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Appendix A State Evolution Equations

The state evolution equations given in Algo. 2 define an iteration indexed by k of constant matrices
{K+

k`, τ
−
kl ,Γ

±
kl}L`=0. These constants appear in the statement of the main result in Theorem 1. The

iterations in Algo. 2 also iteratively define a few R1×d valued random vectors {Q0
` , P

0
` , Q

±
k`, P

±
k`}

which are either multivariate Gaussian or functions of Multivariate Gaussians. In order to state
Algorithm 2, we need to define certain random variables and functions appearing therein which are
described below. Let Lodd = {1, 3, . . . , L− 1} and Leven = {2, 4, . . . , L− 2}.

Define {Θ±k`} similar to Θ±k` from equation (14) using {Γ±k`}. Further, for ` = 1, 2, . . . , L−1 define

Ω
+

k` := (Λ
+

k`,Γ
+

k`,Γ
−
k`), Ω

−
k` := (Λ

+

k,`−1,Γ
−
k,`−1,Γ

−
k,`−1),

and Ω
+

k0 and Ω
−
kL. Now define random variables W` as

W0 = Z0
0 , WL = (Y,ΞL), W` = Ξ`, ∀ ` ∈ Leven,

W` = (S`, B`,Ξ`), ∀ ` ∈ Lodd.
(18)

Define functions {f0
` }L`=1 as

f0
` (P 0

−̀1,W`) := S`P
0
`−1 +B` + Ξ`, ∀ ` ∈ Lodd,

f0
` (P 0

−̀1,W`) := φ`(P
0
−̀1,Ξ`), ∀ ` ∈ Leven ∪ {L}.

(19)

and using (14) define functions {h±` , }L`=1, h+
0 and h−L as

h±` (P 0
`−1, P

+
`−1, Q

−
` ,W`,Θ

±
k`) = G±` (Q−` +Q0

` , P
+
`−1 + P 0

`−1,Θ
±
k`), ∀ ` ∈ Leven,

h±` (P 0
`−1, P

+
`−1, Q

−
` ,W`,Θ

±
k`) = G̃±` (Q−` +Q0

` , P
+
`−1 + P 0

`−1,Θ
±
k`), ∀ ` ∈ Lodd

h+
0 (Q−0 ,W0,Θ

+
k0) = G+

0 (Q−0 +W0,Θ
+
k0),

h−L (P 0
L−1, P

+
L−1,WL,Θ

−
kL) = G−L (P+

L−1 + P 0
L−1,Θ

−
kL).

(20)

Note that [G+
` , G

−
` ] and [G̃+

` , G̃
−
` ] are maps from R1×d → R1×d such that their row-wise extensions

are the denoisers [G+
` ,G

−
` ] and [G̃+

` , G̃
−
` ] respectively. Using (20) define functions {f±` }

L−1
`=1 , f+

0

and f−L as

f+
` (P 0

−̀1, P
+
−̀1, Q

−
` ,W`,Ω

+
k`) =

[(
h+
` −Q

0
`

)
Λ+

k` −Q
−
` Γ−k`

]
(Γ+

k`)
−1,

f−` (P 0
−̀1, P

+
−̀1, Q

−
` ,W`,Ω

−
k`) =

[(
h−` − P

0
−̀1

)
Λ−k, −̀1 − P

+
−̀1Γ

+
k, −̀1

]
(Γ−k, −̀1)−1.

f+
0 (Q−0 ,W0,Ω

+
k0) =

[(
h+

0 −W0

)
Λ+

k0 −Q
−
0 Γ−k0

]
(Γ+

k0)−1,

f−L (P 0
L−1, P

+
L−1,WL,Ω

−
kL) =

[(
h−L − P

0
L−1

)
Λ−k,L−1 − P

+
L−1Γ

+
k,L−1

]
(Γ−k,L−1)−1.

(21)

Appendix B Large System Limit Details

The analysis of Algorithm 1 in the large system limit is based on [3] and is by now standard in the
theory of AMP-based algorithms. The goal is to characterize ensemble row-wise averages of iterates
of the algorithm using simpler finite-dimensional random variables which are either Gaussians or
functions of Gaussians. To that end, we start by defining some key terms needed in this analysis.

Definition 1 (Pseudo-Lipschitz continuity). For a given p ≥ 1, a map g : R1×d → R1×r is called
pseudo-Lipschitz of order p if for any r1, r2 ∈ Rd we have,

‖g(r1)− g(r2)‖ ≤ C‖r1 − r2‖
(
1 + ‖r1‖p−1 + ‖r2‖p−1

)
Definition 2 (Empirical convergence of rows of a matrix sequence). Consider a matrix-sequence
{X(N)}∞N=1 with X(N) ∈ RN×d. For a finite p ≥ 1, let X ∈ (Rd,Rd) be aRd-measurable random
variable with bounded moment E‖X‖pp <∞. We say the rows of matrix sequence {X(N)} converge
empirically to X with pth order moments if for all pseudo-Lipschitz continuous functions f(·) of
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Algorithm 2 State Evolution for ML-Mat-VAMP (Algo. 1)

Require: Functions {f0
` } from (19), {h±` } from (20), and {f±` } from (21). Perturbation random

variables {W`} from (18). Initial random vectors {Q−0`}
L−1
`=0 with Initial covariance matrices

{τ−0`}
L−1
`=0 from Section 4. Initial matrices {Γ−0`}L`=0 from (16).

1: // Initial Pass
2: Q0

0 = W0, τ 0
0 = Cov(Q0

0) and P 0
0 ∼ N (0, τ 0

0 )
3: for ` = 1, . . . , L−1 do
4: Q0

` = f0
` (P 0

−̀1,W`)
5: P 0

` ∼ N (0, τ 0
` ), τ 0

` = Cov(Q0
`)

6: end for

7: for k = 0, 1, . . . do
8: // Forward Pass
9: Q̂+

k0 = h+
0 (Q−k0,W0,Θ

+

k0)

10: Λ
+

k0 = (E∂Q̂+
k0

∂Q−0
)−1Γ

−
k,0

11: Γ
+

k0 = Λ
+

k0 − Γ
−
k0

12: Q+
k0 = f+

0 (Q−k0,W0,Ω
+

k0)
13: (P 0

0 , P
+
k0) ∼ N (0,K+

k0), K+
k0 := Cov(Q0

0, Q
+
k0)

14: for ` = 1, . . . , L− 1 do
15: Q̂+

k` = h+
` (P 0

−̀1, P
+
k, −̀1, Q

−
k`,W`,Θ

+

k`)

16: Λ
+

k` = (E∂Q̂+
k`

∂Q−k`

)−1Γ
−
k`

17: Γ
+

k` = Λ
+

k` − Γ
−
k`

18: Q+
k` = f+

` (P 0
−̀1, P

+
k, −̀1, Q

−
k`,W`,Ω

+

k`)

19: (P 0
` , P

+
k`) ∼ N (0,K+

k`), K+
k` := Cov(Q0

` , Q
+
k`)

20: end for

21: // Backward Pass
22: P̂−k+1,L−1 = h−L (P 0

L−1, P
+
k,L−1,WL,Θ

−
k+1,L)

23: Λ
−
k+1,L = (E∂P̂−k+1,L−1

∂P+
L−1

)−1Γ
+

kL

24: Γ
−
k+1,L−1 = Λ

−
k+1,L−1 − Γ

+

k,L−1,

25: P−k+1,L−1 = f−L (P 0
L−1, P

+
k,L−1,WL,Ω

−
k+1,L)

26: Q−k+1,L−1 ∼ N (0, τ−k+1,L−1), τ−k+1,L−1 := Cov(P−k+1,L−1)
27: for ` = L−2, . . . , 0 do
28: P̂−k+1,` = h−` (P 0

` , P
+
k`, Q

−
k+1,`+1,W`,Θ

−
k+1,`)

29: Λ
−
k+1,` = (E∂P̂−k+1,`

∂P+
k,`

)−1Γ
+

k,`

30: Γ
−
k+1,` = Λ

−
k+1,` − Γ

+

k,`,

31: P−k+1,` = f−` (P 0
` , P

+
k`, Q

−
k+1,`+1,W`,Ω

−
k+1,`)

32: Q−k+1,` ∼ N (0, τ−k+1,`), τ−k+1,` := Cov(P−k+1,`)
33: end for
34: end for
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order p,

lim
N→∞

1

N

N∑
n=1

f(X(N)
n: ) = E[f(X)] a.s. (22)

Note that the sequence {X(N)} could be random or deterministic. If it is random, however, then
the quantities on the left hand side are random sums and the almost sure convergence must take this
randomness into account as well.

The above convergence is equivalent to requiring weak convergence as well as convergence of the
pth moment, of the empirical distribution 1

N

∑N
n=1 δX(N)

n:
of the rows of X(N) to X . This is also

referred to convergence in the Wasserstein-p metric [44, Chap. 6].

In the case of p = 2, the condition is equivalent to requiring (22) to hold for all continuously bounded
functions f as well as for all fq(x) = xTQx for all positive definite matricesQ.

Definition 3 (Uniform Lipschitz continuity). For a positive definite matrixM , the map φ(r;M) :
Rd → Rd is said to be uniformly Lipschitz continuous in r atM = M if there exist non-negative
constants L1, L2 and L3 such that for all r ∈ Rd

‖φ(r1;M0)− φ(r2;M0)‖ ≤ L1‖r1 − r2‖
‖φ(r;M1)− φ(r;M2)‖ ≤ L2(1 + ‖r‖)ρ(M1,M2)

for all Mi such that ρ(Mi,M) < L3 where ρ is a metric on the cone of positive semidefinite
matrices.

We are now ready to prove Theorem 1.

Appendix C Proof of Theorem 1

The proof of Theorem 1 is a special case of a more general result on multi-layer recursions given in
Theorem 2. This result is stated in Appendix D, and proved in Appendix E. The rest of this section
identifies certain relevant quantities from Theorem 1 in order to apply Theorem 2.

Consider the SVD given of weight matrices W` of the network given by,
W` = V`diag(S`)V` − 1

as explained in Section 4 of the main paper. We analyze Algo. 1 using transformed versions of the
true signals Z0

` and input errors R±` − Z0
` to the denoisers G±` . For ` = 0, 2, . . . L− 2, define

q0
` = Z0

` q0
`+1 = V>`+1Z

0
`+1 (23a)

p0
` = V`Z

0
` p0

`+1 = Z0
`+1 (23b)

which are depicted in Fig. 3 (TOP). Similarly, define the following transformed versions of errors in
the inputs R±` to the denoisers G±`

q−` = R−` − Z0
` q−`+1 = V>`+1(R−`+1 − Z0

`+1) (24a)

p+
` = V`(R

+
` − Z0

`) p+
`+1 = R+

`+1 − Z0
`+1 (24b)

These quantities are depicted as inputs to function blocks f±` in Fig. 3 (MIDDLE). Define perturbation
variables w` as

w0 = Z0
0, wL = (Y,ΞL), w` = Ξ`, ∀ ` ∈ Leven (25a)

w` = (S`,B`,Ξ`), ∀ ` ∈ Lodd (25b)

Finally, we define q+
` and p−` for ` = 1, 2, . . . , L− 1 as

q+
` = f+

` (p0
`−1,p

+
`−1,q

−
` ,w`,Ω`) (26a)

p−−̀1 = f−` (p0
`−1,p

+
`−1,q

−
` ,w`,Ω`), (26b)

which are outputs of function blocks in Fig. 3 (MIDDLE). Similarly, define the quantities q+
0 =

f+
0 (q−0 ,Z0,Ω0) and p−L−1 = f+

L (p0
L−1,p

+
L−1,Y,ΩL).
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Lemma 1. Algorithm 1 is a special case of Algorithm 3 with the definitions {q0
` ,p

0
` ,q
±
` ,p

±
` }

L−1
`=0

given in equations (23),(24), and (26), functions f±` are row-wise extensions of f±` defined using
equations (21) and (20).

Lemma 2. Assumptions 1 and 2 required for applying Theorem 2 are satisfied by the conditions in
Theorem 1.

Proof. The proofs of the above lemmas are identical to the case of d = 1, which was shown in [34].
For details see [34, Appendix F]. �

Appendix D General Multi-Layer Recursions
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Figure 3: (TOP) The equations (1) with equivalent quantities defined in (23), and f0
` defined using

(19).
(MIDDLE) The Gen-ML-Mat recursions in Algorithm 3. These are also equivalent to ML-Mat-
VAMP recursions from Algorithm 1 (See Lemma 1) if q±,p± are as defined as in equations (24)
and (26), and f±` given by equations (21) and (20).
(BOTTOM) Quantities in the GEN-ML-SE recursions. These are also equivalent to ML-Mat-VAMP
SE recursions from Algorithm 2 (See Lemma 1)
The iteration indices k have been dropped for notational simplicity.

To analyze Algorithm 1, we consider a more general class of recursions as given in Algorithm 3 and
depicted in Fig. 3. The Gen-ML recursions generates (i) a set of true matrices q0

` and p0
` and (ii)

iterated matrices q±k` and p±k`. Each of these matrices have the same number of columns, denoted by
d.

The true matrices are generated by a single forward pass, whereas the iterated matrices are generated
via a sequence of forward and backward passes through a multi-layer system. In proving the State
Evolution for the ML-Mat-VAMP algorithm (Algo. 1, one would then associate the terms q±k` and
p±k` with certain error quantities in the ML-Mat-VAMP recursions. To account for the effect of the
parameters Γ±k` and Λ±k` in ML-Mat-VAMP, the Gen-ML algorithm describes the parameter updates
through a sequence of parameter lists Υ±k`. The parameter lists are ordered lists of parameters that
accumulate as the algorithm progresses. The true and iterated matrices from Algorithm 3 are depicted
in the signal flow graphs on the (TOP) and (MIDDLE) panel of Fig. 3 respectively. The iteration
index k for the iterated vectors qk`,pk` has been dropped for simplifying notation.
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The functions f0
` (·) that produce the true matrices q0

` ,p
0
` are called initial matrix functions and use

the initial parameter list Υ−01. The functions f±k`(·) that produce the matrices q+
k` and p−k` are called

the matrix update functions and use parameter lists Υ±kl. The initial parameter lists Υ−01 are assumed
to be provided. As the algorithm progresses, new parameters λ±k` are computed and then added to
the lists in lines 12, 18, 25 and 31. The matrix update functions f±k`(·) may depend on any sets of
parameters accumulated in the parameter list. In lines 11, 17, 24 and 30, the new parameters λ±k`
are computed by: (1) computing average values µ±k` of row-wise functions ϕ±k`(·); and (2) taking
functions T±k`(·) of the average values µ±k`. Since the average values µ±k` represent statistics on the
rows of ϕ±k`(·), we will call ϕ±k`(·) the parameter statistic functions. We will call the T±k`(·) the
parameter update functions. The functions f0

` , f
±
k`,ϕ

±
` also take as input some perturbation vectors

w`.

Similar to the analysis of the ML-Mat-VAMP Algorithm, we consider the following large-system
limit (LSL) analysis of Gen-ML. Specifically, we consider a sequence of runs of the recursions
indexed by N . For each N , let N` = N`(N) be the dimension of the matrix signals p±` and q±` as we
assume that lim

N→∞
N`

N = β` ∈ (0,∞) is a constant so that N` scales linearly with N . Note however

that the number of columns of each of the matrices {q0
` ,p

0
` ,q
±
k`,p

±
k`} is equal to a finite integer

d > 0, which remains fixed for all N . We then make the following assumptions. See Appendix B
for an overview of empirical convergence of sequences which we use in the assumptions described
below.
Assumption 1. For vectors in the Gen-ML Algorithm (Algorithm 3), we assume:

(a) The matrices V` are Haar distributed on the set of N` × N` orthogonal matrices and are
independent from one another and from the matrices q0

0, q−0`, perturbation variables w`.

(b) The rows of the initial matrices q−0`, and perturbation variables w` converge jointly empirically
with limits,

q−0`
2

=⇒ Q−0`, w`
2

=⇒W`, (27)
where Q−0` are random vectors in R1×d such that (Q−00, · · · , Q

−
0,L−1) is jointly Gaussian. For

` = 0, . . . , L−1, the random variables W`, P
0
`−1 and Q−0` are all independent. We also assume

that the initial parameter list converges as

lim
N→∞

Υ−01(N)
a.s.−−→ Υ

−
01, (28)

to some list Υ
−
01. The limit (28) means that every element in the list λ(N) ∈ Υ−01(N) converges

to a limit λ(N)→ λ ∈ Υ
−
01 as N →∞ almost surely.

(c) The matrix update functions f±k`(·) and parameter update functions ϕ±k`(·) act row-wise. For e.g.,
in the kth forward pass, at stage `, we assume that for each output row n,[

f+
k`(p

0
−̀1,p

+
k, −̀1,q

−
k`,w`,Υ

+
k`)
]
n:

= f+
k`(p

0
−̀1,n:,p

+
k, −̀1,n:,q

−
k`,n:,w`,n:,Υ

+
k`)[

ϕ+
k`(p

0
−̀1,p

+
k, −̀1,q

−
k`,w`,Υ

+
k`)
]
n:

= ϕ+
k`(p

0
−̀1,n:,p

+
k, −̀1,n:,q

−
k`,n:,w`,n:,Υ

+
k`),

for some R1×d-valued functions f+
k`(·) and ϕ+

k`(·). Similar definitions apply in the reverse
directions and for the initial vector functions f0

` (·). We will call f±k`(·) the matrix update row-
wise functions and ϕ±k`(·) the parameter update row-wise functions.

Next we define a set of deterministic constants {K+
k`, τ

−
k`, µ

±
k`,Υ

±
kl, τ

0
` } and R1×d-valued random

vectors {Q0
` , P

0
` , Q

±
k`, P

±
` } which are recursively defined through Algorithm 4, which we call the

Gen-ML-Mat State Evolution (SE). These recursions in Algorithm closely mirror those in the Gen-
ML-Mat algorithm (Algorithm 3). The matrices q±k` and p±k` are replaced by random vectors Q±k`
and P±k`; the matrix and parameter update functions f±k`(·) and ϕ±k`(·) are replaced by their row-wise
functions f±k`(·) and ϕ±k`(·); and the parameters λ±k` are replaced by their limits λ

±
k`. We refer to

{Q0
` , P

0
` } as true random vectors and {Q±k`, P

±
kl} as iterated random vectors. The signal flow graph

for the true and iterated random variables in Algorithm 4 is given in the (BOTTOM) panel of Fig. 3.
The iteration index k for the iterated random variables {Q±k`, P

±
kl} to simplify notation.
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Algorithm 3 General Multi-Layer Matrix (Gen-ML-Mat) Recursion

Require: Initial matrix functions {f0
` }. Matrix update functions {f±k`(·)}. Parameter statistic func-

tions {ϕ±k`(·)}. Parameter update functions {T±k`(·)}. Orthogonal matrices {V`}. Perturbation
variables {w±` }. Initial matrices {q−0`}. Initial parameter list Υ−01.

1: // Initial Pass
2: q0

0 = f0
0 (w0), p0

0 = V0q
0
0

3: for ` = 1, . . . , L−1 do
4: q0

` = f0
` (p0

−̀1,w`,Υ
−
01)

5: p0
` = V`q

0
`

6: end for
7:
8: for k = 0, 1, . . . do
9: // Forward Pass

10: λ+
k0 = T+

k0(µ+
k0,Υ

−
0k)

11: µ+
k0 =

〈
ϕ+

k0(q−k0,w0,Υ
−
0k)
〉

12: Υ+
k0 = (Υ−k1, λ

+
k0)

13: q+
k0 = f+

k0(q−k0,w0,Υ
+
k0)

14: p+
k0 = V0q

+
k0

15: for ` = 1, . . . , L− 1 do
16: λ+

k` = T+
k`(µ

+
k`,Υ

+
k, −̀1)

17: µ+
k` =

〈
ϕ+

k`(p
0
−̀1,p

+
k, −̀1,q

−
k`,w`,Υ

+
k, −̀1)

〉
18: Υ+

k` = (Υ+
k, −̀1, λ

+
k`)

19: q+
k` = f+

k`(p
0
−̀1,p

+
k, −̀1,q

−
k`,w`,Υ

+
k`)

20: p+
k` = V`q

+
k`

21: end for

22: // Backward Pass
23: λ−k+1,L = T−kL(µ−kL,Υ

+
k,L−1)

24: µ−kL =
〈
ϕ−kL(p+

k,L−1,wL,Υ
+
k,L−1)

〉
25: Υ−k+1,L = (Υ+

k,L−1, λ
+
k+1,L)

26: p−k+1,L−1 = f−kL(p0
L−1,p

+
k,L−1,wL,Υ

−
k+1,L)

27: q−k+1,L−1 = VT
L−1pk+1,L−1

28: for ` = L−1, . . . , 1 do
29: λ−k+1,` = T−k`(µ

−
k`,Υ

−
k+1, +̀1)

30: µ−k` =
〈
ϕ−k`(p

0
−̀1,p

+
k, −̀1,q

−
k+1,`,w`,Υ

−
k+1, +̀1)

〉
31: Υ−k+1,` = (Υ−k+1, +̀1, λ

−
k+1,`)

32: p−k+1, −̀1 = f−k`(p
0
−̀1,p

+
k, −̀1,q

−
k+1,`,w`,Υ

−
k+1,`)

33: q−k+1, −̀1 = VT
−̀1p
−
k+1, −̀1

34: end for
35: end for

We also assume the following about the behaviour of row-wise functions around the quantities defined
in Algorithm 4. The iteration index k has been dropped for simplifying notation.

Assumption 2. For row-wise functions f, ϕ and parameter update functions T we assume:

(a) T±k`(µ
±
k`, ·) are continuous at µ±k` = µ±k`

(b) f+
k`(p

0
`−1, p

+
k, −̀1, q

−
k`, w`,Υ

+
k`), ∂f+

k`

∂q−k`

(p0
`−1, p

+
k, −̀1, q

−
k`, w`,Υ

+
k`) and

ϕ+
k`(p

0
`−1, p

+
k, −̀1, q

−
k`, w`,Υ

+
k, −̀1) are uniformly Lipschitz continuous in (p0

`−1, p
+
k, −̀1, q

−
k`, w`)
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Algorithm 4 Gen-ML-Mat State Evolution (SE)
Require: Matrix update row-wise functions f0

` (·) and f±k`(·), parameter statistic row-wise functions
ϕ±k`(·), parameter update functions T±k`(·), initial parameter list limit: Υ

−
01, initial random

variables W`, Q−0`, ` = 0, . . . , L−1.
1: // Initial pass
2: Q0

0 = f0
0 (W0,Υ

−
01), P 0

0 ∼ N (0, τ0
0 ), τ0

0 = E(Q0
0)2

3: for ` = 1, . . . , L−1 do
4: Q0

` = f0
` (P 0

−̀1,W`,Υ
−
01)

5: P 0
` ∼ N (0, τ0

` ), τ0
` = Cov(Q0

`)
6: end for
7:
8: for k = 0, 1, . . . do
9: // Forward Pass

10: λ
+

k0 = T+
k0(µ+

k0,Υ
−
0k)

11: µ+
k0 = E(ϕ+

k0(Q−k0,W0,Υ
−
0k))

12: Υ
+

k0 = (Υ
−
k1, λ

+

k0)

13: Q+
k0 = f+

k0(Q−k0,W0,Υ
+

k0)
14: (P 0

0 , P
+
k0) ∼ N (0,K+

k0), K+
k0 = Cov(Q0

0, Q
+
k0)

15: for ` = 1, . . . , L− 1 do
16: λ

+

k` = T+
k`(µ

+
k`,Υ

+

k, −̀1)

17: µ+
k` = E(ϕ+

k`(P
0
−̀1, P

+
k, −̀1, Q

−
k`,W`,Υ

+

k, −̀1))

18: Υ
+

k` = (Υ
+

k, −̀1, λ
+

k`)

19: Q+
k` = f+

k`(P
0
−̀1, P

+
k, −̀1, Q

−
k`,W`,Υ

+

k`)

20: (P 0
` , P

+
k`) ∼ N (0,K+

k`), K+
k` = Cov(Q0

` , Q
+
k`)

21: end for

22: // Backward Pass
23: λ

−
k+1,L = T−kL(µ−kL,Υ

+

k,L−1)

24: µ−kL = E(ϕ−kL(P 0
L−1, P

+
k,L−1,WL,Υ

+

k,L−1))

25: Υ
−
k+1,L = (Υ

+

k,L−1, λ
+

k+1,L)

26: P−k+1,L−1 = f−kL(P 0
L−1, P

+
k,L−1,WL,Υ

−
k+1,L)

27: Q−k+1,L−1 ∼ N (0, τ−k+1,L−1), τ−k+1,L−1 = Cov(P−k+1,L−1)
28: for ` = L−1, . . . , 1 do
29: λ

−
k+1,` = T−k`(µ

−
k`,Υ

−
k+1, +̀1)

30: µ−k` = E(ϕ−k`(P
0
−̀1, P

+
k, −̀1, Q

−
k+1,`,W`,Υ

−
k+1, +̀1))

31: Υ
−
k+1,` = (Υ

−
k+1, +̀1, λ

−
k+1,`)

32: P−k+1, −̀1 = f−k`(P
0
−̀1, P

+
k, −̀1, Q

−
k+1,`,W`,Υ

−
k+1,`)

33: Q−k+1, −̀1 ∼ N (0, τ−k+1, −̀1), τ−k+1, −̀1 = Cov(P−k+1, −̀1)
34: end for
35: end for

at Υ+
k` = Υ

+

k`, Υ+
k, −̀1 = Υ

+

k, −̀1. Similarly,

f−k+1,`(p
0
`−1, p

+
k, −̀1, q

−
k+1,`, w`,Υ

−
k`),

∂f−k`

∂p+
k,`−1

(p0
`−1, p

+
k, −̀1, q

−
k+1,`, w`,Υ

−
k`), and

ϕ−k`(p
0
`−1, p

+
k, −̀1, q

−
k+1,`, w`,Υ

−
k+1,`+1) are uniformly Lipschitz continuous in

(p0
`−1, p

+
k, −̀1, q

−
k+1,`, w`) at Υ−k` = Υ

−
k`, Υ−k+1,`+1 = Υ

−
k+1,`+1.

(c) f0
` (p0

−̀1, w`,Υ
−
01) are uniformly Lipschitz continuous in (p0

k, −̀1, w`) at Υ−k+1,` = Υ
−
k+1,`.
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(d) Matrix update functions f±k` are asymptotically divergence free meaning

lim
N→∞

〈
∂f+k`

∂q−k`

(p+
k, −̀1,q

−
k`,w`,Υ

+

k`)
〉

= 0, lim
N→∞

〈
∂f−k`

∂p+
k, −̀1

(p+
k, −̀1,q

−
k+1,`,w`,Υ

−
k`)

〉
= 0

(29)

We are now ready to state the general result regarding the empirical convergence of the true and
iterated vectors from Algorithm 3 in terms of random variables defined in Algorithm 4.

Theorem 2. Consider the iterates of the Gen-ML recursion (Algorithm 3) and the corresponding ran-
dom variables and parameter limits defined by the SE recursions (Algorithm 4) under Assumptions 1
and 2. Then,

(a) For any fixed k ≥ 0 and fixed ` = 1, . . . , L−1, the parameter list Υ+
k` converges as

lim
N→∞

Υ+
k` = Υ

+

k` (30)

almost surely. Also, the rows of w`, p0
−̀1, q0

` , p+
0, −̀1, . . . ,p

+
k, −̀1 and q±0`, . . . ,q

±
k` almost surely

jointly converge empirically with limits,

(p0
−̀1,p

+
i, −̀1,q

−
j`,q

0
` ,q

+
j`)

2
=⇒ (P 0

−̀1, P
+
i, −̀1, Q

−
j`, Q

0
` , Q

+
j`), (31)

for all 0 ≤ i, j ≤ k, where the variables P 0
−̀1, P+

i, −̀1 and Q−j` are zero-mean jointly Gaussian
random variables independent of W` and with covariance matrix given by

Cov(P 0
−̀1, P

+
i, −̀1) = K+

i, −̀1, E(Q−j`)
2 = τ−j` , E(P+T

i, −̀1Q
−
j`) = 0, E(P 0T

−̀1Q
−
j`) = 0,

(32)
and Q0

` , Q+
j` are the random variable in lines 4, 19,i.e.,

Q0
` = f0

` (P 0
−̀1,W`), Q+

j` = f+
j`(P

0
−̀1, P

+
j, −̀1, Q

−
j`,W`,Υ

+

j`). (33)

An identical result holds for ` = 0 with all the variables p+
i, −̀1 and P+

i, −̀1 removed.

(b) For any fixed k ≥ 1 and fixed ` = 1, . . . , L−1, the parameter lists Υ−k` converge as

lim
N→∞

Υ−k` = Υ
−
k` (34)

almost surely. Also, the rows of w`, p0
−̀1, p±0, −̀1, . . . ,p

±
k−1, −̀1, and q−0`, . . . ,q

−
k` almost surely

jointly converge empirically with limits,

(p0
−̀1,p

+
i, −̀1,q

−
j`,p

−
j,`−1)

2
=⇒ (P 0

−̀1, P
+
i, −̀1, Q

−
j`, P

−
j,`−1), (35)

for all 0 ≤ i ≤ k−1 and 0 ≤ j ≤ k, where the variables P 0
−̀1, P+

i, −̀1 and Q−j` are zero-mean
jointly Gaussian random variables independent of W` and with covariance matrix given by
equation (32) and P−j` is the random variable in line 32:

P−j` = f−j`(P
0
−̀1, P

+
j−1, −̀1, Q

−
j`,W`,Υ

−
j`). (36)

An identical result holds for ` = L with all the variables q−j` and Q−j` removed.

For k = 0, Υ−01 → Υ
−
01 almost surely, and the rows {(w`,n:,p

0
`−1,n:,q

−
j`,n:)}Nn=1 empirically

converge to independent random variables (W`, P
0
`−1, Q

−
0`).

Proof. Appendix E is dedicated to proving this result. �

Appendix E Proof of Theorem 2

The proof proceeds using mathematical induction. It largely mimics the proof for the case of d = 1
which were the convergence results in [34, Thm. 5]. However, in the case of d > 1, we observe
that several quantities which were scalars in proving [34, Thm. 5] are now matrices. Due to the
non-commutativity of these matrix quantities, we re-state the whole prove, while modifying the
requisite matrix terms appropriately.
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Appendix E.1 Overview of the Induction Sequence

The proof is similar to that of [36, Theorem 4], which provides a SE analysis for VAMP on a
single-layer network. The critical challenge here is to extend that proof to multi-layer recursions.
Many of the ideas in the two proofs are similar, so we highlight only the key differences between the
two.

Similar to the SE analysis of VAMP in [36], we use an induction argument. However, for the
multi-layer proof, we must index over both the iteration index k and layer index `. To this end, let
H+

k` andH−k` be the hypotheses:

• H+
k`: The hypothesis that Theorem 2(a) is true for a given k and `, where 0 ≤ ` ≤ L− 1.

• H−k`: The hypothesis that Theorem 2(b) is true for a given k and `, where 1 ≤ ` ≤ L.

We prove these hypotheses by induction via a sequence of implications,

{H−0`}
L
`=1 · · · ⇒ H−k1 ⇒ H

+
k0 ⇒ · · · ⇒ H

+
k,L−1 ⇒ H

−
k+1,L ⇒ · · · ⇒ H

−
k+1,1 ⇒ · · · , (37)

beginning with the hypotheses {H−0`} for all ` = 1, . . . , L−1.

Appendix E.2 Base Case: Proof of {H−0`}L`=1

The base case corresponds to the hypotheses {H−0`}L`=1. Note that Theorem 2(b) states that for
k = 0, we need Υ−01 → Υ

−
01 almost surely, and {(w`,n:,p

0
`−1,n:,q

−
j`,n:)}Nn=1 empirically converge

to independent random variables (W`, P
0
`−1, Q

−
0`). These follow directly from equations (27) and

(28) in Assumption 1 (a).

Appendix E.3 Inductive Step: Proof ofH+
k,`+1

Fix a layer index ` = 1, . . . , L−1 and an iteration index k = 0, 1, . . .. We show the implication
· · · =⇒ H+

k,`+1 in (37). All other implications can be proven similarly using symmetry arguments.

Definition 4 (Induction hypothesis). The hypotheses prior to H+
k, +̀1 in the sequence (37), but not

includingH+
k, +̀1, are true.

The inductive step then corresponds to the following result.
Lemma 3. Under the induction hypothesis,H+

k,`+1 holds

Before proving the inductive step in Lemma 3, we prove two intermediate lemmas. Let us start
by defining some notation. Define P+

k` :=
[
p+

0` · · ·p
+
k`

]
∈ RN`×(k+1)d, be a matrix whose column

blocks are the first k+1 values of the matrix p+
` . We define the matrices P−k`, Q+

k` and Q−k` in a
similar manner with values of p−` ,q

+
` and q−` respectively.

Note that except the initial matrices {w`,q
−
0`}L`=1, all later iterates in Algorithm 3 are random due

to the randomness of V`. Let G±k` denote the collection of random variables associated with the
hypotheses,H±k`. That is, for ` = 1, . . . , L−1,

G+
k` :=

{
w`,p

0
−̀1,P

+
k, −̀1,q

0
` ,Q

−
k`,Q

+
k`

}
, G−k` :=

{
w`,p

0
−̀1,P

+
k−1, −̀1,q

0
` ,Q

−
k`,P

−
k, −̀1

}
.

For ` = 0 and ` = L we set, G+
k0 :=

{
w0,Q

−
k0,Q

+
k0

}
, G−kL :=

{
wL,p

0
L−1,P

+
k−1,L−1,P

−
k,L−1

}
.

Let G
+

k` be the sigma algebra generated by the union of all the sets G±k′`′ as they have appeared in
the sequence (37) up to and including the final set G+

k`. Thus, the sigma algebra G
+

k` contains all
information produced by Algorithm 3 immediately before line 20 in layer ` of iteration k. Note also
that the random variables in Algorithm 4 immediately before defining P+

k,` in line 20 are all G
+

k`

measurable.

Observe that the matrix V` in Algorithm 3 appears only during matrix-vector multiplications in
lines 20 and 32. If we define the matrices, Ak` :=

[
p0
` ,P

+
k−1,` P−k`

]
, Bk` :=

[
q0
` ,Q

+
k−1,` Q−k`

]
,
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all the matrices in the set G
+

k` will be unchanged for all matrices V` satisfying the linear constraints
Ak` = V`Bk`. (38)

Hence, the conditional distribution of V` given G
+

k` is precisely the uniform distribution on the set of
orthogonal matrices satisfying (38). The matrices Ak` and Bk` are of dimensions N` × (2k + 2)d.
From [36, Lemmas 3,4], this conditional distribution is given by

V`|G+
k`

d
= Ak`(A

T
k`Ak`)

−1BT
k` + UA⊥k`

Ṽ`U
T
B⊥k`

, (39)

where UA⊥k`
and UB⊥k`

are N`× (N`− (2k+ 2)d) matrices whose columns are an orthonormal basis

for Range(Ak`)
⊥ and Range(Bk`)

⊥. The matrix Ṽ` is Haar distributed on the set of (N` − (2k +

2)d)× (N` − (2k + 2)d) orthogonal matrices and is independent of G
+

k`.

Next, similar to the proof of [36, Thm. 4], we can use (39) to write the conditional distribution of
p+
k` (from line 20 of Algorithm 3) given G

+

k` as a sum of two terms

p+
k`|G+

k`
= V`|G+

k`
q+
k`

d
= p+det

k` + p+ran
k` , (40a)

p+det
k` := Ak`(B

T
k`Bk`)

−1BT
k`q

+
k` (40b)

p+ran
k` := UB⊥k

ṼT
`UT

A⊥k
q+
k`. (40c)

where we call p+det
k` the deterministic term and p+ran

k` the random term. The next two lemmas
characterize the limiting distributions of the deterministic and random terms.

Lemma 4. Under the induction hypothesis, the rows of the “deterministic" term p+det
k` along with

the rows of the matrices in G
+

k` converge empirically. In addition, there exists constant d×d matrices
β+

0`, . . . , β
+
k−1,` such that

p+det
k`

2
=⇒ P+det

k` := P 0
` β

0
` +

k−1∑
i=0

P+
i` βi`, (41)

where P+det
k` ∈ R1×d is the limiting random vector for the rows of pdet

k` .

Proof. The proof is similar that of [36, Lem. 6], but we go over the details as there are some important
differences in the multi-layer matrix case. Define P̃+

k−1,` =
[
p0
` , P+

k−1,`

]
, Q̃+

k−1,` =
[
q0
` , Q+

k−1,`

]
,

which are the matrices in RN`×(k+1)d. We can then write Ak` and Bk` from (38) as

Ak` :=
[
P̃+

k−1,` P−k`

]
, Bk` :=

[
Q̃+

k−1,` Q−k`

]
, (42)

We first evaluate the asymptotic values of various terms in (40b). By definition of Bk` in (42),

BT
k`Bk` =

[
(Q̃+

k−1,`)
TQ̃+

k−1,` (Q̃+
k−1,`)

TQ−k`
(Q−k`)

TQ̃+
k−1,` (Q−k`)

TQ−k`

]
We can then evaluate the asymptotic values of these terms as follows: For 0 ≤ i, j ≤ k − 1 the
asymptotic value of the (i+ 2, j + 2)nd d× d block of the matrix (Q̃+

k−1,`)
TQ̃+

k−1,` is

lim
N→∞

1
N`

[
(Q̃+

k−1,`)
TQ̃+

k−1,`

]
i+2,j+2

(a)
= lim

N→∞

1

N`
(q+

i`)
Tq+

j`

= lim
N→∞

1
N`

N∑̀
n=1

[q+
i`]n:[q

+
j`]

T
n:

(b)
= E

[
Q+T

i` Q
+
j`

]
where (a) follows since the (i + 2)th column block of Q̃+

k−1,` is q+
i`, and (b) follows due to the

empirical convergence assumption in (31). Also, since the first column block of Q̃+
k−1,` is q0

` , we
obtain that

lim
N`→∞

1
N`

(Q̃+
k−1,`)

TQ̃+
k−1,` = R+

k−1,` and

lim
N`→∞

1
N`

(Q−k`)
TQ−k` = R−k`,

(43)
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where R+
k−1,` ∈ R(k+1)d×(k+1)d is the covariance matrix of

[
Q0

` Q
+
0` . . . Q

+
k−1,`

]
, and R−k` ∈

R(k+1)d×(k+1)d is the covariance matrix of
[
Q−0` Q

−
1` . . . Q

−
k`

]
. For the matrix (Q̃+

k−1,`)
TQ−k`, first

observe that the limit of the divergence free condition (29) implies

E

[
∂f+

i` (P+
i, −̀1, Q

−
i`,W`,Υi`)

∂Q−i`

]
= lim

N`→∞

〈
∂f+

i` (p+
i, −̀1,q

−
i`,w`,Υ

+

i`)

∂q−i`

〉
= 0, (44)

for any i. Also, by the induction hypothesisH+
k`,

E(P+T
i, −̀1Q

−
j`) = 0, E(P 0T

−̀1Q
−
j`) = 0, (45)

for all 0 ≤ i, j ≤ k. Therefore using (33), the cross-terms E(Q+T
i` Q

−
j`) are given by

E(f+
i` (P 0

−̀1, P
+
i, −̀1, Q

−
i`,W`,Υi`)

TQ−j`)
(a)
= E

[
∂f+

i`(P 0
−̀1,P

+
i, −̀1,Q

−
i`,W`,Υ

+
i`)

∂P 0
−̀1

]
E(P 0T

−̀1Q
−
j`)

+ E
[
∂f+

i`(P 0
−̀1,P

+
i, −̀1,Q

−
i`,W`,Υ

+
i`)

∂P+
i, −̀1

]
E(P+T

i, −̀1Q
−
j`)

+ E
[
∂f+

i`(P 0
−̀1,P

+
i, −̀1,Q

−
i`,W`,Υ

+
i`)

∂Q−i`

]
E(Q−Ti` Q

−
j`)

(b)
= 0,

(46)

(a) follows from a multivariate version of Stein’s Lemma [23, eqn.(2)]; and (b) follows from (44),
and (45). Consequently,

lim
N`→∞

1
N`

BT
k`Bk` =

[
R+

k−1,` 0

0 R−k`

]
, and lim

N`→∞
1
N`

BT
k`q

+
k` =

[
b+
k`
0

]
, (47)

where b+
k` :=

[
E(Q+T

0` Q
+
k`) E(Q+T

1` Q
+
k`) · · · E(Q+T

k−1,`Q
+
k`)
]T
, is the matrix of correlations. We

again have 0 in the second term because E[Q+T
i` Q

−
j`] = 0 for all 0 ≤ i, j ≤ k. Hence we have

lim
N`→∞

(BT
k`Bk`)

−1BT
k`q

+
k` =

[
β+
k`
0

]
, β+

k` :=
[
R+

k−1,`

]−1
b+
k`. (48)

Therefore, p+det
k` equals

Ak`(B
T
k`Bk`)

−1BT
k`q

+
k` =

[
P̃+

k−1,` P−k,`

] [
β+
k`
0

]
+O

(
1
N`

)
= p0

`β
0
` +

k−1∑
i=0

p+
i`β

+
i` +O

(
1
N`

)
,

(49)

where β0
` and β+

i` are d × d block matrices of β+
k` and the term O( 1

N`
) means a matrix sequence,

ϕ(N) ∈ RN` such that limN→∞
1
N ‖ϕ(N)‖2 = 0. A continuity argument then shows the empirical

convergence (41). �

Lemma 5. Under the induction hypothesis, the components of the “random" term p+ran
k` along with

the components of the vectors in G
+

k` almost surely converge empirically. The components of p+ran
k`

converge as

p+ran
k`

2
=⇒ Uk`, (50)

where Uk` is a zero mean Gaussian random vector in R1×d independent of the limiting random
variables corresponding to the variables in G

+

k`.

Proof. The proof is identical to that of [36, Lemmas 7,8]. �

We are now ready to prove Lemma 3.

Proof of Lemma 3. Using the partition (40a) and Lemmas 4 and 5, we see that the components of
the vector sequences in G

+

k` along with p+
k` almost surely converge jointly empirically, where the
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components of p+
k` have the limit

p+
k` = pdet

k` + pran
k`

2
=⇒ P 0

` β
0
` +

k−1∑
i=0

P+
i` β

+
i` + Uk` =: P+

k`. (51)

Note that the above Wasserstein-2 convergence can be shown using the same arguments involved in
showing that if XN |F

d
=⇒ X|F , and YN |F

d
=⇒ c, then (XN , YN )|F d

=⇒ (X, c)|F for some
constant c and sigma-algebra F .

We first establish the Gaussianity of P+
k`. Observe that by the induction hypothesis, H−k, +̀1

holds whereby (P 0
` , P

+
0`, . . . , P

+
k−1,`, Q

−
0, +̀1, . . . , Q

−
k, +̀1), is jointly Gaussian. Since Uk is Gaus-

sian and independent of (P 0
` , P

+
0`, . . . , P

+
k−1,`, Q

−
0, +̀1, . . . , Q

−
k, +̀1), we can conclude from (51) that

(P 0
` , P

+
0`, . . . , P

+
k−1,`, P

+
k`, Q

−
0, +̀1, . . . , Q

−
k, +̀1) is jointly Gaussian.

We now need to prove the correlations of this jointly Gaussian random vector are as claimed by
H+

k,`+1. SinceH−k, +̀1 is true, we know that (32) is true for all i = 0, . . . , k−1 and j = 0, . . . , k and
` = ` + 1. Hence, we need only to prove the additional identity for i = k, namely the equations:
Cov(P 0

` , P
+
k`)

2 = K+
k` and E(P+

k`Q
−
j, +̀1) = 0. First observe that

E(P+T
k` P

+
k`)

2 (a)
= lim

N`→∞
1
N`

p+T
k` p+

k`

(b)
= lim

N`→∞
1
N`

q+T
k` q+

k`

(c)
= E

(
Q+T

k` Q
+
k`

)2
where (a) follows from the fact that the rows of p+

k` converge empirically to P+
k`; (b) follows from

line 20 in Algorithm 3 and the fact that V` is orthogonal; and (c) follows from the fact that the rows
of q+

k` converge empirically to Q+
k` from hypothesis H+

k,`. Since p0
` = V`q

0, we similarly obtain
that E(P 0T

` P+
k`) = E(Q0T

` Q+
k`), E(P 0T

` P 0
` ) = E(Q0T

` Q0
`), from which we conclude

Cov(P 0
` , P

+
k`) = Cov(Q0

` , Q
+
k`) =: K+

k`, (52)

where the last step follows from the definition of K+
k` in line 20 of Algorithm 4. Finally, we observe

that for 0 ≤ j ≤ k

E(P+T
k` Q

−
j, +̀1)

(a)
= β0T

` E(P 0T
` Q−j, +̀1) +

k−1∑
i=0

β+T
i` E(P+T

i` Q−j, +̀1) + E(UT
k`Q

−
j, +̀1)

(b)
= 0, (53)

where (a) follows from (51) and, in (b), we used the fact that E(P 0T
` Q−j, +̀1) = 0 and E(P+T

i` Q−j, +̀1) =

0 since (32) is true for i ≤ k−1 corresponding to H−k,`+1 and E(UT
k`Q

−
j, +̀1) = 0 since Uk` is

independent of G
+

k`, and Q−j, +̀1 is G
+

k` measurable. Thus, with (52) and (53), we have proven all the
correlations in (32) corresponding toH+

k,`+1.

Next, we prove the convergence of the parameter lists Υ+
k,`+1 to Υ

+

k,`+1. Since Υ+
k` → Υ

+

k` due to
hypothesisH+

k`, and ϕ+
k, +̀1(·) is uniformly Lipschitz continuous, we have that limN→∞ µ+

k, +̀1 from
line 17 in Algorithm 3 converges almost surely as

lim
N→∞

〈
ϕ+

k, +̀1(p0
` ,p

+
k`,q

−
k, +̀1,w +̀1,Υ

+

k`)
〉

= E
[
ϕ+
k, +̀1(P 0

` , P
+
k`, Q

−
k, +̀1,W +̀1,Υ

+

k`)
]

= µ+
k, +̀1,

(54)
where µ+

k, +̀1 is the value in line 17 in Algorithm 4. Since T+
k, +̀1(·) is continuous, we have that λ+

k, +̀1

in line 18 in Algorithm 3 converges as limN→∞ λ+
k, +̀1 = T+

k, +̀1(µ+
k, +̀1,Υ

+

k`) =: λ
+

k, +̀1, from line 18
in Algorithm 4. Therefore, we have the limit

lim
N→∞

Υ+
k, +̀1 = lim

N→∞
(Υ+

k,`, λ
+
k, +̀1) = (Υ

+

k,`, λ
+

k, +̀1) = Υ
+

k, +̀1, (55)

which proves the convergence of the parameter lists stated inH+
k,`+1. Finally, using (55), the empirical

convergence of the matrix sequences p0
` , p+

k` and q−k, +̀1 and the uniform Lipschitz continuity of the
update function f+

k, +̀1(·) we obtain that q+
k, +̀1 equals

f+
k, +̀1(p0

` ,p
−
k`,q

−
k, +̀1,w +̀1,Υ

+
k, +̀1)

2
=⇒ f+

k, +̀1(P 0
` , P

−
k`, Q

−
k, +̀1,W +̀1,Υ

+

k, +̀1) =: Q+
k, +̀1,

which proves the claim (33) forH+
k,`+1. This completes the proof. �
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An overview of the iterates in Algorithm 3 is depicted in (TOP) and (MIDDLE) of Figure 3. Theorem
2 shows that the rows of the iterates of Algorithm 3 converge empirically with 2nd order moments to
random variables defined in Algorithm 4. The random variables defined in Algo. 4 are depicted in
Figure 3 (BOTTOM).
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