probability by € of x and y. We reconsider the joint distributions
as Pp(%,y<;) such that 3 °;  Pp(Z,y<;) = 1 and ¢(Z,y) = Po,r,,, (T, y<;j) = Po(z,y) such that
Zi,y q(z,y) = Ziy Py(z,y<;) = Z;;y Py rino (T,y<;) = 1 with m;,,, being the inverse function
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Moreover, since we are estimating the certainty of a response y drawn from data distribution, we
know that the random variables Z is independently drawn from the perturbation model 7. Their
independent conditional probabilities are P(y|x) = 1 and 7(&|x). We approximate the multiplier
Py(Z,y<;) = P(Z,y<;lx) = P(Z|x)P(y|x) = m(&|z). The divergence can be simplified to

P e Ny - Py(Z,y<5) _ Po(7,y<;)
D(Py(#,y<j)||Po(w,y<;)) = Y Y w(i|z)log Polt,yes) Ezr(|z)log Po(rry<y) @

To meet the inequality for all 5 and j' # j, we estimate each value (Dsz in the explanation model
@ being proportional to the divergence term, where z = h(z, %) = {1(x; € )}M,. It turns out
to be re-estimating the distinct of the chosen segment y; by normalizing over its original predicted
probability.

Py(Z,y<;)

7z ¢ Bico\ (o3 D(Po(%, y<j)||Po(2,y<;)) ® Bz 5o\ (2} 108 P ye;) (10)

We propose two variations to optimize @ following the unified formulation defined in Equation 6.

First, since logarithm is strictly increasing, so to get the same order of ®@,;, we can drop off the
logarithmic term in Equation 10. After reducing the non-linear factor, we use mean square error as
Po(Z,y<;)

Po(z,y<;)’

Pe(jay<j) T N2 v/
TOTY<I) T y)2 vy, (11)
PG(xaij) / ) I

We call this variation as LERG_L in Algorithm 1, since this optimization is similar to LIME but
differs by the gain function being a ratio.

the loss function. With the gain function g = the optimization equation becomes

®; = arg ng)ijn Ep@(

To derive the second variation, we suppose an optimized @ exists and is denoted by @*, we can write
that for every Z and its correspondent z = h(z, %),

P,
O zgflog4££zjﬁﬁl. (12)
Pg(ﬂ? y<J)
We can then find the formal representation of @7, by
O7; =071 - 01
= 0}(z+e;) — ©;z,V7 € z\{r;} and z = h(z, ) a3)

= Esco\(2,} [P} (2 + €i) — D)z
= Eiea\ (2,3 [l08 Po(y;]1T U{zi}, y<;) — log Po(y;]%,y<;)]
We call this variation as LERG_S in Algorithm 1, since this optimization is similar to Shapley value

but differs by the gain function being the difference of logarithm. To further reduce computations, we
use Monte Carlo sampling with m examples as a sampling version of Shapley value [41].

3.3 Properties

We propose that an explanation of dialogue response generation should adhere to three properties to
prove itself faithful to the generative model and understandable to humans.

Property 1: unbiased approximation 7o ensure the explanation model © explains the benefits
of picking the sentence y, the summation of all elements in © should approximate the difference
between the certainty of y given x and without x (the language modeling of y).

ZZ% log P(y|x) —log P(y) . (14)



Algorithm 1: LOCAL EXPLANATION OF RESPONSE GENERATION

Input: input message © = x122...x s, ground-truth response y = y1y2...yn
Input: aresponse generation model 6 to be explained

Input: a local explanation model parameterized by ©

// 1st variation — LERG_L

for each iteration do

sample a batch of Z perturbed from 7 (x)

map 7 to z = {0, 1}/

compute gold probability Py (y;|z, y<;)

compute perturbed probability Py (y;|Z, y<;)

optimize @ to minimize loss function

_ Po(y;|%,y<;) T,\2
L L= i By — 95 2)
// 2nd variation - LERG_S

for each i do
sample a batch of Z perturbed from 7 (a\{z;})

| ©ij = 55 25 log Po(y;|7 U {zi}, y<;) — log Pa(y;|Z, y<;), for Vj
return @,;, for Vi, j

Property 2: consistency 7o ensure the explanation model © consistently explains different genera-
tion steps j, given a distance function if

D(Py(y;1%,y<j), Po(y;120{wi}, y<;)) > D(Polys |, y<jr), Polyj|2U{x:}, y<j0)), Vi’ Vi 6(1»”?5;{301'} ,

then q)ij > q)ij’-

Property 3: cause identification 7o ensure that the explanation model sorts different input features
by their importance to the results, if

g(y;lz U {xi}) > g(y;|2 U {x}),VE € 2\{z, 27}, (16)
then (D” > (D1/]

We prove that our proposed method adheres to all three Properties in Appendix B. Meanwhile Shapley
value follows Properties 2 and 3, while LIME follows Property 3 when an optimized solution exists.
These properties also demonstrate that our method approximates the text generation process while
sorting out the important segments in both the input and output texts. This could be the reason to
serve as explanations to any sequential generative model.

4 Experiments

Explanation is notoriously hard to evaluate even for digits and sentiment classification which are
generally more intuitive than explaining response generation. For digit classification (MNIST),
explanations often mark the key curves in figures that can identify digit numbers. For sentiment
analysis, explanations often mark the positive and negative words in text. Unlike them, we focus
on identifying the key parts in both input messages and their responses. Our move requires an
explanation include the interactions of the input and output features.

To evaluate the defined explanation, we quantify the necessity and sufficiency of explanations towards
a model’s uncertainty of a response. We evaluate these aspects by answering the following questions.
* necessity: How is the model influenced after removing explanations?
« sufficiency: How does the model perform when only the explanations are given?

Furthermore, we conduct a user study to judge human understandings of the explanations to gauge
how trustworthy the dialog agents are.
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Figure 2: The explanation results of a GPT model fine-tuned on Figure 3: The explanation re-
DailyDialog. sults of fine-tuned DialoGPT.

4.1 Dataset, Models, Methods

We evaluate our method over chit-chat dialogues for their more complex and realistic conversations.
We specifically select and study a popular conversational dataset called DailyDialog [25] because its
dialogues are based on daily topics and have less uninformative responses.Due to the large variation of
topics, open-ended nature of conversations and informative responses within this dataset, explaining
dialogue response generation models trained on DailyDialog is challenging but accessible.

We fine-tune a GPT-based language model [33, 47] and a DialoGPT [55] on DailyDialog by minimiz-
ing the following loss function:

L= *ZZIOgPG(yﬂI’yq), (17

mo g

where 6 is the model’s parameter. We train until the loss converges on both models and achieve
fairly low test perplexities compared to [25]: 12.35 and 11.83 respectively. The low perplexities
demonstrate that the models are more likely to be rationale and therefore, evaluating explanations
over these models will be more meaningful and interpretable.

We compare our explanations LERG_L and LERG_S with attention [46], gradient [43], LIME [35]
and Shapley value [42]. We use sample mean for Shapley value to avoid massive computations
(Shapley for short), and drop the weights in Shapley value (Shapley-w for short) due to the intuition
that not all permutations should exist in natural language [12, 21]. Our comparison is fair since all
methods requiring permutation samples utilize the same amount of samples.*

4.2 Necessity: How is the model influenced after removing explanations?

Assessing the correctness of estimated important feature relevance requires labeled features for each
model and example pair, which is rarely accessible. Inspired by [2, 4] who removes the estimated
salient features and observe how the performance changes, we introduce the notion necessity that
extends their idea. We quantify the necessity of the estimated salient input features to the uncertainty
estimation of response generation by perplexity change of removal (PP LC'R), defined as:

PPLCR = exp%[i Zj log Ps(yjle7y<j)+E]‘ log Py (y;lz,y<;5)] , (18)

where xR is the remaining sequence after removing top-k% salient input features.

3We include our experiments on personalized dialogues and abstractive summarization in Appendix E
*More experiment details are in Appendix C



As shown in Figure 2a and Figure 3a’, removing larger number of input features consistently causes
the monotonically increasing PP LCR. Therefore, to reduce the factor that the PPLCPF, is caused
by, the removal ratio, we compare all methods with an additional baseline that randomly removes
features. LERG_S and LERG_L both outperform their counterparts Shapley-w and LIME by 12.8%
and 2.2% respectively. We further observe that Shapley-w outperforms the LERG_L. We hypothesize
that this is because LERG_L and LIME do not reach an optimal state.

4.3 Sufficiency: How does the model perform when only the explanations are given?

Even though necessity can test whether the selected features are crucial to the model’s prediction, it
lacks to validate how possible the explanation itself can determine a response. A complete explanation
is able to recover model’s prediction without the original input. We name this notion as sufficiency
testing and formalize the idea as:

PPL, := exp_% 225 log Po(yjlra,y<s) ; (19)

where x 4 is the sequential concatenation of the top-k% salient input features.

As shown in Figure 2b and Figure 3b, removing larger number of input features gets the PP L 4 closer
to the perplexity of using all input features 12.35 and 11.83. We again adopt a random baseline to
compare. LERG_S and LERG_L again outperform their counterparts Shapley-w and LIME by 5.1%
and 3.4% respectively. Furthermore, we found that LERG_S is able to go lower than the original
12.35 and 11.83 perplexities. This result indicates that LERG_S is able to identify the most relevant
features while avoiding features that cause more uncertainty during prediction.

4.4 User Study

To ensure the explanation is easy-to-understand by non machine

learning experts and gives users insights into the model, we resort  Method Acc  Conf
to user study to answer the question: “If an explanation can be “Random 36.15 3.00
understood by users to respond?” Attention | 34.75 2.81

We ask human judges to compare explanation methods. Instead of ~ Gradient 4252 297
asking judges to annotate their explanation for each dialogue, to LIME 46.37  3.26
increase their agreements we present only the explanations (Top LERG_L | 4797 3.24
20% features) and ask them to choose from four response candidates, Shapley-w | 53.65 3.20
where one is the ground-truth, two are randomly sampled from LERG_S 56.03  3.35
other dialogues, and the last one is randomly sampled from other .
turns in the same dialogue. Therefore the questionnaire requires 1able 1: Confidence (1-5) with
human to interpret the explanations but not guess a response that has | denotes not confident and 5
word overlap with the explanation. The higher accuracy indicates denotes highly confident.

the higher quality of explanations. To conduct more valid human

evaluation, we randomly sample 200 conversations with sufficiently

long input prompt (Iength> 10). This way it filters out possibly non-explainable dialogues that can
cause ambiguities to annotators and make human evaluation less reliable.

We employ three workers on Amazon Mechanical Turk [7] ¢ for each method of each conversation,
resulting in total 600 annotations. Besides the multiple choice questions, we also ask judges to claim
their confidences of their choices. The details can be seen in Appendix D. The results are listed in
Table 1. We observe that LERG_L performs slightly better than LIME in accuracy while maintaining
similar annotator’s confidence. LERG_S significantly outperforms Shapley-w in both accuracy and
annotators’ confidence. Moreover, these results indicates that when presenting users with only 20%
of the tokens they are able to achieve 56% accuracy while a random selection is around 25%.
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Figure 4: Two major categories of local explanation except word alignment and one typical error.
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4.5 Qualitative Analysis

We further analyzed the extracted explanation for each dialogue. We found that these fine-grained
level explanations can be split into three major categories: implication / meaning, sociability, and one-
to-one word mapping. As shown in Figure 4a, the “hot potato” in response implies the phenomenon
of “reduce the price of gasoline”. On the other hand, Figure 4b demonstrates that a response with
sociability can sense the politeness and responds with “thanks”. We ignore word-to-word mapping
here since it is intuitive and can already be successfully detected by attention models. Figure 4c shows
a typical error that our explanation methods can produce. As depicted, the word “carry” is related
to “bags”,““suitcases”, and “luggage”. Nonetheless a complete explanation should cluster “carry-on
luggages”. The error of explanations can result from (1) the target model or (2) the explanation
method. When taking the first view, in future work, we might use explanations as an evaluation
method for dialogue generation models where the correct evaluation metrics are still in debates.
When taking the second view, we need to understand that these methods are #rying to explain the
model and are not absolutely correct. Hence, we should carefully analyze the explanations and use
them as reference and should not fully rely on them.

5 Related Work and Discussion

Explaining dialogue generation models is of high interest to understand if a generated response is
reasonably produced rather than being a random guess. For example, among works about controllable
dialogue generation [15, 26, 37, 40, 48, 50, 51, 53], Xu et al. [49] takes the dialog act in a controllable
response generation model as the explanation. On the other hand, some propose to make dialogue
response generation models more interpretable through walking on knowledge graphs [18, 28, 44].
Nonetheless, these works still rely on models with complex architecture and thus are not fully
interpretable. We observe the lack of a model-agnostic method to analyze the explainability of
dialogue response generation models, thus proposing LERG.

Recently, there are applications and advances of local explanation methods [27, 35, 38]. For instance
in NLP, some analyze the contributions of segments in documents to positive and negative senti-
ments [4, 8, 9, 29]. Some move forwards to finding segments towards text similarity [10], retrieving
a text span towards question-answering [32], and making local explanation as alignment model in
machine translation [1]. These tasks could be less complex than explaining general text generation
models, such as dialogue generation models, since the the output space is either limited to few
classes or able to find one-to-one mapping with the input text. Hence, we need to define how local
explanations on text generation should work. However, we would like to note that LERG serves as a
general formulation for explaining text generation models with flexible setups. Therefore, the distinct
of prior work can also be used to extend LERG, such as making the explanations hierarchical. To
move forward with the development of explanation methods, LERG can also be extended to dealing

SWe did a z-test and a t-test [22] with the null hypothesis between LERG_L and LIME (and LERG_S and
Shapley). For both settings the p-value was less than 0.001, indicating that the proposed methods significantly
outperform the baselines.

*https://www.mturk.com



with off- /on- data manifold problem of Shapley value introduced in [13], integrating causal structures
to separate direct / in-direct relations [12, 16], and fusing concept- / feature- level explanations [5].

6 Conclusion

Beyond the recent advances on interpreting classification models, we explore the possibility to
understand sequence generation models in depth. We focus on dialogue response generation and find
that its challenges lead to complex and less transparent models. We propose local explanation of
response generation (LERG), which aims at explaining dialogue response generation models through
the mutual interactions between input and output features. LERG views the dialogue generation
models as a certainty estimation of a human response so that it avoids dealing with the diverse
output space. To facilitate future research, we further propose a unification and three properties of
explanations for text generation. The experiments demonstrate that LERG can find explanations
that can both recover a model’s prediction and be interpreted by humans. Next steps can be taking
models’ explainability as evaluation metrics, integrating concept-level explanations, and proposing
new methods for text generation models while still adhering to the properties.
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