First Order Constrained Optimization in Policy Space

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental

Authors

Yiming Zhang, Quan Vuong, Keith Ross

Abstract

In reinforcement learning, an agent attempts to learn high-performing behaviors through interacting with the environment, such behaviors are often quantified in the form of a reward function. However some aspects of behavior—such as ones which are deemed unsafe and to be avoided—are best captured through constraints. We propose a novel approach called First Order Constrained Optimization in Policy Space (FOCOPS) which maximizes an agent's overall reward while ensuring the agent satisfies a set of cost constraints. Using data generated from the current policy, FOCOPS first finds the optimal update policy by solving a constrained optimization problem in the nonparameterized policy space. FOCOPS then projects the update policy back into the parametric policy space. Our approach has an approximate upper bound for worst-case constraint violation throughout training and is first-order in nature therefore simple to implement. We provide empirical evidence that our simple approach achieves better performance on a set of constrained robotics locomotive tasks.