ScaleCom: Scalable Sparsified Gradient Compression for Communication-Efficient Distributed Training

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental

Authors

Chia-Yu Chen, Jiamin Ni, Songtao Lu, Xiaodong Cui, Pin-Yu Chen, Xiao Sun, Naigang Wang, Swagath Venkataramani, Vijayalakshmi (Viji) Srinivasan, Wei Zhang, Kailash Gopalakrishnan

Abstract

Large-scale distributed training of Deep Neural Networks (DNNs) on state-of-the-art platforms are expected to be severely communication constrained. To overcome this limitation, numerous gradient compression techniques have been proposed and have demonstrated high compression ratios. However, most existing compression methods do not scale well to large scale distributed systems (due to gradient build-up) and / or lack evaluations in large datasets. To mitigate these issues, we propose a new compression technique, Scalable Sparsified Gradient Compression (ScaleComp), that (i) leverages similarity in the gradient distribution amongst learners to provide a commutative compressor and keep communication cost constant to worker number and (ii) includes low-pass filter in local gradient accumulations to mitigate the impacts of large batch size training and significantly improve scalability. Using theoretical analysis, we show that ScaleComp provides favorable convergence guarantees and is compatible with gradient all-reduce techniques. Furthermore, we experimentally demonstrate that ScaleComp has small overheads, directly reduces gradient traffic and provides high compression rates (70-150X) and excellent scalability (up to 64-80 learners and 10X larger batch sizes over normal training) across a wide range of applications (image, language, and speech) without significant accuracy loss.