
We thank the reviewers for their helpful feedback, and we hope to address your remarks here and in the revision. We1

note that R4 questioned the correctness of Thm. 1 (specifically, the claim made in Lemma 2). While we thank R4 for a2

careful review of Appx. G, we are strongly convinced that Thm. 1 is correct and hope to clarify the misunderstanding.3

Correctness of Thm. 1 (R4). Your question revolves around a specific inequality in the proof of Lemma 2:4 (√
κ(K+tqI)−1√
κ(K+tqI)+1

)J
‖b‖2 ≤

(√
κ(K)−1√
κ(K)+1

)J
‖b‖2. (1)

Your counter example. “Set K = 4I and t = 5—then on the left we have (1/2)J and on the right (1/3)J—the former is5

clearly larger.” We believe you may accidentally used the max eigenvalue alone in these calculations, rather than κ(K).6

For symmetric positive definite K, the condition number κ(K) , λmax/λmin (max and min eigenvalues). Adding tI7

increases both the max and min eigenvalues; thus κ(K+ tI) = (λmax + t)/(λmin + t). Using your specific numbers,8

we have κ(K) = 4/4 = 1 and κ(K+ tqI) = 9/9 = 1. Plugging these into Eq. (1) we have that both sides equal 0.9

Proof. Here we carefully show that Eq. (1) holds for any symmetric positive definite matrix K and t ≥ 0. Note that10

κ(K + tI) = λmax+t
λmin+t

≤ λmax

λmin
= κ(K), which holds as long as λmax ≥ λmin > 0 (true here as K � 0). From here,11

note that a−1
a+1 ≤

b−1
b+1 < 1 whenever 0 ≤ a ≤ b. Setting a =

√
κ(K+ tqI) and b =

√
κ(K) and noting that condition12

numbers are always at least 1 (implying the square root preserves the ordering), we have a ≤ b, and thus Eq. (1) holds.13

“Krylov methods often suffer from a high degree of numerical instability” (R4). Our method has two key14

advantages that improve stability. First, we only use Krylov methods to solve linear systems rather than eigenvalue15

problems. Common numerical pitfalls that hinder Krylov eigen-solvers (e.g. loss of orthogonality between Lanczos16

vectors) have been shown to have little empirical effect on linear system solvers like MINRES and CG [e.g. Trefethen17

and Bau, 1997; Fong and Saunders, SQUJS 2012]. Second, each solve is inherently a shifted system K+ tqI. While18

Thm. 1 is in terms of the conditioning of K (because minq tq → 0 as Q→∞), in practice these shifts dramatically19

improve the conditioning of K, with minq tq ≥ 1e−3 when Q < 20. This allows us to work directly with the matrix K20

rather than having to first add diagonal jitter. We will discuss this more in the revision.21

Accuracy of square roots (R3). (“In Fig. 1 the relative error appears to level off as Q increases.”) For these22

experiments, we stopped msMINRES at a tolerance of 1e−4, as we viewed 0.01% error as sufficient for most tasks.23

Consequentially, as Q increases the error converges to the solver tolerance. (Is 4 or 5 decimal places enough for24

predictive means/variances?) We believe this is often sufficient; we tried tighter tolerances and found no difference.25

Running time and storage (R3, R4). R3: (“I didn’t understand. . . storage being reduced from O(N2).”) Using our26

method, we can avoid storing the O(N2) kernel matrix if the MVMs are computed in a map-reduce fashion. While the27

Cholesky factorization can be performed in-place, the artifact it produces still requires O(N2) storage. We will clarify28

this in the revision. R4: (“The cost from CIQ must be linear in Q.”) We agree that the quadrature running time depends29

on Q, but view this as negligible since it crucially does not impact the number of MVMs performed with K. Thank you30

for pointing this out; we will clarify this.31

Missing citations (R1). Thank you, we will add these citations. While many communities have extensively studied32

Krylov methods, as you note—the K−1/2b problem we are interested in has received far less attention than Krylov-33

based matrix solves. We would again highlight our novel contributions in this space: a simple vector recurrence for34

K−1/2b, a detailed error analysis, efficient NGD updates, a simple backward pass, and a mechanism for preconditioning35

multiple shifted solves up to an orthogonal transformation.36

Comparisons (R2). (“It will be necessary to compare to [Wilson et. al, ICML 2020].”) This was not published as37

of the NeurIPS submission, as you point out. Wilson et al. use RFFs to sample from the prior and an inducing point38

approximation of the conditional to convert prior samples into posterior samples. Our method could augment their39

approach, allowing for more inducing points and/or replacing RFFs for prior sampling. (“Missing a comparison to the40

related work that used CG.”) We would argue that the pros/cons of CG versus MINRES has been studied exhaustively41

(e.g. [Fong and Saunders, SQUJS 2012]). Our use of MINRES enables the proof of our main convergence result. CG’s42

error bound uses a different norm and cannot be easily combined with the “quadrature error” term in Thm. 1.43

Empirical evaluation (R2). (“The number of MINRES iterations J has been fixed to 200.”) The stopping criteria is a44

specified residual tolerance (10−3 or 10−4) or 200 iterations, whichever comes first. In practice the tolerance is almost45

always met before J = 200; we will note this in the revision. (“How many MINRES iterations. . . before the approach46

becomes slower than Cholesky?”) This depends on matrix size. For N = 5,000 it would take approximately J = 1,00047

iterations, after which CIQ has more than converged.48


