
A Experimental Details

A.1 Networks used for comparison

A.2 CIFAR-10:

ResNets: We train a variety of ResNets for comparing representations. The base ResNet architecture
for all our experiments is ResNet-18 [He et al., 2015] adapted to CIFAR-10 dimensions with 64 filters
in the first convolutional layer. We also train a wider ResNet-w2x and narrower ResNet-0.5x with
128 and 32 filters in the first layer respectively. For the deep ResNet, we train a ResNet-164 [He
et al., 2015].

For the experiments with varying number of samples or training epochs, we train the base ResNet-18
with the specified number of samples and epochs.

For experiments with changing label distribution, we also train the base ResNet-18. As specified, for
the binary Object-Animal labels, we group Cat, Dog, Frog, Horse, Deer as label 0 and Truck,
Ship, Airplane, Automobile as label 1. For the label noise experiments, with probability
p = {0.1, 0.5, 1.0} we assign a random label to p fraction of the training set.

All the ResNets are trained for 64K gradient steps of SGD with 0.9 momentum, a starting learn-
ing rate of 0.05 with a drop by a factor of 0.2 at iterations {32K, 48K}. We use a weight de-
cay of 0.0001. We use the standard data augmentation of RandomCrop(32, padding=4) and
RandomHorizontalFlip.

Vision Transformer: We use a ViT model [Dosovitskiy et al., 2020] from the timm ? library adapted
for CIFAR-10 image dimensions. The model has patch size = 4, depth = 12, number of attention
heads = 12 and dimension = 768. We train two models with different initializations on CIFAR-5m
[Nakkiran et al., 2021], which consists of 5 million images synthetic CIFAR-10 like images generated
from a denoising diffusion model. We perform the stitching on CIFAR-10.

Myrtle CNN: We consider a simple family of 5-layer CNNs, with four Conv-BatchNorm- ReLU-
MaxPool layers and a fully-connected output layer following Page [2018]. We train it for 80K
gradient steps with a constant learning rate of 1. We use the standard data augmentation of
RandomCrop(32, padding=4) and RandomHorizontalFlip.

A.3 ImageNet:

For the supervised model, we use the pretrained model from PyTorch. For the SwAV and SimCLR
models, we use the pretrained models provided by Goyal et al. [2021]. For the DINO model, we use
the pretrained model provided by Caron et al. [2021b].

A.4 Stitcher

Convolutional networks: In all our stitching experiment, the top consists of a convolutional network
and the representation r comes from a convolutional network B. For most experiments, the archi-
tecture of B is the same as A, with the except of the "more width" experiments where it may have
different width but the same depth. Let’s say the the first l layers of the bottom modelB have channels
C1 and the top modelA has channelsC2. The stitching layer is then { BatchNorm2D(C1), Conv(in
features = C1, out features = C2, kernel size = 1), BatchNorm2D(C2) }.

For computation reasons, in the residual networks, we perform the stitching between two ResNet
blocks (not inside a residual block). There is no reason to expect different results within the block.

Vision Transformer: We use a linear transform of the embedding dimension (768× 768).

All stitching layers were optimized with Adam cosine learning rate schedule and initial learning rate
0.001

13



B Additional results

B.1 Ablations

We now perform ablations on the stitching family S for convolutional networks. We set the kernel
size of the stitching convolutional layer to {1, 3, 5, 7, 9} and check how this affects the test
performance. Both the top and bottom models are ResNet-18 trained on CIFAR-10 with different
random initializations. We find that kernel size has minimal impact on the test error of the stitched
network. We choose a kernel size of 1, so that the stitched model architecture is identical to either the
top or the bottom model.

Figure 4: Test Error with changing kernel size

B.2 Comparison with CKA

B.2.1 Random network

To confirm that our stitching layer is not performing learning, we stitch a randomly initialized
untrained network to a trained top model. The network architecture is ResNet-18 and the top is
trained on CIFAR-10. The results of this experiment for networks trained on CIFAR-10 and ImageNet
are shown in Figure 2A and B respectively (also plotted for CIFAR-10 in Figure 5 for clarity). These
plots show that the early layers of the model have low stitching penalty, implying that the early layers
behave similarly to a randomly initialized network. To confirm that this is not a pathological scenario
for model stitching, we also compute the CKA at each layer for the same random and top networks.
Figure 5 shows that CKA also predicts that the early layers of a neural network are ’similar’ to a
random network.

B.2.2 Self-supervised vs. supervised

We now compare the representations a network trained with self-supervised learning (SimCLR Chen
et al. [2020b]) or end-to-end (E2E) supervised learning. As Figure 6B shows, the two networks have
similar representations - the networks are stitching connected in both directions (SimCLR at the
bottom, E2E at the top and vice-versa). Moreover, the stitching penalty is in the same range as that of
a different E2E network with a different random initialization. On the other hand, CKA shows that
the SimCLR representations can differ a fair bit from the E2E networks. The stitching results show
that these representations differ only superficially in directions that are not relevant to the downstream
classification performance.

B.2.3 More is better

We now show CKA comparisons for experiments in Section 6. The results are shown in Figure 7.

14



Figure 5: Comparing the representation of a random network with a trained network with model
stitching and CKA

Figure 6: Comparing representations for a SimCLR trained network with a fully supervised network
on CIFAR-10 (a) With CKA. CKA shows that representations trained with SimCLR vs. E2E differ
more than those from two E2E networks with different random initializations (b) With Stitching:
Stitching shows that the SimCLR and E2E representations are identical in stitching performance

Width: We compare the CKA for all layers for a ResNet-18-w0.25x with ResNet-18-w2x. We find
that the CKA can be as low as 0.7 for the early layers, while the stitching penalty for early layers is
small as shown in Figure 3C.

Samples: We compare the CKA for a network trained with 5K samples with a network trained with
25K samples. The CKA can go as low as 0. On the other hand, stitching in Figure 2C shows a
negative stitching penalty, showing that the layers trained with more samples are still compatible with
the 5K model.

Training time: We compare the CKA for a network at the end of training (160 epochs) with the
midpoint of training (80 epochs). CKA finds that the representations are similar.

B.3 Comparison with fine-tuning

We now show that finetuning can overestimate the similarity between representations compared to
model stitching. To do so, we compare the representations of a trained ResNet-164 (top model) with
a randomly initialized untrained ResNet-164 (bottom model). For finetuning, we simple freeze the
first l layers of the bottom network and train the top layers after reinitializing them. The results are
shown in Figure 8.

15



Figure 7: Comparing representations with CKA in settings where one model has better accuracy than
the other obtained by (1) Increasing width (2) Increasing training time (3) Increasing the number
of samples. We find that CKA gives mixed answers about the similarity of such representations,
but model stitching shows that ’better’ representations can be stitched into a weaker model to gain
performance.

Figure 8: Finetuning vs. Stitching: We compare the effect of fine-tuning (the top model) vs. just
stitching the stitching layer. We find that fine-tuning can over-estimate the similarity since fine-tuning
has many more trainable parameters.

B.4 Freeze training with fewer samples

The results in 6 suggest that certain layers of the network have smaller sample complexity than the
other layers. That is, they take fewer samples to reach a representation that is stitching-connected to
the rest of the model. To test this hypothesis further, we take a ResNet-18 trained on 5K samples
(10%) of the dataset and stitch it with a top network trained on the full dataset (results in Figure
2C) and the reverse - a top model with 5K and bottom with 50K. We then choose the layers whose
stitching penalty is close to 0 at 5K (layers {0, 1} in Figure 2C) and similarly for the opposite (layers
{8, 9, 11}). Then, we freeze these 5 layers and train the rest of the network with the full dataset.
The test curves with training time are shown in Figure 9. As we can see, this network obtains good
performance (up to ≈ 3%). This suggests that not all layers need to be trained for a large number
of samples - this can potentially be used in future applications to speed up training time. Predicting
which layers will have small sample complexity is an interesting direction for future research.

16



Figure 9: Freeze training

17


