Supplementary materials: “Matrix Inference and Estimation in Multi-Layer
Models”

Appendix A State Evolution Equations

The state evolution equations given in Algo. 2 define an iteration indexed by k of constant matrices

{Ka, T f;l }£_ - These constants appear in the statement of the main result in Theorem 1. The
iterations in Algo. 2 also iteratively define a few R'*¢ valued random vectors {QY, PP, Qfg, Pkie}
which are either multivariate Gaussian or functions of Multivariate Gaussians. In order to state
Algorithm 2, we need to define certain random variables and functions appearing therein which are
described below. Let Loq4q = {1, 3,. — 1} and Leven = {2,4 -2}

Define {G)M} similar to @ , from equation (14) using {I‘M} Further, for ¢ = 1,2, ..., L —1 define
le = (Akévrkéarkz)v Q= (Ak,é—lark,é—lvrk,é—l)a

and ﬁ;—o and ;. Now define random variables W) as
I/V() Zo; WL = ( \—*L) WZ = Ely Vie 'Cevena

(18)
Wy = (Se, Be, Z0), Vel € Logd.
Define functions { f}2_; as
fO(PLy, W) i= S¢P)_y + By +Ei, VL E Loaa,
FOPLL,We) i= (P, Z0), VLE Loven U{L}. (1
and using (14) define functions {h", }%_,, h{ and h as
hy (Pl_1, Py, Qp Wi, ©5) = G (Qp + QF, Py + PPy, ©5), VI € Leyen,
e (Py, PP QW ©3) = GE(Qp + Q1 Py + Py, ©5,), VI E Loaa 20)

hg (Qg s Wo, ©) = G¢ (Qq + Wo, ©5),
hy (PLOUPL WL ©) :G_(Pijr 1+PB 1505).
Note that [G, G; ] and [G}, G ] are maps from R'*¢ — R'*? such that their row-wise extensmns

are the denoisers [GZ, G, ]and [Gg 7G ] respectively. Using (20) define functions { ;" }2 =1, fo©
and f; as

FE (P, PEL QW ) = (R — Q) Ay — Qu Ty (TH) ™

f7 (P P, Q7 We ) = [UQ‘<ﬁL)A£@1*PLJ%¢J(F;@J’9
(Qq » Wo, k()) [(h+ - WO) ro — Qo k(]] (on) )
(Pl Pl Wr, Q) = [(h_ PLa) Ay — PL—J‘&A} (Trra) ™

2L
fo
fr

Appendix B Large System Limit Details

The analysis of Algorithm [ in the large system limit is based on [3] and is by now standard in the
theory of AMP-based algorithms. The goal is to characterize ensemble row-wise averages of iterates
of the algorithm using simpler finite-dimensional random variables which are either Gaussians or
functions of Gaussians. To that end, we start by defining some key terms needed in this analysis.

Definition 1 (Pseudo-Lipschitz continuity). For a given p > 1,amap g : R'*¢ — R'*" is called
pseudo-Lipschitz of order p if for any ry,ro € R? we have,

lg(r1) — gE2)ll < Clirs — rafl (1 + [P~ + [fraf)
Definition 2 (Empirical convergence of rows of a matrix sequence). Consider a matrix-sequence
{XM%e_, with XV) € RNV*4 For a finite p > 1, let X € (R, R%) be a R%-measurable random
variable with bounded moment E[| X [P < co. We say the rows of matrix sequence {XWMN)Y converge
empirically to X with p'" order moments if for all pseudo-Lipschitz continuous functions f(-) of
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Algorithm 2 State Evolution for ML-Mat-VAMP (Algo. 1)

Require: Functions {f} from (19), {h} from (20), and {f;*} from (21). Perturbation random
variables {W,} from (18). Initial random vectors {Qy,}+—, Wwith Initial covariance matrices

{75, } £ from Section 4. Initial matrices {T'y, }%_, from (16).

// Initial Pass
QY = Wy, 7§ = Cov(QY) and PY ~ N(0, 1Y)
for(=1,...,L—1do
QY = f2(PY,, W)
P) ~N(0, 1), 1) =Cov(QY)
end for

SAAN R

7: fork=0,1,...do
/LForward Pass
9: Q$0 = h (QkO’WOanO)
10: K;:O = (Eano) lrk,o
O
=+

_ =+
12: Qﬁo :I@L(Qkovwoa?ko) . N
13: (P(?,Pko) ~N(0,K}), K}, = Cov(Qg, Q7o)

o0

14: for/=1,...,L—1do

15: @Ze = hZ(Pzglv PIIHv Qo> Wé:ﬁzz)
J— A+ JE—
16 Ay = (Eggii)*lrw
17: T, = AM T,
18: ka = fz (Pe—p Pz:,fz—lv Qe Wfaﬁ;:z)
19: (PP, Py) ~ N(0,K},), K, := Cov(Q7, Q)
20:  end for

21: // Backward Pass

. - — (PO
22: Pk+1u1 hy (Pr kL—l’WL7®/€+1L)

P

12}
23: Ak—‘rl,L = (E%) 1FkL

24 Thiipa =AM —Thras
25: Pk:r1L—1 fL(PL—lvpkL_pWLvﬂk—HL)

26: Qk+1,L—1 N(07Tk+1,L—1) Thp, L1 - Cov(P, et 1)
27 for{=L-2,...,0do

) - - + - rom

28: Pk+1 .= hy (P, P, Qry1.001:We, Orprp)
oP= —+
29: Apyry = (ET;::[) Ty,
— — 7 =+

30: Lyi10=Asi10—Trps

) - - + - o
31 P =10 (PP, Q. é+1’W1”Qk+1 0
32: Qe ~ N0, T )y T = Cov(Pyy )
33:  end for
34: end for
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order p,

2

Jim Z X)) =E[f(X)] as. 22)

Note that the sequence {X (™)} could be random or deterministic. If it is random, however, then
the quantities on the left hand side are random sums and the almost sure convergence must take this
randomness into account as well.

The above convergence is equivalent to requiring weak convergence as well as convergence of the
p™ moment, of the empirical distribution - ~ Zn 1 X(N) of the rows of X™¥) to X. This is also
referred to convergence in the Wasserstein-p metric [ Chap 6].

In the case of p = 2, the condition is equivalent to requiring (22) to hold for all continuously bounded
functions f as well as for all f,(x) = 2" Qa for all positive definite matrices Q.

Definition 3 (Uniform Lipschitz continuity). For a positive definite matrix M, the map o(r; M) :
R? — R? is said to be uniformly Lipschitz continuous in r at M = M if there exist non-negative
constants L, Lo and L5 such that for all r € R

|o(r1; Mo) — ¢(re; Mo)|| < Lq|jry — raf|
[¢(r; M1) — ¢(r; Ma)|| < La(1 + [|r|)p(M:, M2)

for all M; such that p(M;, M) < Ls where p is a metric on the cone of positive semidefinite
matrices.

We are now ready to prove Theorem 1.

Appendix C Proof of Theorem 1

The proof of Theorem 1 is a special case of a more general result on multi-layer recursions given in
Theorem 2. This result is stated in Appendix D, and proved in Appendix E. The rest of this section
identifies certain relevant quantities from Theorem 1 in order to apply Theorem 2.

Consider the SVD given of weight matrices W, of the network given by,
W[ = ngiag(Sg)V[ -1
as explained in Section 4 of the maln paper. We analyze Algo | using tmnsformed versions of the

true signals Z9 and input errors Rz — Z9 to the denoisers G .For{=0,2,...L — 2, define
qQ; = Zj a1 = Vi Zia (23a)
= VKZO p/+1 Z£+1 (23b)

which are deplcted in Flg 3 (TOP). Similarly, define the following transformed versions of errors in
the inputs Rz to the denoisers G;

q, =R; —Z} A = ViR, —Z9,) (24a)
p; = Vi(R} —Z9) P =R, —Z),, (24b)

These quantities are depicted as inputs to function blocks fgt in Fig. 3 (MIDDLE). Define perturbation
variables w; as

wo =Zg, w, = (Y,E,), w=Ey, Ve € Loven (25a)
wy = (S¢, By, By), VI € Logq (25b)
Finally, we define qj andp, for{=1,2,...,L —1as
af =7 (PP 1, Py ap s we, ) (26a)
Py = £, (PY1, Py, q;  We, ), (26b)

which are outputs of function blocks in Fig. 3 (MIDDLE). Similarly, define the quantities qi =
fo (do » Zo,20) and p_y = £ (P} 1, P 1, Y, Q).
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Lemma 1. Algorithm 1 is a special case of Algorithm 3 with the definitions {q?, pg, q}t, p}t }ZL;Ol

given in equations (23),(24), and (26), functions fzE are row-wise extensions of fgt defined using
equations (21) and (20).

Lemma 2. Assumptions | and 2 required for applying Theorem 2 are satisfied by the conditions in
Theorem 1.

Proof. The proofs of the above lemmas are identical to the case of d = 1, which was shown in [34].
For details see [34, Appendix F].

Appendix D General Multi-Layer Recursions

al—{ Vo -pd—f[—al — Vi (—p) £} —ad—| Vo —p}—{f|—al— Vs |—p}

ag — Vo —pg af — Vi —p; aj — V2 —p; as — Vs —p3

ay — Vo —py a; — V{ —p; a4y | V3 —p; a; — V4 [—p;

0 0 0 0 0 0
1 Pl 2 P2 QS PS

s -2 fEis ] fs
]
= 3@3&

a@r  a(@Dn o

Figure 3: (TOP) The equations (1) with equivalent quantities defined in (23), and flf) defined using
(19).

(MIDDLE) The Gen-ML-Mat recursions in Algorithm 3. These are also equivalent to ML-Mat-
VAMP recursions from Algorithm 1 (See Lemma 1) if g, pT are as defined as in equations (24)
and (26), and fgt given by equations (21) and (20).

(BOTTOM) Quantities in the GEN-ML-SE recursions. These are also equivalent to ML-Mat-VAMP
SE recursions from Algorithm 2 (See Lemma 1)

The iteration indices k have been dropped for notational simplicity.

To analyze Algorithm 1, we consider a more general class of recursions as given in Algorithm 3 and
depicted in Fig. 3. The Gen-ML recursions generates (i) a set of true matrices q) and pY and (ii)
iterated matrices qu and pfl. Each of these matrices have the same number of columns, denoted by

d.

The true matrices are generated by a single forward pass, whereas the iterated matrices are generated
via a sequence of forward and backward passes through a multi-layer system. In proving the State
Evolution for the ML-Mat-VAMP algorithm (Algo. 1, one would then associate the terms qi, and
pfe with certain error quantities in the ML-Mat-VAMP recursions. To account for the effect of the
parameters I'y, and A}, in ML-Mat-VAMP, the Gen-ML algorithm describes the parameter updates
through a sequence of parameter lists Tki,g. The parameter lists are ordered lists of parameters that
accumulate as the algorithm progresses. The true and iterated matrices from Algorithm 3 are depicted
in the signal flow graphs on the (TOP) and (MIDDLE) panel of Fig. 3 respectively. The iteration
index k for the iterated vectors qy¢, px¢ has been dropped for simplifying notation.
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The functions £J(+) that produce the true matrices q\, pY are called initial matrix functions and use
the initial parameter list T ;. The functions f,j}() that produce the matrices q& and p,, are called
the matrix update functions and use parameter lists T,fl. The initial parameter lists T); are assumed
to be provided. As the algorithm progresses, new parameters )\fe are computed and then added to
the lists in lines 12, 18, 25 and 31. The matrix update functions f,j;() may depend on any sets of
parameters accumulated in the parameter list. In lines 11, 17, 24 and 30, the new parameters )\ki,é
are computed by: (1) computing average values Nfe of row-wise functions cpfl(); and (2) taking
functions Tki(,() of the average values ufe. Since the average values lee represent statistics on the
rows of o3, (+), we will call ¢ (-) the parameter statistic functions. We will call the T;5(-) the
parameter update functions. The functions £, f25,, @7 also take as input some perturbation vectors
Wy.

Similar to the analysis of the ML-Mat-VAMP Algorithm, we consider the following large- system
limit (LSL) analysis of Gen-ML. Specifically, we consider a sequence of runs of the recurswns
indexed by N. For each N, let Ny = Ny(N) be the dimension of the matrix signals p , and qg as we
assume that A}im % = B¢ € (0,00) is a constant so that IV, scales linearly with N. Note however
— 00

that the number of columns of each of the matrices {q?, p?, qfé, p,fe} is equal to a finite integer
d > 0, which remains fixed for all N. We then make the following assumptions. See Appendix B
for an overview of empirical convergence of sequences which we use in the assumptions described
below.

Assumption 1. For vectors in the Gen-ML Algorithm (Algorithm 3), we assume:

(a) The matrices V, are Haar distributed on the set of N, x N, orthogonal matrices and are
independent from one another and from the matrices qg, Q> perturbation variables wy.

(b) The rows of the initial matrices qq,, and perturbation variables w, converge jointly empirically
with limits,

2 2
qOZ = Qoev Wy = Wfa (27)
where @, are random vectors in R'*4 such that (Qops - 7@1&1) is jointly Gaussian. For
{=0,...,L—1, the random variables W, P}L1 and @), are all independent. We also assume
that the initial parameter list converges as
lim Y 22 Yo 28
[Naret 01 (V) 01> (28)

to some list T);. The limit (28) means that every element in the list A\(V) € Y, (IV) converges
to alimit \(N) — X € Tj; as N — oo almost surely.

(c) The matrix update functions fl;te() and parameter update functions gofe(-) act row-wise. For e.g.,
in the k" forward pass, at stage £, we assume that for each output row n,

+(00  _+ - + 40 + - +
[fke(pH, Pk, e—1) Do W, Tke)} b fre(Pe-t s Pro—1,n: Do n> Weon:s i)

+ (0 + - + 4.0 + - +
{‘Pke(Pefh Pi 1> Ares We, Tk-e)} b ‘sz(PE—l,n:a Pie1no Do Wen:s Tho)s

for some R'*?-valued functions f;}(-) and ¢,(-). Similar definitions apply in the reverse
directions and for the initial vector functions £(-). We will call f,(-) the matrix update row-
wise functions and gofe(o) the parameter update row-wise functions.

. E—
Next we define a set of deterministic constants {K,, 7, i, Y1y, 70} and R'*%-valued random

vectors {Q9 o PZO , Q > Pi} which are recursively defined through Algorithm 4, which we call the
Gen-ML-Mat State Evolution (SE). These recurs10ns in Algorlthm closely mirror those in the Gen—
ML-Mat algorithm (Algorithm 3). The matrices qk A and pi % are replaced by random vectors QE ot

and Pk 2> the matrix and parameter update functions f e( ) and ;. e( ) are replaced by their row-wise

functions f;(-) and go,fe(); and the parameters )\ff are replaced by their limits Xfe. We refer to

{QY, PP} as true random vectors and {Q7, e P} as iterated random vectors. The signal flow graph
for the true and iterated random variables in Algorithm 4 is glven in the (BOTTOM) panel of Fig. 3.
The iteration index & for the iterated random variables {Q ot Pk .} to simplify notation.
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Algorithm 3 General Multi-Layer Matrix (Gen-ML-Mat) Recursion

Require: Initial matrix functions {f;}. Matrix update functions {f;(-)}. Parameter statistic func-
tions {5 (+)}. Parameter update functions {7;5(+)}. Orthogonal matrices {V}. Perturbation

variables {w7 }. Initial matrices {q,}. Initial parameter list Y.

1: // Initial Pass

2: qf = f(wo), p§= Voa)
3: for{=1,...,L—1do

4: qg = ft?(p(l)flﬁ Wy, T(Tl)

5: pg = ngg

6: end for

7:

8: fork=0,1,... do

9: /I Forward Pass

10: )‘;cio = TIQBJSMzo_a Tor) B
11: M}cﬁ = <§0120(qk+07W0a T()k)>
12: Tfo = (Em L)‘ko) .

13: q,io = fko(qfov wo, Y1)
14: pro = Vodyg

15 for/=1,...,L—1do
16: Moo = T (it T:,Z—l)
17: /‘ze = <‘P$e(p2—1v p&—p Apeps Wi, T;6—1)>
18: T;:z = (T&_p )‘&)

190 afy =550l Pl A e, TH)
20: P, = Veaf,
21:  end for

22:  // Backward Pass

23 N = Tor,(bgrs T;LA)

24 g = <‘101;L(p;1ﬁ1>WL7 T-lc%,lf1)>

25: o, L = (T;lﬁl’/\—ktrl,L)

260 Py = fk_L(p(I)fU P;r,zAv WL, TI;+1,L)

270 Qi = V-lrﬁlpkﬂylﬁl
28: for{=L-1,...,1do

29: At = Do (Bies T o)
. - _/ /0 + - -
30: Hie = <‘PM(P15—17 Pi 1> 9pp,e0 Wes Tk+1,£+1)>
3L 1;+1,£ = (Tl;dxﬂa 1;+1,e)
. - _ e~ (.0 + - -
32 Priiea = £ (P P15 Qpp,e0 Wes Tk+1,£)
. - T -
33: Qpp1,e1 = A= Pri1,ea
34:  end for
35: end for

We also assume the following about the behaviour of row-wise functions around the quantities defined
in Algorithm 4. The iteration index k has been dropped for simplifying notation.

Assumption 2. For row-wise functions f, ¢ and parameter update functions 7" we assume:

(@) T5(ui,, -) are continuous at ui, = 7,

b) FE(0 . pt - T+ Mo (0 o+ - T+ d
(b) fkg(pe_laphg_p Qp0> We,s kg)’ oa,, (pg_ppk_ye_p Qp.p> We,s kg) an

+ (0 ot - + - cohi - (0 ot -
‘Pke(phl:pu—p Qrp> We, Tk,é—l) are uniformly Lipschitz continuous in (pefl,pk,g_17 Qo> We)
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Algorithm 4 Gen-ML-Mat State Evolution (SE)

Require: Matrix update row-wise functions fJ(-) and f,;i(-), parameter statistic row-wise functions

gafé('), parameter update functions 735(-), initial parameter list limit: Y, initial random
variables Wy, Qg £ =0,..., L—1.

1: // Initial pass

2: Qg = f(()J(W07T(;1)7 P(S) NN(O>7—8)7 T(SJ :E(Q8)2

3: for{=1,...,L—1do

4 ngf?(PeguW&Tm)

50 PP~ N(0,79), 70=Cov(QY)

6: end for

7:

8: fork=0,1,... do

9: Qforward Pass

10 Ao = Tyl (Fig» Tor) o

1 EZE = EL‘PZOQ%ZW Wo, Yox))

122 Tpo = (Tias Awo) .

13: Q?o :J{I:E)(QIZOVW(MEkO) N N

14: (Pooa Pko) ~ N0, Kko)a K, = COV(Q(O)v Qko)

15 for/=1,...,L—1do

16: XZ@ =T, (ﬁ/jev?:,u)

7 i = B (P P Qi W The)

18: TZe = (TZ,HJ;D

19: Q:e = fl;;(Pf(llv PI:,_E—l’ Que> WZaTZ_Z)

20: (P, P,jz) ~ N(0, K&), K;& = Cov(QY, Q;e)
21:  end for

22: // Backward Pass

230 Mr = T;;L(E;DTZ,IFQ

24 Hyp = E(SDI;L(PE—M PI:,_L—D WLvT;:,L—l))
250 Y= (YZ,L—MXZH,L)

260 Py g =i (PYy Pl W T 1)

27 Q1;+1,L—1 ~ N(Ole;r1,L—1)a Tk:—l,L—l = COV(P/;L1,L—1)
28: for{=L—-1,...,1do

29: Xl;rl,@ = Tt (Fg> Thp1 1)

30: ﬁ];g = E(@;Z(ngp P;::g,p Q];H’ga W, Tk—i—l,é—i—l))

3l Yo = (Cppre01 Aeia o)

32 Pk:rl,é—l = fl;Z(Plf)—l’ PI:Z—D Ql;q,m We, Y10

33: Ql;—i—l,é—l ~ N(O’Tk:-l,é—l)v Th, 1 = COV(P/;A,E—H
34:  end for

35: end for

at Ty, = Ther Ty = TZ, ;1. Similarly,

— 0 + - - Ofe (10 + - -
fk+1,l(p£71’pk,lfl’ Qrt1,00 Wes Tho)s 61):7 ) (peqvpk,zq’ i1, Wes The)s and

Oro( pg_ 15 ka,r 1 o1 Wes Ty oy ) are uniformly Lipschitz  continuous in

0 + - . A
(pZ—hpk,Zfl? qk+1,e’w€) at Ty, = Ty, Tk+1,l+1 = Try1,041-

(© f2(pY,we, Ygy) are uniformly Lipschitz continuous in (p) , ,we) at Tppy p = Ty 4
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(d) Matrix update functions f,;i are asymptotically divergence free meaning

. P : of;, - A
A <8qw (PF o1 Upps Wi Tw)> =0, lim <3P£;_1 (Pr 1+ D100 W Tu)> =0
(29)

We are now ready to state the general result regarding the empirical convergence of the true and
iterated vectors from Algorithm 3 in terms of random variables defined in Algorithm 4.

Theorem 2. Consider the iterates of the Gen-ML recursion (Algorithm 3) and the corresponding ran-
dom variables and parameter limits defined by the SE recursions (Algorithm 4) under Assumptions |
and 2. Then,

(a) Forany fixed k > 0 and fixed ¢ =1, ..., L—1, the parameter list T we converges as

lim T, =T, 30
N ke ke (30)
almost surely. Also, the rows of wy, Pe—y qe, pargfl, e Pzzq and qge, e qa almost surely
Jjointly converge empirically with limits,
0 + - 40 o) 2 0 + - 00 0t
(p€717pi,2—17qjl’q€7qjl) = (PffhPi,IZ717Qj€’Q€7QjZ)’ (31)

forall 0 < i,j <k, where the variables P} ,, Pi_‘—l—l and QJ_Z are zero-mean jointly Gaussian
random variables independent of W, and with covariance matrix given by

Cov(Py, Pfyy) =Ky, E(Q)" =75, E(PLQ5) =0 EPFSQ;) =0,
(32)
and QY, Q]z are the random variable in lines 4, 19,i.e.,
Ql :fe(Pz 1)Wl) ;re: j (PZ 15 jé_l,QjeaWbTﬂ) (33)

An identical result holds for £ = 0 with all the variables pz ¢+ and P 4+, removed.

(b) For any fixed k¥ > 1 and fixed ¢ = 1,..., L—1, the parameter lists T, , converge as

lim Y, =7, 34
N ke ke (34)
almost surely. Also, the rows of wy, Pe—l’ p0 1 plH ¢1>and qgp, . . -, q;,, almost surely

jointly converge empirically with limits,

(P4, Pl ey Wjr Prey) = (PLas Pl Qi Pryp ) (35)
forall0 <7 < k—1and 0 < j5 < k, where the variables P/_l, P ., and Q) ¢ are zero-mean

jointly Gaussian random variables independent of W, and with covariance matrix given by
equation (32) and PJQ is the random variable in line 32:

P{g _fy}(Pé.ilantl,é_laQ;pvaT]'_Z)' (36)
An identical result holds for ¢ = L with all the variables q;, and Qj_g removed.

For k = 0, Yo; — Y, almost surely, and the rows {(wy ., pg_lm:, q;, )15, empirically
converge to independent random variables (W, P 1, Q).

Proof. Appendix E is dedicated to proving this result. |

Appendix E  Proof of Theorem 2

The proof proceeds using mathematical induction. It largely mimics the proof for the case of d = 1
which were the convergence results in [34, Thm. 5]. However, in the case of d > 1, we observe
that several quantities which were scalars in proving [34, Thm. 5] are now matrices. Due to the
non-commutativity of these matrix quantities, we re-state the whole prove, while modifying the
requisite matrix terms appropriately.
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Appendix E.1 Overview of the Induction Sequence

The proof is similar to that of [36, Theorem 4], which provides a SE analysis for VAMP on a
single-layer network. The critical challenge here is to extend that proof to multi-layer recursions.
Many of the ideas in the two proofs are similar, so we highlight only the key differences between the
two.

Similar to the SE analysis of VAMP in [36], we use an induction argument. However, for the
multi-layer proof, we must index over both the iteration index k and layer index ¢. To this end, let
H;, and H;, be the hypotheses:

° H;‘e: The hypothesis that Theorem 2(a) is true for a given &k and ¢, where 0 < ¢ < L — 1.
e H,.,: The hypothesis that Theorem 2(b) is true for a given k and ¢, where 1 < ¢ < L.

We prove these hypotheses by induction via a sequence of implications,
{Hostier - = Hpg = Hig= =2 M1 =My = = Hgp = (37)
beginning with the hypotheses {#,} forall /= 1,...,L—1.

Appendix E.2 Base Case: Proof of {#,,}_;

The base case corresponds to the hypotheses {/Ho}}é::l- Note that Theorem 2(b) states that for
k = 0, we need Yg; — T, almost surely, and {(We,n:s Py 0> A7) iz €mpirically converge

to independent random variables (W, Péo_l, Qo). These follow directly from equations (27) and
(28) in Assumption 1 (a).

Appendix E.3 Inductive Step: Proof of ’H; 041

Fix a layer index £ = 1,..., L—1 and an iteration index k£ = 0, 1,.... We show the implication

- = H;; ¢41 10 (37). All other implications can be proven similarly using symmetry arguments.
Definition 4 (Induction hypothesis). The hypotheses prior to H,j o1 1n the sequence (37), but not
including H,j ¢11 Are true.

The inductive step then corresponds to the following result.
Lemma 3. Under the induction hypothesis, H,: 041 holds

Before proving the inductive step in Lemma 3, we prove two intermediate lemmas. Let us start
by defining some notation. Define P;:é = [p& .- ~p;:€] € RNex(k)d be a matrix whose column
blocks are the first £+ 1 values of the matrix pj. We define the matrices P, Qze and Q., ina
similar manner with values of p, , qzr and q, respectively.

Note that except the initial matrices {wy, q,, }_;, all later iterates in Algorithm 3 are random due
to the randomness of V. Let Qikif denote the collection of random variables associated with the
hypotheses, 'Hﬁg. Thatis,for{=1,...,L—1,

0 0 - - 0 0 - pP-—
6;15 = {Wbpzfppz,z—laqe»ka Qze} ’ 6= {WLP@DPz—l,e—uqka-e’Pk,z—l} :
For ¢ = 0 and ¢ = L we set, 6;0 = {wo, Qs QZO} , O = {WL,p%_l, P;:_LL_l, P,;L_l} .

Let EZ[ be the sigma algebra generated by the union of all the sets 0525  as they have appeared in

the sequence (37) up to and including the final set (’5:@. Thus, the sigma algebra 6:[ contains all
information produced by Algorithm 3 immediately before line 20 in layer ¢ of iteration k. Note also

that the random variables in Algorithm 4 immediately before defining P, in line 20 are all &,
measurable.

Observe that the matrix V, in Algorithm 3 appears only during matrix-vector multiplications in
lines 20 and 32. If we define the matrices, Ay, := [pg, PZ,'_l / P;L,} , Bpe:= [qg, QZ’_l 0 Qiel
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Lo —t . . o . .
all the matrices in the set &, will be unchanged for all matrices V satisfying the linear constraints
Ape =V By (38)
iy e Lt . . o
Hence, the conditional distribution of V, given &, is precisely the uniform distribution on the set of

orthogonal matrices satisfying (38). The matrices Ay and By are of dimensions N, x (2k + 2)d.
From [36, Lemmas 3,4], this conditional distribution is given by

Vilg: = % Aw(AfAR) Bl + Uay, VEUBL ’ (39)

where U1 and Ug.. are Ny x (Vg — (2k + 2)d) matrices whose columns are an orthonormal basis
for Range(Ay,)* and Range(By¢)*. The matrix V/, is Haar distributed on the set of (N, — (2k +
2)d) x (N — (2k + 2)d) orthogonal matrices and is independent of @Zg.

Next, similar to the proof of [36, Thm. 4], we can use (39) to write the conditional distribution of
P}, (from line 20 of Algorithm 3) given &, as a sum of two terms

p:z|g+ = Vf|g;rﬂ qk[ P;edet + +ran’ (40a)
P/ = Ap(BiBr) 'Bi,af, (40b)
pzﬁran : UBLVK UAJ-qk/ (40c)

+det +ran

where we call p;, " the deterministic term and p;,™" the random term. The next two lemmas
characterize the hmmng distributions of the determlmstlc and random terms.

Lemma 4. Under the induction hypothesis, the rows of the “deterministic” term p;rgdet along with

the rows of the matrices in &,,, converge empirically. In addition, there exists constant d X d matrices
+ +
Bogs -+ - ’/kal,z such that

k-1
piit 2 PR = PRBY + Z "+ Bie, @1
where P,jéd“ R js the limiting random vector for the rows of pdet

Proof. The proof is similar that of [36, Lem. 6], but we go over the details as there are some important
differences in the multi-layer matrix case. Define 151?—1,6 = [p?, PZ‘_M] ,QZ_M = [qg, Q;‘_M} ,
which are the matrices in RY¢X(*+1)d_We can then write A, and By, from (38) as

A= [ﬁi—l,z P/Ze} » Bre:= [QL,@ QE@} ) (42)
We first evaluate the asymptotic values of various terms in (40b). By definition of By in (42),

k1 e)TQk 1, (QEM)TQE@
QL Q)

We can then evaluate the asymptotic values of these terms as follows: For 0 < 4,5 < k — 1 the
asymptotic value of the (i + 2, j + 2)" d x d block of the matrix (Q:—I,Z)TQ:—LZ is

1o+ \TO+ (@ 1 +
1\/151100 Ne [(Qk_l’g) Qk—l,f:| i+2,54+2 h ]\}gnoo ﬁ(qd) qu

BB = l((

Ny
_ + +1T +TH+
= J\}Ego N, Zl[qiz]n: [qje]n: =E [sz j@}

where (a) follows since the (i + 2)" column block of Q" , ¢ 18 g, and (b) follows due to the

empirical convergence assumption in (31). Also, since the first column block of Q;F k1,018 q), we
obtain that

lim z\z( ;r—1 e)TQLLe = Rz—l,z and
N[lgloo (le) Q. =Ry
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where R} |, € R+Ddx(k+1)d jg the covariance matrix of [Qg G Qb @], and R, €

R+ Ddx(k+1)d g the covariance matrix of [Qq, Q1 --. Qp,]. For the matrix (Q; ,)TQyy. first
observe that the limit of the divergence free condition (29) implies

_ =+
afy (P i (— 1 Qi We, Tir) . of; (p;) Pie 1 Qg W, Tig)
= lim =0, (44)
0Q;, Ne—roo dq;,
for any <. Also, by the induction hypothesis 7—[,@,
E(PLQ5) =0, E(PLQ;) =0, (45)
for all 0 < i,j < k. Therefore using (33), the cross-terms E(Q;TQJ.}) are given by
- = (@ o | 985 (PP, Qi We T -
E( ZTZ(PZO—bPi-fzpri[?WZaT ) Q ) IE |: S— éfDlp—l ‘ - - E(PZO—E j[)
Of 5 (PLy Pl Qi We Ty T o
+E { e mﬁ,fl@ : ¢ £ ]E(P;rg_lez) (46)

(PPl Qp We TH) —TH—y ©
+E l: L ;le = - :| ]E(QM sz) =0,
(a) follows from a multivariate version of Stein’s Lemma [23, eqn.(2)]; and (b) follows from (44),

and (45). Consequently,

m 1B B, — R 0] lim &-B] by, 47)
Ne L N PREPRE= g R;,|’ Noieo Ne kel = 0|’
T
where b, == |E(QJ, Q) E(QQF,) - E(@Q] 1.0 M)} , is the matrix of correlations. We
again have 0 in the second term because E[Q, Q ;o) =0forall 0 <i,j < k. Hence we have
. —1
Jim (Bi,Bi) ' Blay [ﬁ’“"} Bie = [Riag b (48)
i o0
Therefore, p"'det equals

ALBIB.)BLgt =Pt P~ ﬂljl oL
ke(BreBre) ™ By e Prel o7 | TO\ N

k-1
= Pift + 2P+ 0 (%)

where 37 and ﬂ ared x d block matrices of [)'k , and the term O( ) means a matrix sequence,

(49)

@(N) € RN such that limy 0 % |[¢o(IV)||? = 0. A continuity argument then shows the empirical
convergence (41). ]

Lemma S. Under the induction hypothesis the components of the “random" term p&mn along with

the components of the vectors in B, ke almost surely converge empirically. The components of p‘*"“’m

converge as
P@rdn = Uk, (50

where Uy is a zero mean Gaussian random vector in R'*? independent of the limiting random
. . . . =t
variables corresponding to the variables in ® .

Proof. The proof is identical to that of [36, Lemmas 7,8]. O
We are now ready to prove Lemma 3.

Proof of Lemma 3. Using the partition (40a) and Lemmas 4 and 5, we see that the components of
the vector sequences in 6& along with p& almost surely converge jointly empirically, where the
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components of p;, have the limit
k-1
pi, =P + P = PYBY+ ) P + Une =: P G
i=0
Note that the above Wasserstein-2 convergence can be shown using the same arguments involved in
showing that if Xy |F N X|F, and Yy|F RN ¢, then (Xpn, YN)|F N (X, ¢)|F for some
constant ¢ and sigma-algebra F.

We first establish the Gaussianity of P,:Q. Observe that by the induction hypothesis, H, .,

holds whereby (P7, Py, ..., Py 1y Qg gy -+ - Qpgsq) 18 jointly Gaussian. Since Uy, is Gaus-
sian and independent of (P, Py, ..., P, ;. Qo pys - - -, Qp s1), We can conclude from (51) that
(PP, Pogs -+ Py 40 Prips Qo s - -+ Qg ) 18 jointly Gaussian.

We now need to prove the correlations of this jointly Gaussian random vector are as claimed by
H;EH. Since H;; 4, is true, we know that (32) is true foralli = 0,...,k—1land j = 0,...,k and
¢ = ¢+ 1. Hence, we need only to prove the additional identity for ¢ = k, namely the equations:
Cov(PY, P,)? K:Z and E( MQJ 1) = 0. First observe that
+T pt+y2 @ . 1 4T+ & (@ 4T
E(Py, Pp)” = ngli)noo EPM Pre = th qke qké (Qk Qké)

where (a) follows from the fact that the rows of Pk@ converge empirically to P,jz; (b) follows from
line 20 in Algorithm 3 and the fact that V is orthogonal; and (c) follows from the fact that the rows
of q;/, converge empirically to @}/, from hypothesis ;' ,. Since p) = V,q", we similarly obtain

that E(P)TP}) =E(QVTQY,), E(PTPY) =E(QITQY), from which we conclude

Cov(P}, P) = Cov(QY, Q) = K}, (52)
where the last step follows from the definition of K& in line 20 of Algorithm 4. Finally, we observe
that for 0 < j <k

k—1
_ (a) _ _ ®)
E(PTQ; ) = BUE(PYTQ; 1) + Y B TE(PET Q) o) + E(UNQ ) =0, (53)
1=0

where (a) follows from (51) and, in (b), we used the fact that E(P{T Q7 ;) = 0and E(P;fTQ ) =

0 since (32) is true for i < k—1 correspondmg to H, ,,, and E(UMQ] e1) = 0 since Uy is
independent of Qﬁ we- and Q7 e is Q5 ¢ measurable. Thus, with (52) and (53), we have proven all the
correlations in (32) corresponding to H,j 41

Next, we prove the convergence of the parameter lists T,J; ¢y O T;: ¢41- Since T,i'z — T-,:e due to
hypothesis H,, o> and <p: o (+) is uniformly Lipschitz continuous, we have that lim y _ o uﬁ ¢y from
line 17 in Algorithm 3 converges almost surely as

+ 0 pt+t - Ay — o+
ngn <<Pk o1 (pe ) pk[v g, o410 W, Tk£)> E [Sok,€+1(Pl ’ Pké’ Qkf-ﬂ’ Wea, ka) = Hye

(54)
where 71/ 4., is the value in line 17 in Algorithm 4. Since T}, (+) is continuous, we have that A}

in line 18 in Algorithm 3 converges as limy_,o0 A oy = le.é—&-l (ﬁ;€+1,T£g) = X;eﬂ, from line 18
in Algorithm 4. Therefore, we have the limit

. . ~t —+
hm TZM = hm (T&, )‘&H) = (Th,oo Aeen) = T (55)

which proves the convergence of the parameter lists stated in ;" k.0+1- Finally, using (55), the empirical
convergence of the matrix sequences pY 7 P xe and q; .., and the uniform Lipschitz continuity of the
update function f;!, 11 (+) we obtain that a’, 11 equals

+ 0 — - + 2 e+ 0 p— - o —. OF
fk:,z+1 (pEv Pres Age 11> Wer, Tk,ZJrl) = fk,l+1 (Pé kaea Qk,€+1) W€+17 Tk,l-H) - Qk,ZJrl’

which proves the claim (33) for 7—[; ¢+1- This completes the proof. (]
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An overview of the iterates in Algorithm 3 is depicted in (TOP) and (MIDDLE) of Figure 3. Theorem
2 shows that the rows of the iterates of Algorithm 3 converge empirically with 24 order moments to

random variables defined in Algorithm 4. The random variables defined in Algo. 4 are depicted in
Figure 3 (BOTTOM).
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