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Algorithm 1: Computing K−
1
2 b with MVM-based Contour Integral Quadrature (CIQ)

Input :mvm_K(·) – function for matrix-vector multiplication (MVM) with matrix K
b – right hand side, J – number of msMINRES iterations, Q – number of quad. points

Output :a ≈ K−
1
2 b

[w1, . . . , wQ], [t1, . . . , tQ]← compute_quad( mvm_K(·), Q) // Weights (wi) and
shifts (ti) for quadrature - details in Appx. B.

(t1I + K)−1b, . . . (tQI + K)−1b← msMINRES( mvm_K(·), b, J , t1, . . ., tQ)
// msMINRES computes all solves simultaneously - details in
Appx. C.

return
∑Q
q=1 wq (tqI + K)

−1
b // CIQ estimate of

1
2πi

∫
τ−1/2(τI−K)−1b dτ = K−1/2b

A Additional Results
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Figure S1: CIQ relative error at computing K1/2b as a function of number of quadrature points Q.
In all cases Q = 8 achieves < 10−4 error.

Fig. S1 and Fig. S2 are continuations of Fig. 1. They plots CIQ convergence and randomized SVD
convergence as a function of Q and R for covariance matrices whose eigenvalues decay as λt = 1√

t
,

λt = 1
t , λt = 1

t2 , and λt = exp(−t) in addition to the kernel matrix results already presented. The

∗This work was conducted while David Eriksson was at Uber AI.
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Figure S2: Randomized SVD relative error at computing K1/2b as a function of approximation rank
R. In all cases, randomized SVD is unable to achieve a relative error better than about 0.25.

results for CIQ demonstrate that it is relatively invariant to the eigenvalue decay speed, and does not
require approximately low rank structure. Randomized SVD on the other hand incurs an order of
magnitude more error; a rank of 1,024 is unable to reduce the relative error to a single decimal point.
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Figure S3: Effect of preconditioning on CIQ convergence (random RBF and Matérn-5/2 kernels with
a pivoted Cholesky preconditioner [29]).

Fig. S3 further demonstrates the effect of preconditioning on msMINRES-CIQ. We construct ran-
dom N × N RBF/Matérn kernels, applying msMINRES-CIQ to a set of N orthonormal vectors
([K1/2b1, . . . ,K

1/2bN ]), and compute the empirical covariance. We plot the number of msMINRES
iterations needed to achieve a relative error of 10−4. The pivoted Cholesky preconditioner of Gardner
et al. [29]—which forms a low-rank approximation of K—accelerates convergence of msMINRES.
Without preconditioning (i.e. rank=0), J = 100 iterations are required for N = 7,500 matrices. With
rank-100/rank-400 preconditioners, iterations are cut by a factor of two/four.

To further compare msMINRES-CIQ to randomized methods, Fig. S4 plots the empirical covariance
matrix of 1,000 Gaussian samples drawn from a Gaussian process prior N (0,K). We construct the
RBF covariance matrices K using subsets of the Protein and Kin40k datasets9 [2]. We note that
all methods incur some sampling error, regardless of the subset size (N ). msMINRES-CIQ and
Cholesky-based sampling tend to have very similar empirical covariance error. On the other hand, the

9 Both datasets are originally from the UCI repository and can be downloaded from https://github.
com/gpleiss/ciq_experiments/tree/main/svgp/data.
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Figure S4: Empirical covariance error (relative norm) for various sampling methods (Cholesky,
msMINRES-CIQ, and 1,000 Random Fourier Features [63]). Empirical covariances are measured
from 1,000 samples. RBF matrices are constructed from data in the Protein and Kin40k datasets [2].

Random Fourier Features method [63] (with 1,000 random features) incurs errors up to 2× as large.
This additional error is due to the randomness in the RFF approximation.
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Figure S5: Error comparison of Cholesky-whitened vs CIQ-whitened SVGP models. Left: 3DRoad
dataset RMSE (N = 326155, D = 2, Gaussian likelihood). Middle: Precipitation dataset RMSE
(N = 75952, D = 3, Student-T likelihood). Right: CoverType dataset 0/1 error (N = 435759, D =
54, Bernoulli likelihood). Error improves with more inducing points (M ), and Cholesky and CIQ
models have similar performance. However CIQ scales to larger values of M .

In Fig. S5 we plot the predictive error of CIQ-SVGP and Chol-SVGP models as a function of M . For
the two regression datasets (3droad and Precipitation) error is measured by test set root mean squared
error (RMSE). On the Covtype classification dataset error is measured by the test set 0/1 loss. As
with the NLL results in Fig. 3 we find that the CIQ-SVGP and Chol-SVGP perform similarly, despite
the fact that CIQ-SVGP can be up to 5.6× faster. Moreover, we see that error continuously decreases
with more inducing points up to M = 10,000.

In Fig. S6 we plot the learned hyperparameters of the Precipitation SVGP models: 1) o2 (the
kernel outputscale)—which roughly corresponds to variance explained as “signal” in the data;
2) σ2

obs—which roughly corresponds to variance explained away as observational noise; and 3) ν
(degrees of freedom)—which controls the tails of the noise model (lower ν corresponds to heavier
tails). As M increases, we find that the observational noise parameter decreases by a factor of
4—down from 0.19 to 0.05—while the ν parameter also decreases. Models with larger M values can
more closely approximate the true posterior [39]; therefore, we expect that the parameters from the
larger-M likelihoods more closely correspond to the true dataset noise. This confirms findings from
Bauer et al. [7], who argue that variational approximations with small M can tend to overestimate
the amount of noise in datasets.

Fig. S7 is a histogram displaying the msMINRES iterations needed to achieve a relative residual
of 10−3 when training a M = 5,000 SVGP model on the 3droad dataset (subsampled to 30,000
data points). Most msMINRES calls converge in fewer than 100 iterations; almost no calls require
more than 200 iterations. We hypothesize that this fast convergence is due to solving shifted systems
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Figure S6: Hyperparameters versus number of inducing points (M ) for Chol-SVGP and CIQ-SVGP
(Precipitation dataset, Student-T likelihood). As M increases, the kernel outputscale (left) also
increases. At the same time, the estimated observational noise (middle) decreases as does the
estimated degrees of freedom (right), reflecting a heavier-tailed noise distribution. This suggests that,
with larger M , SVGP models can find more signal in the data.
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Figure S7: Number of msMINRES iterations needed to achieve a relative residual of 10−3. Histogram
captures training a M = 5,000 SVGP model on the 3droad dataset (subsampled to 30,000 data
points).

(K + tqI). The minimum eigenvalues of the shifted matrix are lower-bounded by tq, and therefore
shifted systems have a better condition number than the unshifted matrix K.

B Quadrature for Matrix Square Roots

Here we briefly describe the quadrature formula derived by Hale et al. [35] for use with Cauchy’s
integral formula and refer the reader to the original publication for more details.

Assume that K is a positive definite matrix, and thus has real positive eigenvalues. Our goal is to
approximate Cauchy’s integral formula with a quadrature estimate:

f(K) =
1

2πi

∮
Γ

f(τ) (τI−K)
−1

dτ (S1)

≈ 1

2πi

Q∑
q=1

w̃qf(τq) (τqI−K)
−1
, (S2)
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where f(·) is analytic on and within Γ, and w̃q and τq are quadrature weights and nodes respectively.
Note that Eq. (S1) holds true for any closed contour Γ in the complex plane that winds once
(counterclockwise) around the spectrum of K.

A naïve approach with uniformly-spaced quadrature. For now, assume that λmin and λmax—the
minimum and maximum eigenvalues of K—are known. (We will later address how they can be
efficiently estimated.) A naïve first approach to Eq. (S2) is to uniformly place the quadrature locations
in a circle that surrounds the eigenvalues and avoids crossing the negative real axis, where we
anticipate f may be singular:

τq =
λmax + λmin

2
+
λmax

2
e2iπ(q/Q), w̃q =

1

Q
, q = 0, 1, . . . , Q− 1.

This corresponds to a standard trapezoid quadrature rule. However, Hale et al. [35] demonstrate that
the convergence of this quadrature rule depends linearly on the condition number κ(K) = λmax/λmin.
In particular, this is because the integrand is only analytic in a narrow region around the chosen
contour. As many kernel matrices tend to be approximately low-rank and therefore ill-conditioned,
this simple quadrature rule requires large Q to achieve the desired numerical accuracy.

Improving convergence with conformal mappings. Rather than uniformly spacing the quadrature
points, it makes more sense to place more quadrature points near λmin and fewer near λmax. This
can be accomplished by using the above trapezoid quadrature rule in a transformed parameter space
that is “stretched” near λmin and contracted near λmax. Mathematically, this is accomplished by
applying a conformal mapping that moves the singularities to the upper and lower boundaries of a
periodic rectangle. We may then apply the trapezoid rule along a contour traversing the middle of the
rectangle—maximizing the region in which the function we are integrating is analytic around the
contour.

B.1 A Specific Quadrature Formula for f(K) = K−1/2

Hale et al. [35] suggest performing a change of variables that projects Eq. (S1) onto an annulus.
Uniformly spaced quadrature points inside the annulus will cluster near λmin when projected back
into the complex plane. This change of variables has a simple analytic formula involving Jacobi
elliptic functions (see [35, Sec. 2] for details.) In the special case of f(K) = K−1/2, we can utilize
an additional change of variables for an even more efficient quadrature formulation [35, Sec. 4].
Setting σ = τ1/2, we have

K−
1
2 =

1

πi

∮
Γs

(
σ2I−K

)−1
dσ.

≈ 1

πi

Q∑
q=1

w̃q
(
σ2
qI−K

)−1
, (S3)

where Γσ is a contour that surrounds the spectrum of K1/2. Since the integrand is symmetric with
respect to the real axis, we only need to consider the imaginary portion of Γσ . Consequently, all the
τq quadrature locations (back in the original space) will be real-valued and negative. Combining
this square-root change-of-variables with the annulus change-of-variables results in the following
quadrature weights/locations:

σ2
q = λmin

(
sn(iuqK′(k) | k)

)2

,

w̃q = −2
√
λmin

πQ
[K′(k) cn (iuqK′(k) | k) dn (iuqK′(k) | k)] ,

(S4)

where we adopt the following notation:

• k =
√
λmin/λmax = 1/

√
κ(K);

• K′(k) is the complete elliptic integral of the first kind with respect to the complimentary
elliptic modulus k′ =

√
1− k2;

• uq = 1
Q (q − 1

2 ); and
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• sn(· | k), cn(· | k), and dn(· | k) are the Jacobi elliptic functions with respect to elliptic
modulus k.

The weights w̃q and locations σ2
q from Eq. (S4) happen to be real-valued and negative. Setting

tq = −σ2
q and wq = −w̃q gives us:

K−
1
2 ≈

Q∑
q=1

wq (tqI + K)
−1
, wq = −w̃q > 0, tq = −σ2

q > 0. (S5)

An immediate consequence of this is that the shifted matrices (tqI + K) are all positive definite.

Convergence of the quadrature approximation. Due to the double change-of-variables, the con-
vergence of this quadrature rule in Eq. (S4) is extremely rapid—even for ill-conditioned matrices.
Hale et al. prove the following error bound:
Lemma 1 (Hale et al. [35], Thm. 4.1). Let t1, . . ., tQ > 0 and w1, . . ., wQ > 0 be the locations and
weights of Hale et al.’s quadrature procedure. The error of Eq. (2) is bounded by:∥∥∥∥∥K

Q∑
q=1

wq (tqI + K)
−1 −K

1
2

∥∥∥∥∥
2

≤ O
(

exp

(
− 2Qπ2

log κ(K) + 3

))
,

where κ(K) = λmax/λmin is the condition number of K.

Remarkably, the error of Eq. (2) is logarithmically dependent on the conditioning of K. Consequently,
Q ≈ 8 quadrature points is even sufficient for ill-conditioned matrices (e.g. κ(K) ≈ 104).

B.2 Estimating the Minimum and Maximum Eigenvalues

The equations for the quadrature weights/locations depend on the extreme eigenvalues λmax and
λmin of K. Using the Lanczos algorithm [51]—which is a Krylov subspace method—we can obtain
accurate estimates of these extreme eigenvalues using relatively few matrix-vector multiplies with K.

The Lanczos algorithm is a method for computing an orthonormal basis for Krylov subspaces of a
symmetric matrix K and, simultaneously, projections of A onto that subspace. Given an initial vector
b, the algorithm iteratively factorizes K as:

KQJ = QJTJ + rJe>J

where eJ is a unit vector, and

• QJ ∈ RN×J is an orthonormal basis of the J th Krylov subspace K(K,b),
• TJ ∈ RJ×J is a symmetric tridiagonal matrix, and
• rJ ∈ RJ is a residual term.

At a high level, the Lanczos iterations form the Krylov subspaces while simultaneously performing a
process akin to modified Gram Schmidt orthogonalization:

span{q(1), . . . , q(J)} = K(K,b) = span{b, Kb, K2b, . . . , KJ−1b}.
The orthogonal basis vectors are collected into Q and the orthogonalization coefficients are collected
into T. Due to the symmetry of K a three term recurrence exists for this process and each vector q(j)

only has to be orthogonalized against the two previous basis vectors q(j−1), q(j−2)—resulting in a
tridiagonal T.

Estimating Extreme Eigenvalues from Lanczos. To estimate λmin and λmax from Lanczos, we
perform an eigendecomposition of TJ . If J is small (i.e. J ≈ 10) then this eigendecomposition
requires minimal computational resources. In fact, as TJ is tridiagonal invoking standard routines
allows computation of all the eigenvalues in O(J2) time. A well-known convergence result of the
Lanczos algorithm is that the extreme eigenvalues of TJ tend to converge rapidly to λmin and λmax
[e.g. 31, 65]. Since the Lanczos algorithm always produces underestimates of the largest eigenavlue
and overestimates of the smallest it is reasonable to use slightly larger and smaller values in the
construction of the quadrature scheme—as we see in Lemma 1, the necessary number of quadrature
nodes is insensitive to small overestimates of the condition number.
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Algorithm 2: Computing wq and tq for Contour Integral Quadrature
Input :mvm_K(·) – function for matrix-vector multiplication (MVM) with matrix K

Q – number of quad. points
Output :w1, . . . , wQ, t1, . . . , tQ
// Estimate extreme eigenvalues with Lanczos.
_,T← lanczos( mvm_K(·)) // Lanczos w/ rand. init. vector
λmin, · · · , λmax ← symeig(T)

// Compute elliptic integral of the first kind.

// We use the relation K′(k) = K(k′), where k′ =
√
1− k2 is the

complementary elliptic modulus.

k2← λmin/λmax // The squared elliptic modulus.

k′2←
√

1− k2 // The squared complementary elliptic modulus.

K′ ← ellipke(k′2) // K′ = K′(k)

// Compute each quadrature weight/location.
for q← 1 to Q do

uq ← (q − 1/2)/Q
// Compute Jacobi elliptic fn’s via Jacobi’s imaginary transform.
// First we compute snq = sn(uqK′(k)|k′), cnq = cn(uqK′(k)|k′),

dnq = dn(uqK′(k)|k′).
snq , cnq , dnq ← ellipj(uqK′, k′2)
// Use identities to convert snq, cnq, dnq values into
// snq = sn(iuqK′(k)|k), cnq = cn(iuqK′(k)|k), dnq = dn(iuqK′(k)|k).
snq ← i [snq/cnq]
dnq ←

[
dnq/cnq

]
cnq ← [1/cnq]

// Quadrature weight wq and location tq

wq ← (−2λ
1/2
min )/(πQ) K′ cnq dnq

tq ← λmin (snq)
2

end
return w1, . . . , wQ, t1, . . . , tQ

B.3 The Complete Quadrature Algorithm

Alg. 2 obtains the quadrature weights wq and locations tq corresponding to Eqs. (S4) and (S5).
Computing these weights requires ≈ 10 matrix-vector multiplies with K—corresponding to the
Lanczos iterations—for a total time complexity ofO(N). All computations involving elliptic integrals
can be readily computed using routines available in e.g. the SciPy library.

C The msMINRES Algorithm

Before introducing the msMINRES algorithm, we will first introduce MINRES as proposed by Paige
and Saunders [59]; MINRES can be derived from the Lanczos algorithm [51] and, therefore, is able
to take advantage of the same three term vector recurrence when building the necessary Krylov
subspaces. We will then describe how msMINRES can be derived as a straightforward extension.
Notably, we present this section assuming our best initial guess for the linear system we seek to
solve is zero. If this is not the case a single step of iterative refinement can be used and the resulting
residual system is solved with zero as the initial guess.

C.1 Standard MINRES

The method of minimum residuals (MINRES) [59] is an alternative to linear conjugate gradients,
with the advantage that it can be applied to indefinite and singular symmetric matrices K. Paige and
Saunders [59] formulate MINRES to solve the least-squares problem arg minc ‖Kc − b‖2. Each
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iteration J produces a solution cJ which is optimal within the J th Krylov subspace:

c
(MINRES)
J = arg min

c∈KJ (K,b)

‖Kc− b‖2. (S6)

Using the Lanczos matrices and some mathematical manipulation, Eq. (S6) can be re-formulated as
an unconstrained optimization problem:

c
(MINRES)
J = ‖b‖2QJzJ

zJ = arg min
y∈RJ

∥∥∥(T̃J

)
y − e1

∥∥∥
2
, T̃J =

[
TJ

‖rJ‖2e>J

]
, (S7)

where e1, eJ are unit vectors, and QJ , TJ , and rJ are the outputs from the Lanczos algorithm. Since
Eq. (S7) is a least-squares problem (guaranteed to be full column-rank unless b lives in the J th Krylov
subspace—at which point we would exactly solve the problem), we can write the analytic solution to
it using the reduced QR factorization of T̃J =QQQJRJ [e.g. 31]:

c
(MINRES)
J = ‖b‖2 QJ

(
R−1QQQ>J

)
e1. (S8)

One way to perform MINRES is first running J iterations of the Lanczos algorithm, computing
T̃J = QQQJRJ , and then plugging the resulting QJ , QQQJ , and RJ into Eq. (S8). However, this is
unsatisfactory as, naïvely it requires storing the N × J matrix QJ [e.g. 31] so that cJ can be formed.
Paige and Saunders instead introduce a vector recurrence to iteratively compute c(MINRES)

J . This is
possible because the QR factorizations of of successive T̃J may be related, allowing for the derivation
of a simple update cJ−1 → cJ . This recurrence relation, which is given by Alg. 3 and broadly
described below is exactly equivalent to Eq. (S8); however it uses careful bookkeeping to avoid
storing any N × J terms.

First we note that the T̃J matrices are formed recursively, and thus their QR factorizations are also
recursive:

QQQ>T̃J =

[
QQQ>J−1 QQQ>(J,1:J−1)

QQQ>(1:J−1,J+1) Q(J,J+1)

] [
T̃J−1 t(J)

0> ‖rJ‖

]
=

[
RJ−1 r(J,1:J−1)

0 R(J,J)

]
= RJ

where t(J) and [r(J,1:J−1);R(J,J)] are the last columns of TJ and RJ respectively. Moreover, if we
recursively form R−1

J as

R−1
J =

[
RJ−1 r(J,1:J−1)

0 R(J,J)

]−1

=

[
R−1
J−1

(
R−1
J−1r

(J,1:J−1)
)
/R(J,J)

0 1/R(J,J)

]
,

then Eq. (S8) can be re-written in a decent-style update:

c
(MINRES)
J = ‖b‖2

[
QJ−1q

(J)
] [R−1

J−1

R−1
J−1r

(J,1:J−1)

R(J,J)

0 1/R(J,J)

] [
QQQ>J−1 QQQ>(J,1:J−1)

QQQ>(1:J−1,J+1) Q(J,J+1)

]
e1

= ‖b‖2

[
QJ−1R

−1
J−1

QJ−1R
−1
J−1r

(J,1:J−1)

R(J,J)

0 1/R(J,J)qJ−1

] [
QQQ>J−1e1

Q>(1,J+1)

]
=
(
‖b‖2QJ−1R

−1
J−1QQQJ−1e1

)
c
(MINRES)
J−1

+
‖b‖2Q>(1,J+1)

R(J,J)

ϕJ

[
QJ−1R

−1
J−1r

(J,1:J−1)

qJ−1

]
dJ

. (S9)

Thus c
(MINRES)
J = c

(MINRES)
J−1 +ϕJdJ . The only seemingly expensive part of this update is computing

dJ , as we need to compute QJ−1R
−1
J−1r

(J,1:J−1). r(J,1:J−1), which is the next entry in the QR
factorization of T̃J , can be cheaply computed using Givens rotations (see [e.g. 31, Ch. 11.4.1]).
Moreover, only the last two entries of r(J,1:J−1) will be non-zero (due to the tridiagonal structure of
T̃J ). Consequently, we only need to store the last two vectors of QJ−1R

−1
J−1, which again can be

computed recursively.

In total, the whole procedure only requires the storage of ≈ 6 vectors. Each iteration requires a single
MVM with K (to form the next Lanczos vector qJ ); and all subsequent operations are O(N). The
entire procedure is given by Alg. 3. For simplicity, we have presented the algorithm as if run for a
fixed number of steps J. In practice, the MINRES procedure admits inexpensive computation of the
residual at each iteration [59] allowing for robust stopping criteria to be used.
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Algorithm 3: Method of Minimum Residuals (MINRES).
Input :mvm_K(·) – function for MVM with matrix K

b – vector to solve against
Output :c = K−1b.

c1← 0 // Current solution.
d1,d0← 0 // Current & prev. “search” direction.
ϕ2← ‖b‖2 // Current “step” size.

q1← b/‖b‖2 // Current Lanczos vector.
v1← mvm_K( q0) // Buffer for MVM output.
δ1← ‖b‖2 // Current Lanczos residual/sub-diagonal.
δ0← 1 // Prev. Lanczos residual/sub-diagonal.
η1← 1 // Current scaling term.
η0← 0 // Prev. scaling term.

for j ← 2 to J do
// Run one iter of Lanczos. Gets next vector of Q matrix, and next

diag/sub-diag (γ, δ) entries of T matrix.
qj ← vj/δj
vj ← mvm_K( qj) −δjqj−1

γj ← qjvj
vj ← vj − γjqj
δj ← ‖vj‖
// Compute the next r(J) (part of QR) via Givens rotations. There

are three non-0 entries: R(J,J−2:J) = [εJ , ζJ , ηJ ].

εj ← δj−1

(
δj−2/

√
δ2
j−2 + η2

j−2

)
ζj ← δj−1

(
ηj−2/

√
δ2
j−2 + η2

j−2

)
ηj ← γj

(
ηj−1/

√
δ2
j−1 + η2

j−1

)
+ ζj

(
δj−1/

√
δ2
j−1 + η2

j−1

)
ζj ← ζj

(
ηj−1/

√
δ2
j−1 + η2

j−1

)
+ γj

(
δj−1/

√
δ2
j−1 + η2

j−1

)
ηj ← ηj

(
ηj/
√
δ2
j + η2

j

)
// Compute “step” size ϕJ =QQQ(1,J+1)/R(J,J).

ϕj ← ϕj−1

(
δj−1/

√
δ2
j−1 + η2

j−1

)(
ηj/
√
δ2
j + η2

j

)
// Update the current solution based on the r(J) entries (εJ , ζJ , ηJ)

and previous search vectors dj−1, dj−2.
dj ← (q− ζjdj−1 − εjdj−2) /ηj
cj ← cj−1 + ϕjdj

end
return ‖b‖2 cj

C.2 Multi-Shift MINRES (msMINRES)

To adapt MINRES to multiple shifts (i.e. msMINRES), we exploit a well-established fact about the
shift invariance of Krylov subspaces (see [e.g. 17, 24, 46, 65]).

Observation 1. Let KQJ = QJTJ + rJe>J be the Lanczos factorization for K given the initial
vector b. Then

(K + tI)QJ = QJ(TJ + tI) + rJe>J

is the Lanczos factorization for matrix (K + tI) with initial vector b.

In other words, if we run Lanczos on K and b, then we get the Lanczos factorization of (K + tI) for
free, without any additional MVMs! Consequently, we can re-use the QJ and TJ Lanczos matrices
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Algorithm 4: Multi-shift MINRES (msMINRES). Differences from MINRES (Alg. 3) are in
blue. Blue for loops are parallelizable.
Input :mvm_K(·) – function for MVM with matrix K

b – vector to solve against
t1, . . . , tQ – shifts

Output :c1 = (K + t1)−1b, . . . , cQ = (K + tQ)−1b.

q1← b/‖b‖2 // Current Lanczos vector.
v1← mvm_K( q0) // Buffer for MVM output.
δ1← ‖b‖2, δ0← 1 // Current/prev. Lanczos residual/sub-diagonal.
for q ← 1 to Q do

c
(q)
1 ← 0 // Current solution.

d
(q)
1 ,d

(q)
0 ← 0 // Current & prev. “search” direction.

ϕ
(q)
2 ← ‖b‖2 // Current “step” size.

η
(q)
1 ← 1, η(q)

0 ← 0 // Current/prev. scaling term.
end
for j ← 2 to J do

qj ← vj/δj
vj ← mvm_K( qj) −δjqj−1

γj ← qjvj
vj ← vj − γjqj
δj ← ‖vj‖
for q ← 1 to Q do

ε
(q)
j ← δj−1

(
δj−2/

√
δ2
j−2 + η

(q)2
j−2

)
ζ

(q)
j ← δj−1

(
η

(q)
j−2/

√
δ2
j−2 + η

(q)2
j−2

)
η

(q)
j ← (γj + tq)

(
η

(q)
j−1/

√
δ2
j−1 + η

(q)2
j−1

)
+ζ

(q)
j

(
δj−1/

√
δ2
j−1 + η

(q)2
j−1

)
ζ

(q)
j ← ζ

(q)
j

(
η

(q)
j−1/

√
δ2
j−1 + η

(q)2
j−1

)
+ (γj + tq)

(
δj−1/

√
δ2
j−1 + η

(q)2
j−1

)
η

(q)
j ← η

(q)
j

(
η

(q)
j /

√
δ2
j + η

(q)2
j

)
ϕ

(q)
j ← ϕ

(q)
j−1

(
δj−1/

√
δ2
j−1 + η

(q)2
j−1

)(
η

(q)
j /

√
δ2
j + η

(q)2
j

)
d

(q)
j ←

(
q− ζ(q)

j d
(q)
j−1 − ε

(q)
j d

(q)
j−2

)
/η

(q)
j

c
(q)
j ← c

(q)
j−1 + ϕ

(q)
j d

(q)
j

end
end
return ‖b‖2 cj

to compute multiple shifted solves.

(K + tI)−1b ≈ ‖b‖2 QJ

(
R

(t)−1
J QQQ(t)>

J

)
e1, QQQ(t)

J R
(t)
J =

[
TJ + tI
‖rJ‖2e>J

]
, (S10)

Assuming Q and T have been previously computed, Eq. (S10) requires no additional MVMs with K.
We refer to this multi-shift formulation as Multi-Shift MINRES, or msMINRES.

A simple vector recurrence for msMINRES. Just as with standard MINRES, Eq. (S10) can also
be computed via a vector recurrence. We can derive a msMINRES algorithm simply by modifying
the existing MINRES recurrence. Before the QR step in Alg. 3, we add t to the Lanczos diagonal
terms (γj + t, where γj = T (j,j)). This can be extended to simultaneously handle multiple shifts
t1, . . . , tQ. Each shift would compute its own QR factorization, its own step size ϕ(tq)

j , and its own
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search vector d
(tq)
j . However, all shifts share the same Lanczos vectors qj and therefore share the

same MVMs. The operations for each shift can be vectorized for efficient parallelization.

To summarize: the resulting algorithm—msMINRES—gives us approximations to (t1I + K)−1b,
. . ., (tQI + K)−1 essentially for free by leveraging the information we needed anyway to compute
K−1b. Alg. 4 outlines the procedure; below we re-highlight its computational properties:
Property 1 (Restated) (Computation/Memory of msMINRES-CIQ). J iterations of msMINRES
requires exactly J matrix-vector multiplications (MVMs) with the input matrix K, regardless of the
number of quadrature points Q. The resulting runtime of msMINRES-CIQ isO(Jξ(K)), where ξ(K)
is the time to perform an MVM with K. The memory requirement is O(QN) in addition to what’s
required to store K.

D Preconditioning msMINRES-CIQ

To improve the convergence of Thm. 1, we can introduce a preconditioner P where P−1K ≈ I. For
standard MINRES, applying a preconditioner is straightforward. We simply use MINRES to solve
the system (

P−1/2KP−1/2
)

P1/2c = P−1/2b,

which has the same solution c as the original system. In practice the preconditioned MINRES vector
recurrence does not need access to P−1/2—it only needs access to P−1 (see [12, Ch. 3.4] for details).

However, it is not immediately straightforward to apply preconditioning to msMINRES, as precondi-
tioners break the shift-invariance property that is necessary for the O(JN2) shifted solves [3, 46].
More specifically, if we apply P to msMINRES, then we obtain the solves

P−1/2(P−1/2KP−1/2 + tqI)−1(P−1/2b).

Plugging these shifted solves into the quadrature equation Eq. (2) therefore gives us

ãJ ≈ P−
1
2 (P−

1
2 KP−

1
2 )−

1
2 (P−

1
2 b). (S11)

In general, we cannot recover K−1/2 from Eq. (S11). Nevertheless, we can still obtain precon-
ditioned solutions that are equivalent to K−1/2b and K1/2b up to an orthogonal rotation. Let
R = KP−1/2(P−1/2KP−1/2)−1/2. We have that

RR> = K
(
P−

1
2 (P−

1
2 KP−

1
2 )−

1
2

)(
(P−

1
2 KP−

1
2 )−

1
2 P−

1
2

)
K = K.

Thus R is equivalent to K1/2 up to orthogonal rotation. We can compute Rb (e.g. for sampling) by
applying Eq. (S11) to the initial vector P1/2b:

Rb = K
[
P−

1
2 (P−

1
2 KP−

1
2 )−

1
2 P−

1
2

] (
P

1
2 b
)

Applying preconditioned msMINRES to P1/2b

. (S12)

Similarly, R′ = P−1/2
(
P−1/2KP−1/2

)−1/2
is equivalent to K−1/2 up to orthogonal rotation:

R′R′> =
(
P−

1
2 (P−

1
2 KP−

1
2 )−

1
2

)(
(P−

1
2 KP−

1
2 )−

1
2 P−

1
2

)
= K−1.

We can compute R′b (e.g. for whitening) via:

R′b =
[
P−

1
2 (P−

1
2 KP−

1
2 )−

1
2 P−

1
2

] (
P

1
2 b
)

Applying preconditioned msMINRES to P1/2b

. (S13)

Crucially, the convergence of Eqs. (S12) and (S13) depends on the conditioning κ(P−1K)� κ(K).

As with standard MINRES, msMINRES only requires access to P−1, not P−1/2. Note however
that Eqs. (S12) and (S13) both require multiplies with P1/2. If a preconditioner P does not readily
decompose into P1/2P1/2, we can simply run the CIQ algorithm on P to compute P1/2b. Thus our
requirements for a preconditioner are:
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1) it affords efficient solves (ideally o(N2)), and

2) it affords efficient MVMs (also ideally o(N2)) for computing P1/2b via CIQ.

In our experiments we use the partial pivoted Cholesky preconditioner proposed by Gardner et al.
[29], which satisfies the above requirements. The form of P is L̄L̄> + σ2I, where L̄ is a low-rank
factor (produced by the partial pivoted Cholesky factorization [37]) and σ2I is a small diagonal
component. This preconditioner affords ≈ O(N) MVMs by exploiting its low rank structure and
≈ O(N) solves using the matrix inversion lemma. Moreover, this preconditioner is highly effective
on many Gaussian covariance matrices [29, 79].

E O(M2) Natural Gradient Updates

When performing variational inference, we must optimize the m′ and S′ parameters of the whitened
variational distribution q(u′) = N (m′,S′). Rather than using standard gradient descent methods
on these parameters, many have suggested that natural gradient descent (NGD) is better suited for
variational inference [38, 45, 66]. NGD performs the following update:

[m′ S′]← [m′ S′]− ϕFFF−1
[
∂ELBO
∂m′

∂ELBO
∂S′

]
(S14)

where ϕ is a step size,
[
∂ELBO
∂m′

∂ELBO
∂S′

]
is the ELBO gradient, andFFF is the Fisher information matrix

of the variational parameters. Conditioning the gradient withFFF−1 results in descent directions that
are better suited towards distributional parameters [45].

For Gaussian distributions (and other exponential family distributions) the Fisher information matrix
does not need to be explicitly computed. Instead, there is a simple closed-form update that relies on
different parameterizations of the Gaussian N (m′,S′):

[θ Θ]← [θ Θ]− ϕ
[
∂ELBO
∂η

∂ELBO
∂H

]
. (S15)

[θ, Θ] are the Gaussian’s natural parameters and [η, H] are the Gaussian’s expectation parameters:

θ = S′−1m′, Θ = −1

2
S′−1,

η = m′, H = m′m′> + S′

In many NGD implementations, it is common to store the variational parameters via their natural
representation (θ, Θ), compute the ELBO via the standard parameters (m′, S′), and then compute
the derivative via the expectation parameters (η, H). Unfortunately, converting between these three
parameterizations requires O(M3) computation. (To see why this is the case, note that computing S′

essentially requires inverting the Θ matrix.)

A O(M2) NGD update. In what follows, we will demonstrate that the ELBO and its derivative can
be computed from θ and Θ in O(M2) time via careful bookkeeping. Consequently, NGD updates
have the same asymptotic complexity as the other computations required for SVGP. Recall that the
ELBO is given by

ELBO =

expected log likelihood

N∑
i=1

E
q(f(x(i)))

[
log p(y(i) | f(x(i)))

]
−KL [ q(u)‖p(u) ]

We will separately analyze the expected log likelihood and KL divergence computations.

E.1 The Expected Log Likelihood and its Gradient

Assume we are estimating the ELBO from a single data point x, y. The expected log likelihood term
of the ELBO is typically computed via Gauss-Hermite quadrature or Monte Carlo integration [40]:10

E
q(f(x)

[log p(y | f(x))] =

S∑
s=1

wsp(y | fs), fs = µ∗aprx (x) + Var∗aprx (x)
1/2

εs

10 It can also be computed analytically for Gaussian distributions [39]. The analytic form achieves the same
derivative decomposition as in Eq. (S16) and so the following analysis will still apply.
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where ws are the quadrature weights (or 1/S for MC integration) and εs are the quadrature locations
(or samples from N (0, 1) for MC integration). Therefore, the variational parameters only interact
with the expected log likelihood term via µ∗aprx (x) and Var∗aprx (x). We can write its gradients via
chain rule as:

∂ Eq(f(x) [log p(y|f(x))]

∂η
= c1

∂µ∗aprx (x)

∂η
+ c2

∂Var∗aprx (x)

∂η

∂ Eq(f(x) [log p(y|f(x))]

∂H
= c3

∂µ∗aprx (x)

∂H
+ c4

∂Var∗aprx (x)

∂H
(S16)

for some constants c1, c2, c3, and c4 that do not depend on the variational parameters. It thus suffices
to show that the posterior mean/variance and their gradients can be computed from θ and Θ in
O(M2) time.

The predictive distribution and its gradient. All expensive computations involving θ and Θ are
written in blue.

µ∗aprx (x) and its derivative can be written as:

µ∗aprx (x) = k>ZxK
−1/2
ZZ m′ (standard parameters)

= k>ZxK
−1/2
ZZ η (expectation parameters)

= k>ZxK
−1/2
ZZ (−2Θ)−1θ, (S17)

∂µ∗aprx (x)

∂η
= K

−1/2
ZZ kZx, (S18)

∂µ∗aprx (x)

∂H
= 0.

Var∗aprx (x) and its derivative can be written as:

Var∗aprx (x) = k>ZxK
−1/2
ZZ (S′ − I) K

−1/2
ZZ kZx (standard parameters)

= k>ZxK
−1/2
ZZ

(
H− ηη> − I

)
K
−1/2
ZZ kZx (expectation parameters)

= k>ZxK
−1/2
ZZ

(
(−2Θ)−1 −I) K

−1/2
ZZ kZx, (S19)

∂Var∗aprx (x)

∂η
= −2

(
k>ZxK

−1/2
ZZ (−2Θ)−1θ

)
K
−1/2
ZZ kZx, (S20)

∂Var∗aprx (x)

∂H
=
(
K
−1/2
ZZ k>Zx

)(
k>ZxK

−1/2
ZZ

)
. (S21)

In Eqs. (S17) to (S21), the only expensive operation involving KZZ is K
−1/2
ZZ kZx, which can

be computed with CIQ. The only expensive operation involving the variational parameters is
(−2Θ)−1K

−1/2
ZZ kZx, which can be computed with preconditioned conjugate gradients after com-

puting K
−1/2
ZZ kZx.11 Those operations only need to be computed once, and then they can be reused

across Eqs. (S17) to (S21). In total, the entire computation for the expected log likelihood and its
derivative is O(M2).

E.2 The KL Divergence and its Gradient

We will demonstrate that the KL divergence and its gradient can be computed from θ and Θ in
O(M2) time. All expensive computations involving θ and Θ are written in blue.

The whitened KL divergence from Sec. 5.1 is given by:

KL [ q(u′)‖p(u′) ] =
1

2

[
m′>m′ + Tr (S′)− log |S′| −M

]
(standard parameters)

=
1

2

[
Tr (H)− log |H− ηη>| −M

]
(expectation parameters)

=
1

2

[
θ>(−2Θ)−2θ + Tr

(
(−2Θ)−1

)
+ log | − 2Θ| −M

]
. (S22)

11 We typically apply a Jacobi preconditioner to these solves.
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The KL derivative with respect to η and H is surprisingly simple when re-written in terms of the
natural parameters

∂KL [ q(u′)‖p(u′) ]

∂η
=
(
H− ηη>

)−1
η = (S′)−1η

= θ (S23)
∂KL [ q(u′)‖p(u′) ]

∂H
=

1

2
I− 1

2

(
H− ηη>

)−1
=

1

2
I− 1

2
(S′)−1

=
1

2
I + Θ. (S24)

Thus the derivative of the KL divergence only takes O(M2) time to compute. The forward pass
can also be computed in O(M2) time—using stochastic trace estimation for the trace term [16, 29],
stochastic Lanczos quadrature for the log determinant [20, 76], and CG for the solves. However,
during training the forward pass can be omitted as only the gradient is needed for NGD steps.

F Experimental Details

SVGP experiments. Each dataset is randomly split into 75% training, 10% validation, and 15%
testing sets; x and y values are scaled to be zero mean and unit variance. All models use a constant
mean and a Matérn 5/2 kernel, with lengthscales initialized to 0.01 and inducing points initialized
by K-means clustering. Each model is trained for 20 epochs with a minibatch size of 256.12 We
alternate between optimizing m′/S′ and the other parameters, using NGD for the former and Adam
[48] for the latter. Each optimizer uses an initial learning rate of 0.0113, decayed by 10× at epochs
1, 5, 10, and 15. For CIQ we use Q = 15 quadrature points. msMINRES terminates when the cj
vectors achieve a relative norm of 0.001 or after J = 200 iterations. We experimented with tighter
tolerances and found no difference in the models’ final accuracy. (Note that J = 200 is almost
always enough to achieve the desired 0.001 tolerance; see Fig. S7.) Results are averaged over three
trials.

The 3DRoad [34] and CovType [9] datasets are available from the UCI repository [2]. For 3Droad,
we only use the first two features—corresponding to latitude and longitude. For CovType, we reduce
the 7-way classification problem to a binary problem (Cover_Type ∈ {2, 3} versus Cover_Type ∈
{0, 1, 4, 5, 6}). The Precipitation dataset [52, 53] is available from the IRI/LDEO Climate Data
Library.14 This spatio-temporal dataset aims to predict the “WASP” index (Weighted Anomaly
Standardized Precipitation) at various latitudes/longitudes. Each data point corresponds to the WASP
index for a given year (between 2010 and 2019)—which is the average of monthly WASP indices. In
total, there are 10 years and 10,127 latitude/longitude coordinates, for a total dataset size of 101,270.

Bayesian optimization experiments. The 6-dimensional Hartmann function is a classical test
problem in global optimization15. There are 6 local minima and a global optimal value is −3.32237.
We use a total of 100 evaluations with 10 initial points. The 10 initial points are generated using a
Latin hypercube design and we use a batch size of 5. In each iteration, we draw 5 samples and select
5 new trials to evaluate in parallel.

We consider the same setup and controller as in [21] for the 12-dimensional Lunar Lander problem.
The goal is to learn a controller that minimizes fuel consumption and distance to a given landing
target while also preventing crashes. The state of the lunar lander is given by its angle and position,
and their time derivatives. Given this state vector, the controller chooses one of the following four
actions: a ∈ {do nothing, booster left, booster right, booster down}. The objective is the average
final reward over a fixed constant set of 50 randomly generated terrains, initial positions, and initial
velocities. The optimal controller achieves an average reward of ≈ 309 over the 50 environments.

12 The batch size is 512 on the Covtype dataset due to its larger size.
13 On the Precipitation dataset, the initial learning rate is 0.005 for NGD stability with the Student-T likelihood.
14 A processed version of the dataset is available at https://github.com/gpleiss/ciq_

experiments/tree/main/svgp/data. Original source of data: http://iridl.ldeo.
columbia.edu/maproom/Global/Precipitation/WASP_Indices.html.

15https://www.sfu.ca/~ssurjano/hart6.html

28

https://github.com/gpleiss/ciq_experiments/tree/main/svgp/data
https://github.com/gpleiss/ciq_experiments/tree/main/svgp/data
http://iridl.ldeo.columbia.edu/maproom/Global/Precipitation/WASP_Indices.html
http://iridl.ldeo.columbia.edu/maproom/Global/Precipitation/WASP_Indices.html
https://www.sfu.ca/~ssurjano/hart6.html


For both problems, we use a Matérn-5/2 kernel with ARD and a constant mean function. The
domain is scaled to [0, 1]d and we standardize the function values before fitting the Gaussian process.
The kernel hyperparameters are optimized using L-BFGS-B and we use the following bounds:
(lengthscale) ` ∈ [0.01, 2.0 ], (signal variance) s2 ∈ [0.05, 50.0], (noise variance) σ2 ∈ [1e−6, 1e−2].
Additionally, we place a horseshoe prior on the noise variance as recommended in [72]. We add
1e−4 to the diagonal of the kernel matrix to improve the conditioning and use a preconditioner of
rank 200 for CIQ.

Image reconstruction experiments. The matrix A = DB is given as the product of two matrices
D andB. HereB is a N2 ×N2 Gaussian blur matrix with a blur radius of 2.5 pixels and filter size
of 5 pixels. The binary matrixD is a KM2 ×N2 downsampling or decimation matrix that connects
the N ×N high-resolution image to the M ×M low-resolution images. For the hyperparameters
γobs and γprior we choose Jeffrey’s hyperpriors, i.e.

p(γobs) ∝ γ−1
obs and p(γprior) ∝ γ−1

prior (S25)

In order to conduct the experiment we use the observation likelihood with γobs = 1 to sample K = 4
low-resolution images y1:K from the high-resolution image. The discrete Laplacian matrix L is
defined by the following isotropic filter:

Lfilter =
1

12

[
1 2 1
2 −12 2
1 2 1

]
(S26)

For both L andB we implicitly use reflected (i.e. non-periodic) boundary conditions. We use a CG
tolerance of 0.001 and a maximum of J = 400 msMINRES iterations. We use a Jacobi preconditioner
for CG. We draw 1000 samples from the Gibbs sampler and treat the first 200 samples as burn-in.
The reconstructed image depicted in the main text is the (approximate) posterior mean. In the main
text we provided the conditional posterior for the latent image x. To complete the specification of the
Gibbs sampler we also need the posterior conditionals for γobs and γprior, both of which are given by
gamma distributions:

p(γobs|x,y1:K) = Ga(γobs|α = 1 + KM2

2 , β = 2/||y1:K −Ax||2)

p(γprior|x) = Ga(γprior|α = 1 + N2−1
2 , β = 2/||Lx||2)

(S27)

G Proof of Theorem 1

To prove the convergence result in Thm. 1, we first prove the following lemmas.
Lemma 2. Let K � 0 be symmetric positive definite and let shifts t1, . . ., tQ > 0 be real-valued and
positive. After J iterations of msMINRES, all shifted solve residuals are bounded by:

∥∥(K + tqI)c
(q)
J − b

∥∥
2
≤

(√
κ(K + tqI)− 1√
κ(K + tqI) + 1

)J
‖b‖2 ≤

(√
κ(K)− 1√
κ(K) + 1

)J
‖b‖2,

where b is the vector to solve against, c
(1)
J , . . ., c(Q) are the msMINRES outputs, and κ(K) is the

condition number of K.

Proof. The convergence proof uses a polynomial bound, which is the standard approach for Krylov
algorithms. See [e.g. 65, 69, 75] for an analogous proof for the conjugate gradients method and [e.g.
32] for a treatment of MINRES applied to both positive definite and indefinite systems.

At iteration J , the msMINRES algorithm produces:

c
(q)
J = arg min

c(q)∈KJ (K,b)

[∥∥(K + tqI)c(q) − b
∥∥

2

]
, q = 1, . . . Q, (S28)

where without loss of generality we assume c
(q)
0 = 0 for simplicity. Using the fact that Krylov

subspaces are shift invariant, we immediately have that

c
(q)
J = arg min

c(q)∈KJ (K+tqI,b)

[∥∥(K + tqI)c(q) − b
∥∥

2

]
, q = 1, . . . Q. (S29)
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Since (K+ tqI) � 0 we may invoke a result on MINRES error bounds for symmetric positive definite
matrices [32, Chapter 3] to conclude that

∥∥(K + tqI)c
(q)
J − b

∥∥
2
≤

(√
κ(K + tqI)− 1√
κ(K + tqI) + 1

)J
‖b‖2.

Observing that κ(K + tqI) ≥ κ(K) for all q since tq > 0 concludes the proof.

Lemma 2 is a very loose bound, as it doesn’t assume anything about the spectrum of K (which is
standard for generic Krylov method error bounds) and upper bounds the residual error for every shift
using the most ill-conditioned system. In practice, we find that smMINRES converges for many
covariance matrices with J ≈ 100, even when the conditioning is on the order of κ(K) ≈ 104 and
this convergence can be further improved with preconditioning.
Lemma 3. For any positive definite K and positive t, we have√

κ(K + tI)− 1√
κ(K + tI) + 1

=

√
λmax + t−

√
λmin + t√

λmax + t+
√
λmin + t

<
λmax

4t
(S30)

Proof. We can upper bound the numerator√
λmax + t−

√
λmin + t ≤

√
λmax + t−

√
t

=
√
λmax

(√
1 + t/λmax −

√
t/λmax

)
≤
√
λmax

1

2
√
t/λmax

=
λmax

2
√
t
.

where we have applied the standard inequality
√

(·) + 1−
√

(·) < 1

2
√

(·)
. The denominator can be

(loosely) lower-bounded as 2
√
t. Combining these two bounds completes the proof.

Lemma 4. Let σ2
q and w̃q be defined as in Eq. (S4). Then

Q∑
q=1

|wq|
|tq|

=

Q∑
q=1

|w̃q|
|σ2
q |
<

4Q log
(

5
√
κ(K)

)
π
√
λmin

where wq = −w̃q and tq = −σ2
q as used in Eq. (S5).

Proof. Using facts about elliptical integrals we have

K′(k) < log(1 + 4/k) ≤ log(5/k) k ∈ (0, 1) ([62, Thm. 1.7] and [84, Thm. 2])
π

2
≤ K(k) k ∈ [0, 1] ([e.g. 62])

where in the first statement we have used that K′(k) = K(k′). For Jacobi elliptic functions we have
that

0 < dn(uK(k)|k) < 1 u ∈ (0, 1), k ∈ (0, 1) ([e.g. 56])
0 < sn(uK(k)|k) < 1 u ∈ (0, 1), k ∈ (0, 1) ([e.g. 56])

sn(πu/2|0) < sn(uK(k)|k) < 1 u ∈ (0, 1), k ∈ (0, 1) ([10, Thm. 1])

where in the last inequality we have used that K(0) = π/2 [e.g. 1]. Coupling the final inequality
above with sn(πu/2|0) = sin(πu/2) for u ∈ (0, 1) we have that

sin(πu/2) < sn(uK(k)|k) < 1 u ∈ (0, 1), k ∈ (0, 1).

Now, for each q we have that

wq
tq

=
w̃q
σ2
q

=

(
−2
√
λmin

πQλmin

)
K′(k)cn (iuqK′(k) | k) dn (iuqK′(k) | k)

sn(iuqK′(k) | k)2

=

(
2K′(k)

πQλmin

)
dn (uqK(k′) | k′)
sn(uqK(k′) | k′)2

(via Jacobi imaginary transforms [e.g. 1])
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Consequently, we may conclude that

|wq|
|tq|

=

(
2K′(k)

πQλmin

)
dn (uqK(k′) | k′)
sn(uqK(k′) | k′)2

≤ 2 log(5/k)

πQλmin

(
1

sin2(πuq/2)

)
where we note that all quantities on the right hand side are positive. Plugging in the values of
k = 1/

√
κ(K), uq = (q − 1/2)/Q and summing over uq we see that

Q∑
q=1

|wq|
|tq|

<

Q∑
q=1

2 log
(

5
√
κ(K)

)
πQ
√
λmin sin2(π(q−1/2)

2Q )
. (S31)

Through trigonometric identities
∑Q
q=1 1/(Q sin2 π(q−1/2)

2Q ) = 2Q and, therefore,

Q∑
q=1

|wq|
|tq|

<
4Q log

(
5
√
κ(K)

)
π
√
λmin

.

With these lemmas we are now able to prove Theorem 1:

Theorem 1 (Restated). Let K � 0 and b be inputs to msMINRES-CIQ, producing aJ ≈ K1/2b
after J iterations with Q quadrature points. The difference between aJ and K1/2b is bounded by:

∥∥∥vJ −K
1
2 b
∥∥∥

2
≤

Quadrature error

O
(

exp
(
− 2Qπ2

log κ(K)+3

))
+

msMINRES error

2Q log
(

5
√
κ(K)

)
κ(K)

√
λmin

π

(√
κ(K)−1√
κ(K)+1

)J−1

‖b‖2 .

where λmax, λmin are the max and min eigenvalues of K, and κ(K) is the condition number of K.

Proof. First we note that the msMINRES-CIQ solution aJ can be written as
∑
i=1 wqc

(q)
J , where

c
(q)
J is the qth shifted solve ≈ (tqI + K)−1b from msMINRES. Applying the triangle inequality we

have:

∥∥∥aJ −K
1
2 b
∥∥∥

2
=

∥∥∥∥∥∥∥∥∥
msMINRES error

Q∑
q=1

wqc
(q)
J −

(
K

Q∑
q=1

wq (tqI + K)
−1

)
b

+

(
K

Q∑
q=1

wq (tqI + K)
−1

)
b−K

1
2 b

Quadrature error

∥∥∥∥∥∥∥∥∥∥
2

≤
Q∑
q=1

|wq|
∥∥∥c(q)

J −K (tqI + K)
−1

b
∥∥∥

2

+

∥∥∥∥∥K
(

Q∑
q=1

wq (tqI + K)
−1

)
b−K

1
2 b

∥∥∥∥∥
2

(S32)
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Plugging Lemma 2 into the msMINRES part of the bound bound, we have:

Q∑
q=1

|wq|

(√
κ(K + tqI)− 1√
κ(K + tqI) + 1

)J
‖b‖2

≤
Q∑
q=1

|wq|

(√
κ(K + tqI)− 1√
κ(K + tqI) + 1

)(√
κ(K)− 1√
κ(K) + 1

)J−1

‖b‖2 (via Lemma 2)

≤
Q∑
q=1

|wq|
(
λmax

4tq

)(√
κ(K)− 1√
κ(K) + 1

)J−1

‖b‖2 (via Lemma 3)

≤
2Q log

(
5
√
κ(K)

)
λmax

π
√
λmin

(√
κ(K)− 1√
κ(K) + 1

)J−1

‖b‖2 (via Lemma 4)

≤
2Q log

(
5
√
κ(K)

)√
λminκ(K)

π

(√
κ(K)− 1√
κ(K) + 1

)J−1

‖b‖2 .

Plugging this bound and Lemma 1 into Eq. (S32) completes the proof.

We can also prove this simple corollary:

Corollary 1. Let K � 0 and b be the inputs to Alg. 1, producing the output a′J ≈ K−1/2b after J
iterations with Q quadrature points. The difference between aJ and K1/2b is bounded by:

∥∥∥a′J −K−
1
2 b
∥∥∥

2
≤

Quadrature error

O
(

1
λmin

exp
(
− 2Qπ2

log κ(K)+3

))
+

msMINRES error

2Q log
(

5
√
κ(K)

)
κ(K)

√
λminπ

(√
κ(K)−1√
κ(K)+1

)J−1

‖b‖2 .

where λmax, λmin are the maximal and minimal eigenvalues of K, and κ(K) is the condition number
of K.

Proof. Note that a′J = K−1aJ , where aJ is the msMINRES-CIQ estimate of K1/2b. Using the
sub-multiplicative property of the induced matrix 2-norm we see that∥∥∥a′J −K−

1
2 b
∥∥∥

2
≤
∥∥K−1

∥∥
2

∥∥∥aJ −K
1
2 b
∥∥∥

2
=

1

λmin

∥∥∥aJ −K
1
2 b
∥∥∥

2
,

where the final term is bounded by Thm. 1.
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