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S1 Failure Case for Empirical Proportion Risk Minimization

We offer a simple example where minimizing the empirical proportion risk leads to suboptimal
performance. Let P− be uniform on [0, 1], with density p−(x) = 1{x∈[0,1]}, and let P+ have the
triangular density function p+(x) = 2x1{x∈[0,1]}. Suppose there is a single bag, and that the label
proportion is γ = 1

2 . Also suppose F consists of threshold classifiers ft(x) = sign(x− t), t ∈ [0, 1].
This class contains the optimal BER classifier (define wrt 0-1 loss) corresponding to t∗ = 1

2 . Now
suppose we are in the infinite bag-size limit (which only makes the problem easier), so that the
observed label proportion γ̂ is simply γ = 1

2 . Then we seek the threshold t′ that minimizes

EPR(t) :=

∣∣∣∣P(ft(X) = 1)− 1

2

∣∣∣∣p .
For any p > 0, t′ is the median of the marginal distribution of X , 1

2P− + 1
2P+, which equals

(
√

5− 1)/2 ≈ 0.62 6= t∗. Thus, minimizing EPR does not yield an optimal classifier for BER or for
misclassification rate, which agrees with BER in this setting where the two classes are equally likely.

Now suppose there are N bags, with label proportions γ1, . . . , γN drawn iid from a distribution
whose (population) mean and median are 1

2 , such as the uniform distribution on [0, 1]. The optimal
BER classifier remains the same, with threshold t∗ = 1

2 . The optimal classifier wrt misclassification
rate is also the same, assuming we view E[γi] = 1

2 as the class prior. In the infinite bag-size limit,
EPR would seek the threshold t′ that minimizes

EPRN (t) :=
1

N

N∑
i=1

|P(ft(X) = 1)− γi|p .

For p = 1, EPR minimization selects t′ such that P(ft′(X) = 1) is the empirical median of
γ1, . . . , γN , which will be near 1

2 , which means t′ will be near 0.62. For p = 2, EPR minimization
selects t′ such that P(ft′(X) = 1) is the empirical mean of γ1, . . . , γN , which will again be near 1

2 ,
which again means t′ will be near 0.62.

More generally, based on the above example, EPR seems likely to fail whenever P+ and P− are not
sufficiently “symmetric."

S2 Proofs of Results From Main Document

This section contains the proofs.
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S2.1 Proof of Proposition 1

Consider the loss function ˜̀given by

˜̀
+(t) = A`+(t)−B`−(t),

˜̀−(t) = C`−(t)−D`+(t).

Equating E ˜̀
Pκ(f) to E`P (f) yields four equations in the four unknownsA,B,C, andD, corresponding

to the coefficients of EX∼P±`±(f(X)). The unique solution to this system is ˜̀= `κ.

S2.2 Proof of Proposition 4

We begin with FkR,K . For any R > 0, f ∈ FkR,K , and x ∈ X ,

|f(x)| = |〈f, k(·, x)〉| ≤ ‖f‖H‖k(·, x)‖H = RK.

by the reproducing property and Cauchy-Schwarz. Thus A = RK.

For the second part, the expectation may be bounded by a modification of the standard bound of
Rademacher complexity for kernel classes. Thus,

E(εi)

[
sup

f∈FkR,K

∑
i

aiεif(xi)

]
= E(εi)

[
sup

f∈FkR,K

∑
i

aiεi〈f, k(·, xi)〉

]
(S1)

= E(εi)

[
sup

f∈FkR,K

〈
f,
∑
i

aiεik(·, xi)

〉]

= E(εi)

[〈
R

∑
i aiεik(·, xi)

‖
∑
i aiεik(·, xi)‖

,
∑
i

aiεik(·, xi)

〉]
(S2)

= RE(εi)


√√√√∥∥∥∥∥∑

i

aiεik(·, xi)

∥∥∥∥∥
2


≤ R

√√√√√E(εi)

∥∥∥∥∥∑
i

aiεik(·, xi)

∥∥∥∥∥
2
 (S3)

= R

√∑
i

a2
i ‖k(·, xi)‖2 (S4)

≤ RK

√√√√ M∑
i=1

a2
i , (S5)

where (S1) uses the reproducing property, (S2) is the condition for equality in Cauchy-Schwarz, (S3)
is Jensen’s inequality, (S4) follows from independence of the Rademacher random variables, and (S5)
follows from the reproducing property and the bound on the kernel.
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Next, consider FNN
α,β . For the first part we have for any f ∈ FNN

α,β and x ∈ X ,

|f(x)| = |〈v, [Ux]+〉|
≤ ‖v‖‖[Ux]+‖
≤ ‖α‖‖[Ux]+‖
≤ ‖α‖‖Ux‖

= ‖α‖
√∑

j

|〈uj , x〉|2

≤ ‖α‖
√∑

j

‖uj‖2‖x‖2

≤ ‖X‖‖α‖
√∑

j

‖uj‖2

≤ ‖X‖‖α‖‖βj‖.

For the second part, observe

E(εk)

[
sup
f∈F

M∑
k=1

εkakf(xk)

]
= E(εk)

sup
f∈F

M∑
k=1

εkak

h∑
j=1

vj [〈uj , xk〉]+


= E(εk)

sup
f∈F

M∑
k=1

εk

h∑
j=1

vj [〈uj , akxk〉]+


= E(εk)

sup
f∈F

h∑
j=1

vj

M∑
k=1

εk [〈uj , akxk〉]+


≤ E(εk)

sup
f∈F

∣∣∣∣∣∣
h∑
j=1

vj

M∑
k=1

εk [〈uj , akxk〉]+

∣∣∣∣∣∣


≤ E(εk)

sup
f∈F

h∑
j=1

αj

∣∣∣∣∣
M∑
k=1

εk [〈uj , akxk〉]+

∣∣∣∣∣


≤
h∑
j=1

αjE(εk) sup
f∈F

∣∣∣∣∣
M∑
k=1

εk [〈uj , akxk〉]+

∣∣∣∣∣ .
=

h∑
j=1

αjE(εk) sup
uj :‖uj‖≤βj

∣∣∣∣∣
M∑
k=1

εk [〈uj , akxk〉]+

∣∣∣∣∣ . (S6)

We bound the expectations in (S6) using Ledoux-Talagrand contraction [6, Theorem 4.12].
Theorem 1 (Ledoux-Talagrand contraction). Let F : R+ → R+ be convex and increasing. Further
let ϕi, i ∈ [M ] be 1-Lipschitz functions such that ϕ(0) = 0. Then, for any bounded subset T ⊂ RM ,

E(εi)F

(
1

2
sup
t∈T

∣∣∣∣∣
M∑
i=1

εiϕi(ti)

∣∣∣∣∣
)
≤ E(εi)F

(
sup
t∈T

∣∣∣∣∣
M∑
i=1

εiti

∣∣∣∣∣
)
.

To apply this result, for each j notice that

E(εk) sup
uj :‖uj‖≤βj

∣∣∣∣∣
M∑
k=1

εk [〈uj , akxk〉]+

∣∣∣∣∣ = E(εk) sup
t∈Tj

∣∣∣∣∣
M∑
k=1

εk [tk]+

∣∣∣∣∣
where t = (t1, t2, . . . , tM )

T and

Tj =
{
t = (〈uj , a1x1〉, 〈uj , a2x2〉, . . . , 〈uj , aMxM 〉)T ∈ RM : ‖uj‖ ≤ βj

}
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which is clearly bounded. Now taking F to be the identity and ϕi = [·]+, we have

E(εk) sup
uj :‖uj‖≤βj

∣∣∣∣∣
M∑
k=1

εk [〈uj , akxk〉]+

∣∣∣∣∣ ≤ 2E(εk) sup
uj :‖uj‖≤βj

∣∣∣∣∣
M∑
k=1

εk〈uj , akxk〉

∣∣∣∣∣
= 2E(εk) sup

uj :‖uj‖≤βj

∣∣∣∣∣
〈
uj ,

M∑
k=1

εkakxk

〉∣∣∣∣∣
= 2E(εk)

〈
βj

∑M
k=1 εkakxk

‖
∑M
k=1 εkakxk‖

,

M∑
k=1

εkakxk

〉

= 2βjE(εk)

√√√√∥∥∥∥∥
M∑
k=1

εkakxk

∥∥∥∥∥
2

(S7)

≤ 2βj

√√√√E(εk)

∥∥∥∥∥
M∑
k=1

εkakxk

∥∥∥∥∥
2

(S8)

≤ 2βj

√√√√ M∑
k=1

a2
k‖xk‖2 (S9)

≤ 2‖X‖2βj

√√√√ M∑
k=1

a2
k, (S10)

where (S7) uses the condition for equality in Cauchy-Schartz, (S8) uses Jensen’s inequality, and (S9)
uses independence of the εk. The result now follows from (S6) and (S10).

S2.3 Proof of Theorem 5

We first review the following properties of the supremum which are easily verified.

P1 For any real-valued functions f1, f2 : X → R,

sup
x
f1(x)− sup

x
f2(x) ≤ sup

x
(f1(x)− f2(x)).

P2 For any real-valued functions f1, f2 : X → R,

sup
x

(f1(x) + f2(x)) ≤ sup
x
f1(x) + sup

x
f2(x).

P3 sup(·) is a convex function, i.e., if (xλ)λ∈Λ and (x′λ)λ∈Λ are two sequences (where Λ is
possibly uncountable), then ∀α ∈ [0, 1],

sup
λ∈Λ

(αxλ + (1− α)x′λ) ≤ α sup
λ∈Λ

xλ + (1− α) sup
λ∈Λ

x′λ.

Introduce the variable S to denote all realizations Xσ
ij , 1 ∈ [N ], σ ∈ {−,+}, j ∈ [nσi ]. We would

like to bound

ξ(S) := sup
f∈F

∣∣∣∣∣∣
N∑
i=1

wi

1

2

∑
σ∈{±1}

 1

nσi

nσi∑
j=1

`κσ(f(Xσ
ij))

− E(f)

∣∣∣∣∣∣ .
Introduce

ξ+(S) := sup
f∈F

N∑
i=1

wi

1

2

∑
σ∈{±1}

 1

nσi

nσi∑
j=1

`κσ(f(Xσ
ij))

− E(f)

 ,

ξ−(S) := sup
f∈F
−

N∑
i=1

wi

1

2

∑
σ∈{±1}

 1

nσi

nσi∑
j=1

`κσ(f(Xσ
ij))

− E(f)

 .
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Assume (IIM) holds. Since the realizationsXσ
ij are independent, we can apply the Azuma-McDiarmid

bounded difference inequality [7] to ξ+ and to ξ−. We will show that the same bound on ξ+ and ξ−
holds with probability at least 1− δ/2. Combining these bounds gives the desired bound on ξ. We
consider ξ+ below, with the analysis for ξ− being identical.

Definition 2. Let A be some set and φ : An → R. We say φ satisfies the bounded difference
assumption if ∃c1, . . . , cn > 0 s.t. ∀i, 1 6 i 6 n

sup
x1,...,xn,x′i∈A

|φ(x1, . . . , xi, . . . , xn)− φ(x1, . . . , x
′
i, . . . , xn)| 6 ci

That is, if we substitute xi to x′i, while keeping other xj fixed, φ changes by at most ci.

Lemma 3 (Bounded Difference Inequality). Let X1, . . . , Xn be arbitrary independent random
variables on set A and φ : An → R satisfy the bounded difference assumption. Then ∀t > 0

Pr{φ(X1, . . . , Xn)− E[φ(X1, . . . , Xn)] > t} 6 e
− 2t2∑n

i=1
c2
i .

To apply this result to ξ+, first note that for any f ∈ F , x ∈ X , and y ∈ {−1, 1},

|`κi(f(x), y)| ≤ |`κi(0, y)|+ |`κi(f(x), y)− `κi(0, y)|
≤ |`κi |0 + |`κi ||f(x)|
≤ |`κi |0 + |`κi |A.

If we modify S by replacing some Xσ
ij with another X ′, while leaving all other values in S fixed,

then (by P1) ξ+ changes by at most 2wi(|`
κi |0+|`κi |A)

2nσi
, and we obtain that with probability at least

1− δ/2 over the draw of S1, . . . , SN ,

ξ+ − E
[
ξ+
]
≤ 2

√√√√1

2

N∑
i=1

w2
i (|`κi |0 + |`κi |A)2

n̄i

log(2/δ)

2

≤ 2(1 +A|`|)

√√√√1

2

N∑
i=1

w2
i

n̄i(1− κ−i − κ
+
i )2

log(2/δ)

2
,

where we have used |`κi |0 ≤ 1/(1− κ−i − κ
+
i ) and |`κi | ≤ |`|/(1− κ−i − κ

+
i ).

To bound E [ξ+] we will use ideas from Rademacher complexity theory. Thus let S′ denote a separate
(ghost) sample of corrupted data (Xσ

ij)
iid∼ P̃κiσ , i = 1, . . . , N , σ ∈ {±}, j = 1, . . . , nσi , independent

of the realizations in S. Let ÊS [f ] be shorthand for
∑
i wi

∑
σ∈{±}

1
2nσi

∑
j `
κi
σ (f(Xσ

ij)). Denote by
(εσij) i ∈ [N ], σ ∈ {±}, j ∈ [nσi ], iid Rademacher variables (independent from everything else), and

5



let E(εσij)
denote the expectation with respect to all of these variables. We have

E
[
ξ+
]

= ES

sup
f∈F

N∑
i=1

wi

 ∑
σ∈{±}

1

2nσi

nσi∑
j=1

`κiσ (f(Xσ
ij))

− E`P (f)


= ES

[
sup
f∈F

(
ÊS [f ]− ES′

[
ÊS′ [f ]

])]
(by writing E`P (f) =

∑
wiE`

κi

Pκi (f) and applying Prop. 1 for each i)

≤ ES,S′
[

sup
f∈F

(
ÊS [f ]− ÊS′ [f ]

)]
(by P3 and Jensen’s inequality)

= ES,S′

sup
f∈F

(
N∑
i=1

wi
∑
σ∈{±}

1

2nσi

nσi∑
j=1

`κiσ (f(Xσ
ij))− `κiσ (f(Xσ

ij))

)
= ES,S′,(εσij)

sup
f∈F

(
N∑
i=1

wi
∑
σ∈{±}

1

2nσi

nσi∑
j=1

εσij

(
`κiσ (f(Xσ

ij))− `κiσ (f(Xσ
ij))
))

(for all i, σ, j, Xσ
ij and Xσ

ij are iid, and εσij are symmetric)

≤ ES,S′,(εσij)

sup
f∈F

N∑
i=1

wi
∑
σ∈{±}

1

2nσi

nσi∑
j=1

εσij`
κi
σ (f(Xσ

ij))


+ ES,S′,(εσij)

sup
f∈F

N∑
i=1

wi
∑
σ∈{±}

1

2nσi

nσi∑
j=1

(−εσij)`κiσ (f(Xσ
ij))


(by P2)

= 2ESE(εσij)

sup
f∈F

N∑
i=1

wi
∑
σ∈{±}

1

2nσi

nσi∑
j=1

εσij`
κi
σ (f(Xij))

 .
To bound the innermost expectation we use the following result from Meir and Zhang [8].

Lemma 4. Suppose {φt} , {ψt} , t = 1, . . . , T , are two sets of functions on a set Θ such that for
each t and θ, θ′ ∈ Θ, |φt(θ)− φt(θ′)| ≤ |ψt(θ)− ψt(θ′)|. Then for all functions c : Θ→ R,

E(εt)

[
sup
θ

{
c(θ) +

T∑
t=1

εtφt(θ)

}]
≤ E(εt)

[
sup
θ

{
c(θ) +

T∑
t=1

εtψt(θ)

}]
.

Switching from the single index t to our three indices i, σ, and j, we apply the lemma with Θ = F ,
θ = f , c(θ) = 0, φσij(θ) = wi

2nσi
`κiσ (f(Xσ

ij)), and ψσij(θ) = wi|`|
2nσi (1−κ−i −κ

+
i )
f(Xσ

ij), where we use

|`κiσ | ≤ |`|/(1− κ−i − κ
+
i ). This yields

E
[
ξ+
]
≤ 2ESE(εσij)

sup
f∈F

N∑
i=1

wi|`|
1− κ−i − κ

+
i

∑
σ∈{±}

1

2nσi

nσi∑
j=1

εσijf(Xσ
ij)


= 2RI

c(F),
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To see the second inequality in (3), by (SR) we have

2RI
c(F) ≤ 2B|`|

√√√√∑
i,σ,j

(
wi

2nσi (1− κ−i − κ
+
i )

)2

= 2B|`|
√∑

i

w2
i

4(1− κ−i − κ
+
i )2

∑
σ

1

nσi

= 2B|`|
√∑

i

w2
i

2n̄i(1− κ−i − κ
+
i )2

=
√

2B|`|
√∑

i

w2
i

n̄i(1− κ−i − κ
+
i )2

,

This concludes the proof in the (IIM) case.

Now assume (IBM) holds. The idea is to apply the bounded difference inequality at the MCM level.
If we modify S by replacing Xσ

ij (with i fixed, j, σ variable) with other values (Xσ
ij)
′, while leaving

all other values in S fixed, then (by P1) ξ+ changes by at most 2wi(|`κi |0 + |`κi |A), and we obtain
that with probability at least 1− δ/2 over the draw of S,

ξ+ − E
[
ξ+
]
≤

√√√√ N∑
i=1

w2
i (|`κi |0 + |`κi |A)2

log(2/δ)

2

≤ (1 +A|`|)
√

log(2/δ)

2

√√√√ N∑
i=1

w2
i

(1− κ−i − κ
+
i )2

.

To bound E [ξ+], we use the same reasoning as in the (IIM) case to arrive at

E
[
ξ+
]
≤ 2ESE(εi)

sup
f∈F

N∑
i=1

wiεi
∑
σ∈{±}

1

2nσi

nσi∑
j=1

`κiσ (f(Xij))

 ,
where now there is a Rademacher variable for every bag. The inner two summations may be expressed

E(σ,X)∼P̂κi [`κiσ (f(X))]

and so by Jensen’s inequality and Lemma 4 we have

E
[
ξ+
]
≤ 2ESE(εi)

[
sup
f∈F

N∑
i=1

wiE(σ,X)∼P̂κi [`κiσ (f(X))]

]

≤ 2ESE((σi,Xi)∼P̂κi )i∈[N]
E(εi)

[
sup
f∈F

N∑
i=1

εiwi`
κi
σi(f(Xi))

]

≤ 2ESE((σi,Xi)∼P̂κi )i∈[N]
E(εi)

[
sup
f∈F

N∑
i=1

εi
wi|`|

1− κ−i − κ
+
i

f(Xi)

]
= 2RB

c (F)

This proves the first inequality. To prove the second, by (SR) we have

2RB
c (F) ≤ 2B|`|

√∑
i

w2
i

(1− κ−i − κ
+
i )2

.

This concludes the proof.
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S2.4 Proof of Theorem 6

We begin by stating a generalization of Chernoff’s bound to correlated binary random variables
[11, 5].
Lemma 5. Let Z1, . . . , Zm be binary random variables. Suppose there exists 0 ≤ τ ≤ 1 such that
for all I ⊂ [m], P(

∏
i∈I Zi = 1) ≤ τ |I|. Then for any ε ≥ 0, P(

∑m
i=1 Zi ≥ m(τ + ε)) ≤ e−2mε2 .

We will first prove the theorem for BP. The result for dominating schemes will then follow easily.
Thus, assume the K-merging scheme is BP. For now assume (CIBM) , which is implied by (CIIM) .

Let γ̂+
ik be the larger of the two empirical label proportions within the kth pair of small bags within

the ith pair of big bags, and similarly let γ̂−ik be the smaller. Also let γ+
ik be the larger of the two true

label proportions within the kth pair of small bags within the ith pair of big bags, and similarly let
γ−ik be the smaller.

Let ε0 ∈ (0,∆(1 − τ)) and let ε ∈ (0, ∆(1−τ)−ε0
1+∆ ]. For i ∈ [M ], let Ki be the number of original

pairs in the ith block (the ith pair of big bags) for which |γ+
ik − γ

−
ik| ≥ ∆, k ∈ [K] and define Ωγ,i to

be the event that Ki ≥ K(1− τ − ε). By Lemma 5 and (LP) , we have Prγ(Ωcγ,i) ≤ e−2Kε2 .

Also define ΩY ,i to be the event that Γ̂+
i − Γ̂−i ≥ EY |γ [Γ̂+

i − Γ̂−i ]− ε = Γ+
i − Γ−i − ε. Note that

conditioned on γ, Γ̂+
i − Γ̂−i = 1

K

∑K
k=1(γ̂+

ik − γ̂
−
ik) is the sum of K independent random variables

with range [0, 1] (here we use the definition of BP and conditional independence of the small bags
under (CIBM) ). By Hoeffding’s inequality, PY |γ(ΩcY ,i) ≤ e−2Kε2 .

Now define Ωγ :=
⋂M
i=1 Ωγ,i and ΩY :=

⋂M
i=1 ΩY ,i. Also define Θ to be the event that the first

inequality in (4) does not hold. Then

P(Θ) ≤ P(Θ|Ωγ ∩ ΩY ) + P((Ωγ ∩ ΩY )c)

≤ P(Θ|Ωγ ∩ ΩY ) + P(Ωcγ) + P(ΩcY )

≤ P(Θ|Ωγ ∩ ΩY ) +
N

K
e−2Kε2 + EγEY |γ

[
1{ΩcY }

]
≤ P(Θ|Ωγ ∩ ΩY ) +

2N

K
e−2Kε2

= Eγ,Y
[
EX|γ,Y

[
1{Θ}|γ,Y

]
|Ωγ ∩ ΩY

]
+

2N

K
e−2Kε2 .

We next bound the inner expectation of the last line above, which is the conditional probability of Θ
given fixed values of (γ,Y ) ∈ Ωγ ∩ ΩY . We will bound this probability the same argument as in
the proof of Thm. 5. To apply that argument, we first need to confirm two things: Conditioned on
γ,Y , (1) for each i, Γ̂+

i − Γ̂−i > 0, and (2) the empirical error Ẽ(f) is an unbiased estimate of E`P .
The first property is given by the following.
Lemma 6. Conditioned on (γ,Y ) ∈ Ωγ ∩ ΩY , for all i ∈ [M ]

Γ̂+
i − Γ̂−i ≥ Γ+

i − Γ−i − ε ≥ ε0.

Proof. Fix (γ,Y ) ∈ Ωγ ∩ ΩY . Let i ∈ [M ]. By definition of ΩY ,

Γ̂+
i − Γ̂−i ≥ EY |γ [Γ̂+

i − Γ̂−i ]− ε

=

(
1

K

K∑
k=1

EY |γ [γ̂+
ik − γ̂

−
ik]

)
− ε

≥

(
1

K

K∑
k=1

γ+
ik − γ

−
ik

)
− ε.

To see the last step, let U and V be random variables with means p and q. Then E[max(U, V ) −
min(U, V )] = E[|U −V |] ≥ |E[U −V ]| = |p− q| = max(p, q)−min(p, q), by Jensen’s inequality.
Here we have again used the definitions of BP and (CIBM) .
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By definition of Ωγ , γ+
ik−γ

−
ik ≥ ∆ forKi ≥ K(1−τ−ε) values of k ∈ [K]. From this we conclude

that Γ̂+
i − Γ̂−i ≥ ∆(1− τ − ε)− ε ≥ ε0, where the last step follows from ε ≤ ∆(1−τ)−ε0

1+∆ .

For the second property, recall Ẽ(f) =
∑
i wiẼi(f) with w ∈ ∆M and wi ∝ (Γ̂+

i − Γ̂−i )2. We

note that EX|γ,Y ∈Ωγ∩ΩY

[
Ẽi(f)

]
is well defined because |`κ̂i(f(x))| is bounded for x ∈ X . This

follows from the assumption supf∈F,x∈X |f(x)| ≤ A <∞, the fact that `κ̂i is Lipschitz continuous
on Ωγ ∩ ΩY by Lemma 6, and the observation |`κ̂i(f(x))| ≤ |`κ̂i |0 + |`κ̂i |A.

Lemma 7. For all f ∈ F , EX|γ,Y ∈Ωγ∩ΩY

[
Ẽi(f)

]
= E`P (f).

Proof. Recall that Xmj denotes the jth instance in the mth original (pre-merging) small bag, m ∈
[2N ], j ∈ [n], and that Ymj denotes the corresponding label. We have

EX|γ,Y ∈Ωγ∩ΩY

[
Ẽi(f)

]
=

1

2
EX|γ,Y ∈Ωγ∩ΩY

 1

nK

∑
m∈I+i

n∑
j=1

`κ̂i+ (f(Xmj)) +
1

nK

∑
m∈I−i

n∑
j=1

`κ̂i− (f(Xmj))


=

1

2
EX|γ,Y ∈Ωγ∩ΩY

[
Γ̂+
i

1

nKΓ̂+
i

∑
m∈I+i

∑
j:Ymj=1

`κ̂i+ (f(Xmj))

+ (1− Γ̂+
i )

1

nK(1− Γ̂+
i )

∑
m∈I+i

∑
j:Ymj=−1

`κ̂i+ (f(Xmj))

+ Γ̂−i
1

nKΓ̂−i

∑
m∈I−i

∑
j:Ymj=1

`κ̂i− (f(Xmj))

+ (1− Γ̂−i )
1

nK(1− Γ̂−i )

∑
m∈I−i

∑
Ymj=−1

`κ̂i− (f(Xmj))

]

=
1

2

{
Γ̂+
i EX∼P+

[
`κ̂i+ (f(X))

]
+ (1− Γ̂+

i )EX∼P−
[
`κ̂i+ (f(X))

]
+ Γ̂−i EX∼P+

[
`κ̂i− (f(X))

]
+ (1− Γ̂−i )EX∼P−

[
`κ̂i− (f(X))

]}
=

1

2

{
E
X∼P κ̂i+

[
`κ̂i+ (f(X))

]
+ E

X∼P κ̂i−

[
`κ̂i− (f(X))

]}
= E`P (f)

where the third step uses the definition of (CIBM) , and the last step uses Prop. 1 and Lemma 6.

By Lemmas 6 and Lemma 7, we can apply the argument in the proof of Theorem 5, conditioned
on (γ,Y ) ∈ Ωγ ∩ ΩY , with the estimator Ẽ instead of Êw. The only other changes are that in the
application of Lemma 4, we use the bound

|`κ̂i | ≤ |`|
Γ̂+
i − Γ̂−i

≤ |`|
Γ+
i − Γ−i − ε

,

and in the final bounds, we upper bound (Γ̂+
i − Γ̂−i )−1 by (Γ+

i − Γ−i − ε)−1.

S3 Symmetric Losses

A loss is said to by symmetric if there exists a constant K such that for all t, `(t, 1) + `(t,−1) = K.
Examples include the 0-1, sigmoid, and ramp losses. For a symmetric loss, `κ simplifies to

`κ(t, y) =
1

1− κ+ − κ−
`(t, y)− K

1− κ+ − κ−
(κ−1{y=1} + κ+1{y=−1}).

9



Combined with Proposition 1, this yields

E`Pκ(f) = (1− κ+ − κ−)E`P (f) +K
(κ+ + κ−

2

)
.

Therefore, the two sides have the same minimizer which implies that the BER is immune to label noise
under a mutual contamination model. That is, training on the contaminated data without modifying
the loss still minimizes the clean BER. This result has been previously observed for the 0/1 loss [9]
and general symmetric losses [14, 2]. The above argument gives a simple derivation from Prop. 1.

S4 Convexity

We say that the loss ` is convex if, for each σ, `σ(t) is a convex function of t. Let `′′σ denote the
second derivative of ` with respect to its first variable. The condition in (S11) below was used by
Natarajan et al. [10] to prove a convexity result an unbiased loss in the class-conditional noise setting.
Here we prove a version for MCMs.

Proposition 8. Suppose κ− + κ+ < 1 and let ` be a convex, twice differentiable loss satisfying

`′′+(t) = `′′−(t). (S11)

If κσ < 1
2 for σ ∈ {±}, then `κ is convex.

Examples of losses satisfying the second order condition include the logistic, Huber, and squared
error losses. The result is proved by simply observing

(`κσ)′′(t) = `′′+(t)
1− 2κ−σ

1− κ− − κ+

≥ 0.

The statement about Êi(f) being convex when f is linear was a holdover from an earlier draft and
should be disregarded. In the infinite bag size limit, Êi(f) converges to E`P (f), which is convex in
the output of f provided ` is convex. Sufficient conditions for the convexity of Êi(f) or Êw(f) for
small bag sizes is an interesting open question.

S5 (CIBM’) implies (IBM)

Assume that (CIBM’) holds. To show (IBM) , we need to show that for a fixed bag i, and for all
j ∈ [ni], the marginal distribution of Xij , conditioned on the bag, is γiP+ + (1− γi)P−. Thus let A
be an arbitrary event. Also let pi be the joint pmf of Yi1, . . . , Yini , conditioned on the bag. Without
loss of generality let j = 1. We have

P(Xi1 ∈ A) = EX [1{Xi1∈A}]

= EYi1,...,YiniEXi1|Yi1,...,Yini
[
1{Xi1∈A}

]
= EYi1,...,YiniPYi1(Xi1 ∈ A) (S12)

=
∑

(y1,...,yni )∈{−1,1}ni
Py1(Xi1 ∈ A)pi(y1, . . . , yni)

= P+(A)
∑

(y2,...,yni )∈{−1,1}ni−1

pi(1, y2, . . . , yni)

+ P−(A)
∑

(y2,...,yni )∈{−1,1}ni−1

pi(−1, y2, . . . , yni)

= γiP+(A) + (1− γi)P−(A), (S13)

where (S12) and (S13) use (CIMB’).
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S6 Optimal Bag Matching

The bound is minimized by selecting weights

wi ∝ n̄i(γ+
i − γ

−
i )2,

which gives preference to pairs of bags where one bag is mostly +1’s (large γ+
i ) and the other is

mostly -1’s (small γ−i ). With these weights, the (SR) bound is proportional to under (CIIM)√√√√( N∑
i=1

n̄i(γ
+
i − γ

−
i )2

)−1

.

Here and below, under (CIBM’)’ substitute n̄i → 1.

We can optimize the pairing of bags by further optimizing the bound. Consider the unpaired bags
(Bi, γi), i = 1, . . . , 2N . Recall that n̄i = HM(n+

i , n
−
i ). We would like to pair each bag to a different

bag, forming pairs (γ+
i , γ

−
i ), such that

N∑
i=1

n̄i(γ
+
i − γ

−
i )2

is maximized. For each i < j, let uij be a binary variable, with uij = 1 indicating that the ith and
jth bags are paired. The optimal pairing of bags is given by the solution to the following integer
program:

max
u

∑
1≤i<2N

∑
i<j≤2N

HM(ni, nj)(γi − γj)2uij (S14)

s.t. uij ∈ {0, 1},∀i, j∑
i<j

uij +
∑
j<i

uji = 1,∀i.

The equality constraint ensures that every bag is paired with precisely one other distinct bag. This
problem is known as the “maximum weighted (perfect) matching" problem. An exact algorithm to
solve it was given by Edmonds [4], and several approximate algorithms also exist for large scale
problems [3].

When nσi = n for all i and σ, the solution to this integer program is very simple.
Proposition 9. If nσi = n for all i and σ, then the solution to (S14) is to match the largest γi with
the smallest, the second largest γi with the second smallest, and so on.

Proof. Suppose the statement is false. Then there exists an optimal solution, and i and j, such that
γ+
i > γ+

j and γ−i > γ−j . Now consider the matching obtained by swapping the bags associated to
γ−i and γ−j . Then the objective function increases by

(γ+
i − γ

−
j )2 + (γ+

j − γ
−
i )2 − (γ+

i − γ
−
i )2 − (γ+

j − γ
−
j )2 = 2(γ+

i − γ
+
j )(γ−i − γ

−
j ) > 0.

This contradicts the assumed optimality.

S7 Merging Schemes that Dominate Blockwise-Pairwise

Let Γ+
i and Γ−i denote the quantities Γ+

i and Γ−i when the merging scheme is BP, and let Γ+
i and

Γ−i refer to any other merging scheme under consideration. Similarly, let Γ̂
+

i and Γ̂
−
i denote the

quantities Γ̂+
i and Γ̂−i when the merging scheme is BP, and let Γ̂+

i and Γ̂−i refer to any other merging
scheme under consideration.

For a K-merging scheme that dominates BP, we still have Γ̂+
i − Γ̂−i ≥ Γ+

i − Γ−i − ε ≥ ε0 > 0 on
Ωγ ∩ ΩY by definition of dominating. Hence the same proof goes through in this case, and we may
state the following.
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Theorem 10. Let (LP) hold. Let ε0 ∈ (0,∆(1 − τ)). Let ` be a Lipschitz loss and let F satisfy
supx∈X ,f∈F |f(x)| ≤ A <∞. Let ε ∈ (0, ∆(1−τ)−ε0

1+∆ ] and δ ∈ (0, 1]. For any K-merging scheme

that dominates BP , under (CIIM) , with probability at least 1− δ − 2NK e
−2Kε2 with respect to the

draw of γ,Y ,X ,
Γ̂+
i − Γ̂−i ≥ Γ+

i − Γ−i − ε ≥ ε0
and

sup
f∈F

∣∣∣Ẽ(f)− E(f)
∣∣∣ ≤ 2RI

c(F)+C

√
HM((Γ+

i − Γ−i − ε)−2)

(N/K)n

(SR)

≤ D

√
HM((Γ+

i − Γ−i − ε)−2)

(N/K)n
,

(S15)
where ci = wi|`|/(Γ+

i −Γ−i − ε), C = (1 +A|`|)
√

log(2/δ), and D = 2B|`|+C. Under (CIBM),
the same bounds hold with the same probability if we substitute RI

c(F)→ RB
c (F) and n→ 1.

We conjecture that it is possible to improve the bound for dominating schemes. Using the current
proof technique, this would require proving that

Γ̂+
i − Γ̂−i ≥ Γ+

i − Γ−i − ε
with high probability. For example, with BM, this would require a one-sided tail inequality for
how the difference between the average of the larger half and the average of the smaller half of 2K
independent random variables deviates from its mean. The BP scheme was selected as a reference
because it is straightforward to prove such a bound for BP using Hoeffding’s inequality.

S8 Consistency

A discrimination rule f̂ is (weakly) consistent if E`P (f̂) → inff E`P (f) in probability as N → ∞,
where the infimum is over all decision functions.

We first note that if we desire consistency wrt the BER defined with 0-1 loss, it suffices to prove
consistency wrt the BER defined with a loss ` that is “classification calibrated" [1], such as the logistic
loss. This is because the BER corresponds to a special case of the usual misclassification risk when
the class probabilities are equal.

We state our consistency result for the discrimination rule

f̂ ∈ arg min
f∈F

J(f) := Ẽ(f) + λ‖f‖2Fk ,

where Fk is the reproducing kernel Hilbert space associated to a symmetric, positive definite kernel,
and λ > 0.
Theorem 11. Let X be compact and let k be a bounded, universal kernel on X . Let K →∞ such
that N/K → ∞ and N = O(Kβ) for some β > 0, as N → ∞. Let λ be such that λ → 0 and
λ(N/K)/ log(N/K)→∞ as N →∞. Let (LP) and (CIBM) hold. Then for any merging scheme
that dominates BP,

E(f̂)→ inf
f
E`P (f) (S16)

in probability as N →∞.

Proof. Let B denote the bound on the kernel. By Proposition 4 and by Theorem 10 applied to
FkB,R, for all ε0 ∈ (0,∆(1 − τ)), ε ∈ (0, ∆(1−τ)−ε0

1+∆ ], and δ ∈ (0, 1], with probability at least

1− δ − N
K e
−2Kε2 ,

sup
f∈Bk(R)

∣∣∣Ẽ(f)− E`P (f)
∣∣∣ ≤ D

ε0

√
K

N

where D = (1 +RB|`|)
√

log(2/δ) + 2RB|`|.

Observe that J(f̂) ≤ J(0) ≤ |`|0ε0 . Therefore λ‖f̂‖2 ≤ |`|0ε0 − Ẽ(f̂) ≤ 2|`|0
ε0

and so ‖f̂‖2 ≤ 2|`|0
ε0λ

.

Set R =
√

2|`|0
ε0λ

. Note that R grows asymptotically because λ shrinks. We just saw that f̂ ∈ Bk(R).
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Let ε > 0. Fix fε ∈ Fk s.t. E`P (fε) ≤ inff E`P + ε/2, possible since k is universal [13]. Note that
fε ∈ Bk(R) for N sufficiently large. In this case the generalization error bound implies that with
probability ≥ 1− δ − N

K e
−2Kε2 ,

E`P (f̂) ≤ Ẽ(f̂) +
D

ε0

√
K

N

≤ Ẽ(fε) + λ‖fε‖2 − λ‖f̂‖2 +
D

ε0

√
K

N

≤ Ẽ(fε) + λ‖fε‖2 +
D

ε0

√
K

N

≤ E`P (fε) + λ‖fε‖2 +
2D

ε0

√
K

N
.

Taking δ = K/N , the result now follows.

S9 Experimental Details

The parameters of InvCal [12] and alter-∝SVM [15] are tuned by five-fold cross validation. We only
consider the RBF kernel. Following [15], the parameters for both methods were set as follows. The
kernel bandwidth γ of the RBF kernel is chosen from {0.01, 0.1, 1}. For InvCal, the parameters are
tuned from Cp ∈ {0.1, 1, 10}, and ε ∈ {0, 0.01, 0.1}. For alter-∝SVM, the parameters are tuned
from C ∈ {0.1, 1, 10}, and Cp ∈ {1, 10, 100}.

A Matlab implementation of both InvCal and alter-∝SVM was obtained online.1 These implementa-
tions rely on LIBSVM2 and CVX3. We modified the code to preform parameter tuning with cross
validation as described above. The modified code is contained in our supplemental material. LIBSVM
contains its own random number generator that was unfortunately not seeded and hence the results
for alter-∝SVM are not reproducible.

All three algorithms require random initialization. Yu et al. [15] randomly initialize their algorithm
ten times and take the result with smallest objective value. This would take over 10 hours on 100
cores to run in out setup. Hence, we only consider one random initialization for each method. This
could account for the relatively poor performance of alter-∝SVM.

We also found that in some cases, the code for alter-∝-SVM wouldn’t create a variable ’support_v’,
which is used to predict the test label. The resulted from LIBSVM not returning any support vectors.
If ’support_v’ did not exist for a given fold, we excluded that fold from the cross-validation error
estimate.

For bag size 8, in the experiments reported below, on a handful of occasions there are only two bags
in the validation data within a given fold of cross-validation, and both bags have the same label
proportion. When this occurs, we cannot compute our criterion, and exclude such folds.

For the MAGIC dataset, InvCal takes roughly 30 minutes on 36 cores to complete the experiments for
all bag sizes. For the Adult dataset, InvCal takes roughly 60 minutes on 36 cores. For alter-∝-SVM,
the approximated runtime on MAGIC dataset is 70 minutes on 144 cores. On Adult dataset, it is 100
minutes on 144 cores.

S10 Additional Experimental Results

We performed an additional set of experiments where the number of bags N remains fixed. For Adult
dataset, the total number of bags is 16, and for MAGIC, it is 12. For each method, we generate an
ROC curve and evaluate the area under the curve (AUC) using the test data. The average AUCs and
the standard deviations over 5 random trials are reported in Table S1. Bold numbers indicate that a
method’s mean AUC was the largest for that experimental setting. We observe that LMMCM exhibits
excellent performance in this setting as well.

1https://github.com/felixyu/pSVM
2https://www.csie.ntu.edu.tw/ cjlin/libsvm/
3http://cvxr.com/cvx/
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Table S1: AUC. Column header indicates bag size.
Data set, LP dist Method 8 32 128 512

Adult,
[
0, 1

2

] InvCal 0.6427 ± 0.0922 0.6545 ± 0.0643 0.6518 ± 0.0139 0.7230 ± 0.0253
alter-∝SVM 0.6525 ± 0.0817 0.5959 ± 0.1145 0.6199 ± 0.1267 0.6419 ± 0.0997

LMMCM 0.7299 ± 0.0796 0.7765 ± 0.0590 0.8329 ± 0.0166 0.8456 ± 0.0213

Adult,
[

1
2 , 1
] InvCal 0.5973 ± 0.0740 0.6634 ± 0.0864 0.6408 ± 0.0216 0.7218 ± 0.0170

alter-∝SVM 0.6035 ± 0.1626 0.7774 ± 0.0443 0.5863 ± 0.2775 0.7106 ± 0.2193
LMMCM 0.7228 ± 0.1048 0.7674 ± 0.0586 0.8428 ± 0.0101 0.8588 ± 0.0091

MAGIC,
[
0, 1

2

] InvCal 0.7381 ± 0.0439 0.7828 ± 0.0212 0.7936 ± 0.0371 0.8196 ± 0.0231
alter-∝SVM 0.5997 ± 0.1163 0.5376 ± 0.1671 0.6859 ± 0.0371 0.7193 ± 0.1278

LMMCM 0.7180 ± 0.0450 0.7852 ± 0.7828 0.8140 ± 0.0463 0.8630 ± 0.0275

MAGIC,
[

1
2 , 1
] InvCal 0.6741 ± 0.0673 0.7405 ± 0.0433 0.7876 ± 0.0249 0.8135 ± 0.0132

alter-∝SVM 0.6589 ± 0.1029 0.6330 ± 0.1254 0.6790 ± 0.1072 0.7965 ± 0.0708
LMMCM 0.6807 ± 0.0779 0.7639 ± 0.0335 0.7905 ± 0.0258 0.8491 ± 0.0245
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