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Abstract

It is well-known that given a smooth, bounded-from-below, and possibly non-
convex function, standard gradient-based methods can find ✏-stationary points
(with gradient norm less than ✏) in O(1/✏2) iterations. However, many important
nonconvex optimization problems, such as those associated with training modern
neural networks, are inherently not smooth, making these results inapplicable. In
this paper, we study nonsmooth nonconvex optimization from an oracle complexity
viewpoint, where the algorithm is assumed to be given access only to local informa-
tion about the function at various points. We provide two main results (under mild
assumptions): First, we consider the problem of getting near ✏-stationary points.
This is perhaps the most natural relaxation of finding ✏-stationary points, which
is impossible in the nonsmooth nonconvex case. We prove that this relaxed goal
cannot be achieved efficiently, for any distance and ✏ smaller than some constants.
Our second result deals with the possibility of tackling nonsmooth nonconvex
optimization by reduction to smooth optimization: Namely, applying smooth opti-
mization methods on a smooth approximation of the objective function. For this
approach, we prove an inherent trade-off between oracle complexity and smooth-
ness: On the one hand, smoothing a nonsmooth nonconvex function can be done
very efficiently (e.g., by randomized smoothing), but with dimension-dependent
factors in the smoothness parameter, which can strongly affect iteration complexity
when plugging into standard smooth optimization methods. On the other hand,
these dimension factors can be eliminated with suitable smoothing methods, but
only by making the oracle complexity of the smoothing process exponentially
large.

1 Introduction

We consider optimization problems associated with functions f : Rd
! R, where f(·) is Lipschitz

continuous and bounded from below, but otherwise satisfies no special structure, such as convexity.
Clearly, in high dimensions, it is generally impossible to efficiently find a global minimum of a
nonconvex function. However, if we relax our goal to finding (approximate) stationary points, then
the nonconvexity is no longer an issue. In particular, it is known that if f(·) is smooth – namely,
differentiable and with a Lipschitz continuous gradient – then for any ✏ > 0, simple gradient-
based algorithms can find x such that krf(x)k  ✏, using only O(1/✏2) gradient computations,
independent of the dimension (see for example [30, 22, 11]).

Unfortunately, many optimization problems of interest are inherently not smooth. For example, when
training modern neural networks, involving max operations and rectified linear units, the associated
optimization problem is virtually always nonconvex as well as nonsmooth. Thus, the positive results
above, which crucially rely on smoothness, are inapplicable. Although there are positive results
even for nonconvex nonsmooth functions, they tend to be either purely asymptotic in nature (e.g.,
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[8, 23, 36, 16, 26]), depend on the internal structure and representation of the objective function, or
require additional assumptions which many problems of interest do not satisfy, such as weak convexity
or some separation between nonconvex and nonsmooth components1 (e.g., [12, 13, 18, 10, 15, 17, 6]).
This leads to the interesting question of developing black-box algorithms with non-asymptotic
guarantees for nonsmooth nonconvex functions, without assuming any special structure.

In this paper, we study this question via the well-known framework of oracle complexity [27]: Given
a class of functions F , we associate with each f 2 F an oracle, which for any x in the domain
of f(·), returns local information about f(·) at x (such as its value and gradient2). We consider
iterative algorithms which can be described via an interaction with such an oracle: At every iteration
t, the algorithm chooses an iterate xt, and receives from the oracle local information about f(·) at
xt, which is then used to choose the next iteration xt+1. This framework captures essentially all
iterative algorithms for black-box optimization. In this framework, we fix some iteration budget
T , and ask what properties can be guaranteed for the iterates x1, . . . ,xT , as a function of T and
uniformly over all functions in F (for example, how close to optimal they are, whether they contain
an approximately-stationary point, etc.). Unfortunately, as recently pointed out in [37], neither small
optimization error nor small gradients can be obtained for nonsmooth nonconvex functions with such
local-information algorithms: Indeed, approximately-stationary points can be easily “hidden” inside
some arbitrarily small neighborhood, which cannot be found in a bounded number of iterations.

Instead, we consider here two alternative approaches to tackle nonsmooth nonconvex optimization,
and provide new oracle complexity results for each. We note that Zhang et al. [37] recently proposed
another promising approach, by defining a certain relaxation of approximate stationarity (so-called
(�, ✏)-stationarity), and remarkably, prove that points satisfying this relaxed goal can be found via
simple iterative algorithms with provable guarantees. However, there exist cases where their definition
does not resemble a stationary point in any intuitive case, and thus it remains to be seen whether it is
the most appropriate one. We further discuss the pros and cons of their approach in Appendix B.

In our first contribution, we consider relaxing the goal of finding approximately-stationary points,
to that of finding near-approximately-stationary points: Namely, getting �-close to a point x with
a (generalized) gradient of norm at most ✏. This is arguably the most natural way to relax the
goal of finding ✏-stationary points, while hopefully still getting meaningful algorithmic guarantees.
Moreover, approaching stationary points is feasible in an asymptotic sense (see for instance [17]).
Unfortunately, we formally prove that this relaxation already sets the bar too high: For a very large
class of gradient-based algorithms (and in fact, all of them under a mild assumption), it is impossible
to find near-approximately-stationary point with worst-case finite-time guarantees, for small enough
constant �, ✏.

In our second contribution, we consider tackling nonsmooth nonconvex optimization by reduction
to smooth optimization: Given the target function f(·), we first find a smooth function f̃(·) (with
Lipschitz gradients) which uniformly approximates it up to some arbitrarily small parameter ✏,
and then apply a smooth optimization method on f̃(·). Such reductions are common in convex
optimization (e.g., [28, 7, 1]), and intuitively, should usually lead to points with meaningful properties
with respect to the original function f(·), at least when ✏ is small enough. For example, it is known that
stationary points of f(·) are the limit of approximately-stationary points of appropriate smoothings
of f(·), as ✏ ! 0 [32, Thm. 9.67].

This naturally leads to the question of how we can find a smooth approximation of a Lipschitz
function f(·). Inspecting existing approaches for smoothing nonconvex functions, we notice an
interesting trade-off between computational efficiency and the smoothness of the approximating
function: On the one hand, there exist optimization-based methods from the functional analysis
literature (in particular, Lasry-Lyons regularization [25]) which yield essentially optimal gradient
Lipschitz parameters, but are not computationally efficient. On the other hand, there exist simple,
computationally tractable methods (such as randomized smoothing [19]), which unfortunately lead
to much worse gradient Lipschitz parameters, with strong scaling in the input dimension. This in
turn leads to larger iteration complexity, when plugging into standard smooth optimization methods.
Is this kind of trade-off between computational efficiency and smoothness necessary? Considering

1A trivial example arising in deep learning, which does not satisfy most such structural assumptions, is the
negative of the ReLU function, x 7! �max{0, x}.

2For non-differentiable functions, we use a standard generalization of gradients following [14], see Sec. 2 for
details.
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this question from an oracle complexity viewpoint, we prove that this trade-off is indeed necessary
under mild assumptions: If we want a smoothing method whose oracle complexity is polynomial in
the problem parameters, we must accept that the gradient Lipschitz parameter may be no better than
that obtained with randomized smoothing (up to logarithmic factors). Thus, in a sense, randomized
smoothing is an optimal nonconvex smoothing method among computationally efficient ones.

Overall, we hope that our work motivates additional research into black-box algorithms for nonconvex,
nonsmooth optimization problems, with rigorous finite-time guarantees.

Our paper is structured as follows. In Sec. 2, we formally introduce the notations and terminology
that we use. In Sec. 3, we present our results for getting near approximately stationary points. In
Sec. 4, we present our results for smoothing nonsmooth nonconvex functions. We conclude in
Sec. 5 with a discussion of open questions. The supplementary material contains, besides the full
proofs, a further discussion of the notion of (�, ✏)-stationarity from [37] (Appendix B), and a proof
that the dimension-dependencies arising from randomized smoothing provably affects the iteration
complexity of vanilla gradient descent (Appendix C).

2 Preliminaries

Notation. We let bold-face letters (e.g., x) denote vectors. 0 is the zero vector in Rd (where d
is clear from context), and e1, e2, . . . are the standard basis vectors. Given a vector x, xi denotes
its i-th coordinate, and x̄ denotes the normalized vector x/kxk (assuming x 6= 0). h·, ·i, k · k

denote the standard Euclidean dot product and its induced norm over Rd, respectively. For any real
number x, we denote [x]+ := max{x, 0}. Given two functions f(·), g(·) on the same domain X , we
define kf � gk1 = supx2X |f(x) � g(x)|. We denote by S

d�1 :=
�
x 2 Rd

�� kxk = 1
 

the unit
sphere. For any natural N , we abbreviate [N ] := {1, . . . , N}. We occasionally use standard big-O
asymptotic notation, with O(·),⇥(·),⌦(·) hiding constants, Õ(·), ⇥̃(·), ⌦̃(·) hiding constants and
logarithmic factors, and poly(·) meaning polynomial factors.

Gradients and generalized gradients. If a function f : Rd
! R is differentiable at x, we denote

its gradient by rf(x). For possibly non-differentiable functions, we let @f(x) denote the set of
generalized gradients (following [14]), which is perhaps the most standard extension of gradients to
nonsmooth nonconvex functions. For Lipschitz functions (which are almost everywhere differentiable
by Rademacher’s theorem), one simple way to define it is

@f(x) := conv{u : u = lim
k!1

rf(xk),xk ! x}

(namely, the convex hull of all limit points of rf(xk), over all sequences x1,x2, . . . of differentiable
points of f(·) which converge to x). With this definition, a stationary point with respect to f(·) is a
point x satisfying 0 2 @f(x). Also, given some ✏ � 0, we say that x is an ✏-stationary point with
respect to f(·), if there is some u 2 @f(x) such that kuk  ✏.

Oracles. In this paper, we consider two types of oracles:

• A first-order oracle O1
f (x), which given a function f(·) and a point x, returns f(x) and @f(x). We

note that this differs somewhat from the standard formulation of first-order oracles in the literature,
where it is assumed that at points of non-differentiability, the oracle only returns some element in
the generalized gradient set @f(x). However, this means that our oracle complexity lower bounds
hold under weaker assumptions, since we only provide more information to the algorithm. We use
this type of oracle in the results of Sec. 3, but discuss possible extensions in Remark 2.

• An all-derivatives oracle O1
f (x), which returns f(x), @f(x), as well as all higher-order derivatives

of f(·) at x, if they exist. This oracle provides more information than a first-order oracle, so any
lower bound with respect to an all-derivatives oracle trivially applies with respect to a first-order
oracle. Some of our bounds apply with respect to such a powerful oracle, and we present them in
this generality, although we note that in the nonconvex-nonsmooth setting, it remains to be seen
whether there is any use for higher-order derivative information. We use this type of oracle in the
results of Sec. 4.
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3 Hardness of Getting Near Approximately-Stationary Points

In this section, we present our first main result, which establishes the hardness of getting near
approximately-stationary points.

To avoid trivialities, and following [37], we will focus on functions f(·) which are Lipschitz and
bounded from below. In particular, we will assume that f(0) � infx f(x) is upper bounded by a
constant. We note that this is without loss of generality, as 0 can be replaced by any other fixed
reference point. Moreover, we will focus on two broad families of algorithms, which together
span nearly all algorithms of interest: The first is the class of all deterministic algorithms (denoted
as Adet), which are all oracle-based algorithms where x1 is chosen deterministically, and for all
t > 1, xt is some deterministic function of x1 and the previously observed values and gradients.
The second is the class of all zero-respecting algorithms (denoted as Azr), which are all deter-
ministic or randomized oracle-based algorithms whose sequence of query points x1,x2, . . . satisfy
support{xt} ✓

S
i<t support(@f(xi)) for all t, where support(M) (for some M ✓ Rd) is defined

as {i 2 [d] : 9y 2 M : yi 6= 0}: Namely, the set of coordinates on which M has some elements with
non-zero values. The notion of zero-respecting algorithms was introduced in [11], and generalizes
the common notion of linear-span algorithms [31], where xt is assumed to lie in the span of previous
gradients. The class of zero-respecting algorithms includes nearly all algorithms of practical interest
in our setting, including some which are not linear-span algorithms, such as coordinate descent
methods [29]. Our main result in this section is the following:
Theorem 1. There exist a large enough absolute constant C > 0 and a small enough absolute
constant c > 0 such that the following holds: For any algorithm in Adet [Azr interacting with a
first-order oracle, any T > 1, and any d � 2T , there is a function f(·) on Rd such that

• f(·) is C-Lipschitz, and f(0)� infx f(x)  C.

• With probability at least 1 � T exp(�cd) over the algorithm’s randomness (or deterministi-
cally if the algorithm is deterministic), the iterates x1, . . . ,xT produced by the algorithm satisfy
infx2S mint2{1,...,T} kxt � xk � c, where S is the set of c-stationary points of f(·).

The theorem implies that for a very large family of algorithms, it is impossible to obtain worst-
case guarantees for finding near-approximately-stationary points of Lipschitz, bounded-from-below
functions unless T has exponential dependence on d.

Before continuing, we note that the result can be extended to any oracle-based algorithm (randomized
or deterministic) under a widely-believed assumption – see remark 5 in the proof for details.
Remark 1 (More assumptions on f(·)). The Lipschitz functions f(·) used to prove the theorem are
based on a simple composition of affine functions, the Euclidean norm function x 7! kxk, and the
max function. Thus, the result also holds for more specific families of functions considered in the
literature, which satisfy additional regularity properties, as long as they contain any Lipschitz function
composed as above (for example, Hadamard semi-differentiable functions [37], Whitney-stratifiable
functions [9, 16], semi-algebraic functions etc.).

The formal proof of the theorem appears in Appendix A in the supplementary material, but can be
informally described as follows: First, we construct a Lipschitz function on Rd, specified by a small
vector w, which resembles the norm function x 7! kxk in “most” of Rd, but with a “channel” leading
away from a neighborhood of the origin in the direction of w, and reaching a completely flat region
(see Fig. 1). We emphasize that the graphical illustration is a bit misleading due to the low dimension:
In high dimensions, the “channel” and flat region contain a vanishingly small portion of Rd. This
function has the property of having ✏-stationary points only in the flat region in the direction of w,
even though the function appears in most places like the norm function x 7! kxk . As a result, any
oracle-based algorithm that doesn’t happen to hit the vanishingly small region where the function
differs from x 7! kxk, receives no information about w, thus cannot determine where the ✏-stationary
points lie. As a result, such an algorithm cannot return near-approximately-stationary points.

Unfortunately, the construction described so far does not work as-is, since the algorithm can always
query sufficiently close to the origin (closer than roughly kwk), where the gradients do provide
information about w. To prevent this, we compose the function with an algorithm-dependent affine
mapping, which doesn’t significantly change the function’s properties, but ensures that the algorithm
can never get too close to the (mapped) origin. We show that such an affine mapping must exist,
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Figure 1: Mesh and Contour plot of the function x 7! max{�1, gw(x)} on R2, where w = (0.3, 0)
and gw(·) is defined in Lemma 2 (as part of the proof of Thm. 1). The origin is marked with a red
dot. Best viewed in color.

based on standard oracle complexity results, which imply that oracle-based algorithms as above
cannot get too close to the minimum of a generic convex quadratic function with a bounded number
of queries. Using this mapping, and the useful property that w can be chosen arbitrarily small, leads
to our theorem. The full proof details appear in Appendix A in the supplementary material.
Remark 2 (Extension to higher-order algorithms). Our proof approach is quite flexible, in the sense
that for any algorithm, we really only need some function which cannot be optimized to arbitrarily
high accuracy, composed with a “channel” construction as above. Since functions of this type also
exist for algorithms employing higher-order derivatives beyond gradients (e.g., [2]), it is unlikely
that such higher-order algorithms will circumvent our impossibility result.

4 Smoothing Nonsmooth Nonconvex Functions

In this section, we turn to our second main contribution, examining the possibility of reducing
nonsmooth nonconvex optimization to smooth nonconvex optimization, by running a smooth opti-
mization method on a smooth approximation of the objective function. In what follows, we focus
our discussion on 1-Lipschitz functions: This is without loss of generality, since if our objective is
L-Lipschitz, we can simply rescale it by L (and a Lipschitz assumption is always necessary if we
wish to obtain a Lipschitz-gradient smooth approximation). Also, we focus on smoothing functions
over all of Rd for simplicity, but our results and proofs easily extend to the case where we are only
interested in smoothing over some bounded domain on which the function is Lipschitz.

For a nonsmooth convex function f(·), a well-known smoothing approach is proximal smoothing
(also known as the Moreau envelope or Moreau-Yosida regularization [5]) defined as P�(f) where

P�(f)(x) := min
y

✓
f(y) +

1

2�
ky � xk2

◆
. (1)

By picking � appropriately, P�(f) is an arbitrarily good smooth approximation of f : More formally,
if f is 1-Lipschitz, then for any ✏ > 0, there exists a choice of � = ⇥(✏) such that kP�(f)�fk1  ✏,
with the gradients of P�(f) being 1

✏ -Lipschitz. This is essentially optimal, as no ✏-approximation can
attain a gradient Lipschitz parameter better than ⌦(1/✏) (see Lemma 11 in Appendix E for a formal
proof). Finally, computing gradients of P�(f) (which can then be fed into a gradient-based smooth
optimization method) is feasible, given a solution to Eq. (1), which is a convex optimization problem
and hence efficiently solvable in general.

Unfortunately, for nonconvex functions, proximal smoothing (or other smoothing methods from
convex optimization) generally fails in producing smooth approximations. However, it turns out that
similar guarantees can be obtained with a slightly more complicated procedure, known as Lasry-Lions
regularization in the functional analysis literature [25, 3], which is essentially a double application of
proximal smoothing combined with function flipping. One way to define it is as follows:

P�,⌫(f)(x) := � P�(�P⌫(f))(x) = max
y

min
z

✓
f(z) +

1

2⌫
kz� yk2 �

1

2�
ky � xk2

◆
.
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Once more, if f is 1-Lipschitz, then choosing �, ⌫ = ⇥(✏) appropriately, we get an ✏-accurate
approximation of f , with gradients which are c

✏ -Lipschitz for some absolute constant c. However,
unlike the convex case, implementing this smoothing involves solving a non-convex optimization
problem, which may not be computationally tractable.

Alternatively, a very simple smoothing approach, which works equally well on convex and non-
convex problems, is randomized smoothing, or equivalently, convolving the objective function with a
smoothness-inducing density function. Formally, given the objective function f and a distribution
P , we define f̃(x) := Ey⇠P [f(x + y)]. In particular, letting P be a uniform distribution on an
origin-centered ball of radius ✏, the resulting function is an ✏-approximation of f(·), and its gradient
Lipschitz parameter is c

p
d

✏ , where c is an absolute constant and d is the input dimension [19].
Moreover, given access to values and gradients of f(·), computing unbiased stochastic estimates of
the values or gradients of f̃(·) is computationally very easy: We just sample a single y ⇠ P , and
return3 f(x + y) or rf(x + y). These stochastic estimates can then be plugged into stochastic
methods for smooth optimization (see [19, 20]).

Comparing these two approaches, we see an interesting potential trade-off between the smoothness
obtained and computational efficiency, summarized in the following table:

rf̃ Lipschitz param. Computationally Efficient?
Randomized Smoothing c ·

p
d/✏ X

Lasry-Lions Regularization c/✏ ⇥

In words, randomized smoothing is computationally efficient (unlike Lasry-Lyons regularization),
but at the cost of a much larger gradient Lipschitz parameter. Since the iteration complexity of
smooth optimization methods strongly depend on this Lipschitz parameter, it follows that in high-
dimensional problems, we pay a high price for computational tractability in reducing nonsmooth to
smooth problems. We emphasize that this is a real phenomenon, and not just an artifact of iteration
complexity analysis, as we demonstrate in Appendix C.

This discussion leads to a natural question: Is this trade-off necessary, or perhaps there exist compu-
tationally efficient methods which can improve on randomized smoothing, in terms of the gradient
Lipschitz parameter? Using an oracle complexity framework, we prove that this trade-off is indeed
necessary (under mild assumptions), and that randomized smoothing is essentially an optimal method
under the constraint of black-box access to the objective f(·), and a reasonable oracle complexity.
We note that Duchi et al. [19] proved that the Lipschitz constant cannot be improved by simple
randomized smoothing schemes, but here we consider a much larger class of possible methods.

4.1 Smoothing Algorithms

Before presenting our main result for this section, we need to carefully formalize what we mean
by an efficient smoothing method, since “returning” a smooth approximating function over Rd is
not algorithmically well-defined. Recalling the motivation to our problem, we want a method that
given a nonsmooth objective function f(·), allows us to estimate values and gradients of a smooth
approximation f̃(·) at arbitrary points, which can then be fed into standard black-box methods for
smooth optimization (hence, we need a uniform approximation property). Moreover, for black-box
optimization, it is desirable that this smoothing method operates in an oracle complexity framework,
where it only requires local information about f(·) at various points. Finally, we are interested in
controlling various parameters of the smoothing procedure, such as the degree of approximation,
the smoothness of the resulting function, and the complexity of the procedure. In light of these
considerations, a natural way to formalize smoothing methods is the following:
Definition 1. An algorithm A is an (L, ✏, T,M, r)-smoother if for any 1-Lipschitz function f on Rd,
there exists a differentiable function f̃ on Rd with the following properties:

1. kf � f̃k1  ✏, and rf̃ is L-Lipschitz.

2. Given any x 2 Rd, the algorithm produces a (possibly randomized) query sequence x1, . . . ,xT 2

{y : ky � xk  r}, of the form xi+1 = A
(i)
⇣
⇠,x,O1

f (x1) , . . . ,O1
f (xi)

⌘
, where A

(i) maps

3By Rademacher’s theorem, f is differentiable almost everywhere hence rf(x+ y) exists almost surely.
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all the previous information gathered by the queries to a new query, possibly based on a draw of
some random variable4 ⇠. Finally, the algorithm produces a vector

A (f,x) := A
(out)

�
⇠,x,O1

f (x1) , . . . ,O
1
f (xT )

�
,

where A
(out) is some mapping to Rd, such that

���E⇠ [A(f,x)]�rf̃(x)
���  ✏ and Pr

⇠
[kA(f,x)k  M ] = 1 . (2)

Some comments about this definition are in order. First, the definition is only with respect to the
ability of the algorithm to approximate gradients of f̃(·): It is quite possible that the algorithm
also has additional output (such as an approximation of the value of f̃(·)), but this is not required
for our results. Second, we do not require the algorithm to return rf̃(x): It is enough that the
expectation of the vector output is close to it (up to ✏). This formulation captures both deterministic
optimization-type methods (such as Lasry-Lyons regularization, where in general we can only hope
to solve the auxiliary optimization problem up to some finite precision) as well as stochastic methods
(such as randomized smoothing, which returns rf̃(x) in expectation). Third, we assume that the
queries returned by the algorithm lie at a bounded distance r from the input point x. In the context of
randomized smoothing, this corresponds (for example) to using a uniform distribution over a ball of
radius r centered on x. As we discuss later on, some assumption on the magnitude of the queries
is necessary for our proof technique. However, requiring almost-sure boundedness is merely for
simplicity, and it can be replaced by a high-probability bound with appropriate tail assumptions (e.g.,
if we are performing randomized smoothing with a Gaussian distribution), at the cost of making the
analysis a bit more complicated.
Remark 3. We are mostly interested in the following parameter regimes:

• T = poly
�
d, L, ✏�1

�
, essentially meaning that a single call to A is computable in a reasonable

amount of time.

• M = poly (L). As we formally prove in Lemma 12 in Appendix E, if we require f̃ to approximate f
and also have L-Lipschitz gradients, we must have krf̃ (x) k = O(L). In particular, whenever M
is sufficiently larger than L, Eq. (2) is interchangeable with the seemingly more natural condition
Pr⇠

h
kA(f,x)�rf̃ (x) k  M

i
= 1.

• r = O (✏). If we are interested in smoothing a 1-Lipschitz, nonconvex function up to ✏ accuracy
around a given point x, we generally expect that only its O(✏)-neighborhood will convey useful
information for the smoothing process. We note that this is indeed satisfied by randomized smoothing
(with a uniform distribution around a radius-✏ ball, or with high probability if we use a Gaussian
distribution), as well as Lasry-Lyons regularization (in the sense that the smooth approximation at
x does not change if we alter the function arbitrarily outside an O(✏)-neighborhood of x).

We consider all three of the above to be quite permissive. In particular, notice that randomized
smoothing over a ball satisfies the much stronger T = 1, M = 1, r = ✏.

Our result will require the assumption that the smoothing algorithm A is translation invariant with
respect to constant functions, in the sense that it treats all constant functions and regions of the input
space in the same manner. In order to formalize this property, first notice that if f is a constant
function then the all-derivatives oracle O

1
f (x) does not depend on x. Hence, for a constant function

f we can use the abbreviation O
1
f without specifying the specific input point. We use this to formalize

our desired translation-invariance property as follows:
Definition 2. A smoothing algorithm A satisfies TICF (translation invariance w.r.t. constant func-
tions) if for any two constant functions f, g, any x 2 Rd and i 2 [T ], and any realization of ⇠,

A
(i)
�
⇠,x,O1

f , . . . ,O1
f

�
= A

(i)
�
⇠,0,O1

g , . . . ,O1
g

�
+ x , (3)

and
A

(out)
�
⇠,x,O1

f , . . . ,O1
f

�
= A

(out)
�
⇠,0,O1

g , . . . ,O1
g

�
.

4We assume nothing about ⇠, allowing the algorithm to utilize an arbitrary amount of randomness.
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In other words, if instead of a constant function f and an input point x, we pick some other constant
function g and the origin, the distribution of the algorithm’s sequence of queries remain the same (up
to a shift by �x), and the gradient estimate returned by the algorithm remains the same. We consider
this to be a mild and natural assumption, which is clearly satisfied by standard smoothing techniques.

4.2 Main result

With these definitions in hand, we are finally ready to present our main result for this section:
Theorem 2. Let A be an (L, ✏, T,M, r)-smoother which satisfies TICF. Then there exist absolute
constants c1, c2 > 0 such that

L
p
log ((M + 1) (T + 1)) � c1 ·

p
d

r
(c2 � ✏) . (4)

This theorem holds for general values of the parameters L, ✏, T,M, r. Concretely, for parameter
regimes of interest (see Remark 3) we have the following corollary:
Corollary 1. Suppose that the accuracy parameter satisfies ✏  c2/2. Then any smoothing algorithm
which makes at most T = poly(d, L, ✏�1) queries at a distance at most r = O(✏) from the input
point, and returns vectors of norm at most M = poly(d, L, ✏�1), must correspond to a smooth
approximation f̃(·) with Lipschitz gradient parameter at least L = ⌦̃(

p
d/✏).

We note that the lower bound on L in this corollary matches (up to logarithmic factors) the upper
bound attained by randomized smoothing. This implies that at least under our framework and
assumptions, randomized smoothing is an essentially optimal efficient smoothing method.

Another implication of Thm. 2 is that even if we relax our assumption that r = O(✏), then as
long as r does not scale with the dimension d, the gradient Lipschitz parameter of any efficient
smoothing algorithm must scale with the dimension (even though there exist dimension-free smooth
approximations, as evidenced by Lasry-Lyons regularization):
Corollary 2. Fix any accuracy parameter ✏  c2/2, and any r > 0. Then as long as the number of
queries is T = poly(d) and the output is of size M = poly(d), we must have L � ⌦̃(

p
d).

A third corollary of our theorem is that (perhaps unsurprisingly), there is no way to implement
Lasry-Lions regularization efficiently in an oracle complexity framework:

Corollary 3. If ✏  c2/2 and M = poly(d), then any smoothing algorithm for which f̃(·) corre-
sponds to the Lasry-Lions regularization (which satisfies L = O(1)) must use a number of queries
T = exp(⌦̃(d)).
Remark 4 (Dependence on M ). Our definition of a smoothing algorithm focuses on the expectation
of the algorithm’s output. This leads to a logarithmic dependence on M (an upper bound on the
algorithm’s output) in Thm. 2, since in the proof we need to bound the influence of exponentially-
small-probability events on the expectation. It is plausible that the dependence on M can be
eliminated altogether, by changing the definition of a smoothing algorithm to focus on the expectation
of its output, conditioned on all but highly-improbably events. However, that would complicate the
definition and our proof.

We will now outline the proof idea, which is formally presented in Appendix A. Consider a one
dimensional monotonically increasing function g, which is locally constant at a ⌦(1/

p
d) neighbor-

hood of a grid � = {0, �1, . . . , �K} ⇢ [0, 1], with K roughly of order
p
d (see Fig. 2 in Appendix A).

We define f (x) = g(w>x), where w 2 S
d�1 is a uniformly random unit vector. We note that f is a

simple function, easily implemented by (say) a one-hidden layer ReLU neural network. We proceed
to analyze what happens when a smoothing algorithm is given points of the form �iw, �i 2 �.
Since w is random, and the algorithm is assumed to be translation invariant, it can be shown (via a
concentration of measure argument) that the algorithm is overwhelmingly likely to produce queries
in directions which all have Õ(1/

p
d) correlation with w, as long as the number of queries is polyno-

mial. Consequently, with high probability, the queries all lie in a region where the function f(·) is flat,
and the algorithm cannot distinguish between it and a constant function. By the translation-invariance
property, this implies that the gradient estimates rf̃(�iw) must be of small norm, uniformly for all
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�iw. Combining the observation that rf̃(·) is small along order-of-
p
d-many points between 0 and

the unit vector w, together with the fact that rf̃(·) is L-Lipschitz, we can derive an upper bound on
how much f̃(·) can increase along the line segment between 0 and w, roughly on the order of L/

p
d.

On the other hand, f̃(·) is an approximation of f , which has a constant increase between 0 and w.
Overall this allows us to deduce a lower bound on L scaling as

p
d, which results in the theorem.

5 Discussion

In this paper, we studied the problem of nonconvex, nonsmooth optimization from an oracle complex-
ity perspective, and provided two main results: One (in Sec. 3) is an impossibility result for efficiently
getting near approximately-stationary points, and the second (in Sec. 4) proving an inherent trade-off
between oracle complexity and the smoothness parameter when smoothing nonsmooth functions.
The second result also establishes the optimality of randomized smoothing as an efficient smoothing
method, under mild assumptions.

Our work leaves open several questions. First, at a more technical level, there is the question of
whether some or all of our assumptions can be relaxed. In particular, the result in Sec. 3 currently
holds for deterministic and zero-respecting algorithms. Although this is already a very broad class,
one may ask whether it can be made to hold for all algorithms. We believe this is true, and (as we
remark in Remark 5) will directly follow from a more general form of first-order oracle complexity
bounds for quadratics. As for the smoothness result in Sec. 4, it currently requires the algorithm to be
translation invariant w.r.t. constant functions, as well as querying at some bounded distance from the
input point x. We conjecture that the translation invariance assumption can be relaxed, possibly by a
suitable reduction that shows that any smoothing algorithm can be converted to a translation invariant
one. However, how to formally perform this remains unclear at the moment. As to the bounded
distance of the queries, it is currently an essential assumption for our proof technique, which relies
on a function which looks “locally” constant at many different points, but is globally non-constant,
and this can generally be determined by querying far enough away from the input point (even along
some random direction). Thus, relaxing this assumption may necessitate a different proof technique.

Another open question is whether randomized smoothing can be “derandomized”: Our results indicate
that the gradient Lipschitz parameter of the smooth approximation cannot be improved, but leave open
the possibility of an efficient method returning the actual gradients of some smooth approximation
(up to machine precision), in contrast to randomized smoothing which only provides noisy stochastic
estimates of the gradient. These can then be plugged into smooth optimization methods which
assume access to the exact gradients (rather than noisy stochastic estimates), generally improving the
resulting iteration complexity. We note that naively computing the exact gradient of f̃(·) arising from
randomized smoothing is infeasible in general, as it involves a high-dimensional integral.

At a more general level, our work leaves open the question of what is the “right” metric to study
for nonsmooth-nonconvex optimization, where neither minimizing optimization error nor finding
approximately-stationary points is feasible. In this paper, we show that the goal of getting near
approximately stationary points is not feasible, at least in the worst case, whereas smoothing can be
done efficiently, but not in a dimension-free manner. Can we find other compelling goals to consider?
One very appealing notion is the (�, ✏)-stationarity of [37] that we mentioned in the introduction,
which comes with clean, finite-time and dimension-free guarantees. Our negative result in Thm. 1
provides further motivation to consider it, by showing that a natural variation of this notion will not
work. However, as we discuss in Appendix B in the supplementary material, we need to accept that
this stationarity notion can have unexpected behavior, and there exist cases where it will not resemble
a stationary point in any intuitive sense. In any case, using an oracle complexity framework to study
this and other potential metrics for nonsmooth nonconvex optimization, which combine computational
efficiency and finite-time guarantees, remains an interesting direction for future research.

Broader impact. In this work we discuss several approaches for providing formal guarantees when
optimizing nonsmooth nonconvex functions, and shed light on their inherent limitations and trade-
offs in an oracle complexity framework. Such optimization objectives arise when training modern
deep neural networks, a practice which is currently subject to many heuristics. We believe a better
theoretical understanding of the field will eventually affect practice and help develop sound deep
learning based technology. We find it difficult to provide more specific potential negative societal
impact, other than the well known potential negative implications of such technology as a whole.
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