
6 Supplementary Material

6.1 Original CLUTRR evaluation

ORIGINAL TEST lvl.2 lvl.3 lvl.4 lvl.5 lvl.6 lvl.7 lvl.8 lvl.9 lvl.10
proofs
(many proof steps) 99.62% 0% 0% 0% 0% 0% 0% 0% 0%

proof steps
(“since A-r1-B
and B-r2-C
then A-r3-C”)

99.62% 0% 99.96% 0% 100% 0% 0% 0% 0%

facts (A-r-B) 100% 0.47% 100% 0.83% 100% 0.20% 0.20% 0.10% 0.42%
entities (A) 100% 23.81% 100% 35.72% 100% 26.19% 21.43% 30.95% 30.95%
relations (r) 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 4: Percentage of the original test proof building blocks also present in the training set (composed of
levels 2, 4, 6) for all levels. We colored all cells with a value close to 100% to better visualize which building
blocks were entirely contained in the training set.

The original CLUTRR data generation framework made sure that each test proof is not in the
training set in order to test whether a model is able to generalize to unseen proofs. Initial results
on the original CLUTRR test sets resulted in strong model performance (∼ 99%) on levels seen
during training (2, 4, 6) but no generalization at all (∼ 0%) to other levels. After further analysis,
we noticed that due to the cloze style nature of CLUTRR tasks, the first names representing entities
were chosen arbitrarily. This resulted in level-k test set’s proof_steps and facts also being in the
level-k training set. In addition, level-k test set’s entities were mostly seen only in level-k training
set. This resulted in a big overlap between training and test sets for examples of the same level, but a
weak overlap on other levels as we can see in Table 4.

NAMED TEST lvl.2 lvl.3 lvl.4 lvl.5 lvl.6 lvl.7 lvl.8 lvl.9 lvl.10
proofs
(many proof steps) 2.13% 0% 0% 0% 0% 0% 0% 0% 0%

proof steps
(“since A-r1-B
and B-r2-C
then A-r3-C”)

2.13% 0% 1.33% 1.74% 1.42% 1.80% 1.38% 0.99% 1.40%

facts (A-r-B) 15.48% 5.52% 6.77% 10.92% 6.38% 9.63% 10.51% 10.33% 8.33%
entities (A) 100% 100% 100% 100% 100% 100% 100% 100% 100%
relations (r) 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 5: Percentage of the Named test proof’s building blocks also present in the training set (composed of
levels 2, 4, 6) for all levels. We colored all cells with a value of 100% to better visualize which building blocks
were entirely contained in the training set

13.669%

3.988%

10.689% 9.921%
11.265%

20.119%

15.207%

6.942%

2.788%

30.110%

2.506%

14.178%

6.856%

11.891%

6.561%

1.147% 0.281% 0.333%

19.471%

4.297%

10.699%
9.071% 8.796%

10.410%

1.374%
0.208% 0.364%

9.059%

5.749%

8.999% 8.147% 8.898%

13.056%
11.743%

9.669%

14.564%

0.000
%

10.000
%

20.000
%

30.000
%

40.000
%

2 4 6 8 10

np

sp

lp

mfr

Figure 5: Answer accuracy on the Named test for
all levels from 2 to 10. The models are given
as input “<STORY> [story] <QUERY> [query]
<PROOF>” and asked to generate the proof and
answer. Models are trained on levels 2, 4, 6 only.
Different proof settings are evaluated: sp=short-
proof, lp=long-proof, np=no-proof. We also report
the naive most-frequent-relation (mfr) baseline.

In our case, the entity names are important to
evaluate systematic generalization. We want
to evaluate the capacity of a model to general-
ize to new facts, proof_steps, and proofs,
but keeping the entities and relations the
same. We thus modified the original CLUTRR
dataset to select test entities according to entities
present in the training set. We devise a test set
that uses all relations and entities from
the training set but new facts, proof_steps
and proofs for all levels. We call this dataset
the Named data: all entities are referred by their
original first name. Train and test overlap per-
centages between all building blocks are in Ta-
ble 5.

Given as input the story and the query followed
by the proof trigger token (“<STORY> [story]
<QUERY> [query] <PROOF>”) the model generated the corresponding proof ans answer. We report

13

33.752%

1.760% 0.503% 0.115% 0.250% 0.833% 0.727% 0.114%
2.394%0.865% 0.473% 0.084% 0.137% 0.000% 0.011% 0.000% 0.000%

0.000%

10.000%

20.000%

30.000%

40.000%

50.000%

2 4 6 8 10

sp

lp

(a) Proof validity on the Named test for all levels from
2 to 10. The models are given as input “<STORY>
[story] <QUERY> [query] <PROOF>” and asked to
generate the proof and answer.

72.147%

9.041%

59.648%

31.412%

58.716%

0.106% 0.000% 0.000% 0.000%

26.499%

8.196%

32.107%

17.375%

24.215% 22.553%

4.634%
2.269% 0.970%

13.991%

4.098%

10.659% 10.026% 11.311%

20.212%

14.685%

6.911%
2.848%

9.059%
5.749%

8.999% 8.147% 8.898%
13.056% 11.743%

9.669%
14.564%

0.000%

20.000%

40.000%

60.000%

80.000%

2 4 6 8 10

sp

lp

np

mfr

(b) Answer accuracy on the Named test for all levels
from 2 to 10. The models are given as input “<STORY>
[story] <QUERY> [query] <PROOF> [proof] <AN-
SWER>” and asked to generate the answer.

Figure 6: Evaluation of models trained on levels 2, 4, 6 only.

in Figure 5 the answer accuracy and in Figure 6a the proof validity of all our models. Similarly,
in Figure 6b we report the answer accuracy of our models when they are given as input the story,
the query and the real proof, followed by the answer trigger token (“<STORY> [story] <QUERY>
[query] <PROOF> [proof] <ANSWER>”).

Experiments on this setup show that Transformer language models fail to generalize to unseen facts.
Indeed, due to the presence of a large number of entities in CLUTRR, we end up with combinatorially
large number of possible facts. The model may thus not be able to learn how to represent each entity
effectively, hence reducing its chances to learn higher-order structures such as unseen facts.

6.2 Long Proof pseudo-code

def get_long_proof(story_facts, rules, query):
"""
:params story_facts: list of (e_1, r, e_2) facts
:params rules: list of composition rules. each rule is a dict

of the form {r1--r2: r3}
:params query: tuple of entities for which we must find a relation (src, tgt)
"""
proof = [] # list of proof steps to return

get all known relations (original, and reversed)
all_facts = []
for (e1, r, e2) in story_facts:

inv_r = reverse_fact(e1, r, e2)
all_facts.append((e1, r, e2))
all_facts.append((e2, inv_r, e1))

go through every possible pair of facts
for f1, f2 in itertools.combinations(all_facts, 2):

e11, r1, e12 = f1
e21, r2, e22 = f2
inv_r1 = reverse_fact(e11, r1, e12)
inv_r2 = reverse_fact(e21, r2, e22)

find the possible AB+BC combination.
there are 4 possible ways to combine 2 sentences with 2 entities each (1 in common):
if e11 == e21 and e12 != e11 and e12 != e22:

AB+BC <=> inv_f1+f2
A, new_r1, B = e12, inv_r1, e11
B, new_r2, C = e21, r2, e22
inv_r1 = r1

elif e11 == e22 and e12 != e11 and e12 != e21:
AB+BC <=> f2+f1

14

A, new_r1, B = e21, r2, e22
B, new_r2, C = e11, r1, e12
swap inv_r1 and inv_r2
inv_r1, inv_r2 = inv_r2, inv_r1

elif e12 == e21 and e11 != e12 and e11 != e22:
AB+BC <=> f1+f2
A, new_r1, B = e11, r1, e12
B, new_r2, C = e21, r2, e22

elif e12 == e22 and e11 != e12 and e11 != e21:
AB+BC <=> f1+inv_f2
A, new_r1, B = e11, r1, e12
B, new_r2, C = e22, inv_r2, e21
inv_r2 = r2

else:
invalid pair of facts
continue

try to combine AB+BC
if new_r1--new_r2 in rules:

r3 = rules[new_r1--new_r2]
inv_r3 = reverse_fact(A, r3, C)
all_facts.append((A, r3, C))
all_facts.append((C, inv_r3, A))
proof.append(since A new_r1 B and B new_r2 C then A r3 C)

try to combine CB+BA
elif inv_r2--inv_r1 in rules:

r3 = rules[inv_r2--inv_r1]
inv_r3 = reverse_fact(C, r3, A)
all_facts.append((C, r3, A))
all_facts.append((A, inv_r3, C))
proof.append(since C inv_r2 B and B inv_r1 A then C r3 A)

else:
invalid pair of facts
continue

check if we found the link between the two queried entities
(A, r, B) = all_facts[-1]
if A==query[0] and B==query[1]:

break
if A==query[1] and B==query[0]:

break

return proof

6.3 Experiments parameter settings

small large
patience 20 20
batch size 512 256
float precision 16 16
embedding dimension 192 768
number of layers 5 20
dropout 0.1 0.1
transformer mlp hidden size 768 3072
attention heads 3 12
max length 1, 024 512
activation gelu gelu
number of warmup steps 20, 000 20, 000
optimizer adam adam
total parameters ∼ 3, 000, 000 ∼ 145, 000, 000

Table 6: Parameter settings.

All experiments in the main
section of the paper were
run with the small model
size.

Additional experiments in
Section 6.4 were run with
the large model size.

15

6.4 More parameters

0.000%

25.000%

50.000%

75.000%

100.000%

2 4 6 8 10

2.5M / np

2.5M / spr

145M / spr

mfr

Figure 7: Answer accuracy for all test levels from 2 to 10.
The models are given as input “<STORY> [story] <QUERY>
[query] <PROOF>” and they generate the proof and answer.
Models are trained on levels 2, 4, 6 only. Stories are ex-
pressed with the facts template. Different proof settings
are evaluated: np=no-proof and spr=short-proof-reversed.
We also report the naive most-frequent-relation (mfr) base-
line. Results on other proof settings with the 2.5M parameter
network can be found in Figure 2a.

In this section we report the answer
accuracy of a model trained with
∼145M parameters and compare its
generalization performance with our
initial smaller network (∼2.5M pa-
rameters). Models are trained on lev-
els 2, 4 and 6. Each model is given the
story and query as input, and triggered
to generate the proof and answer with
the “<PROOF>” and “<ANSWER>”
tokens respectively.

We observe in Figure 7 that the
generalization capacity of the larger
145M network is almost identical to
the smaller 2.5M parameter network
trained on the same data (facts sto-
ries and short-proof-reversed). In ad-
dition, we also observe that the 145M
model trained on reversed short proofs
(145M / spr) is not better than the
2.5M model trained without any proof
(2.5M / np). Overall, results show that model size improves only marginally the generalization
capacity in our task.

6.5 Fine-tuning GPT2

0.000%

20.000%

40.000%

60.000%

80.000%

2 4 6 8 10

amt / gpt2FS-sp

amt / gpt2FT-sp

amt / gpt2FS-spr

amt / gpt2FT-spr

amt / gpt2FS-np

amt / gpt2FT-np

Figure 8: Answer accuracy for all test levels from 2 to 10.
The models are given as input “<STORY> [story] <QUERY>
[query] <PROOF>” and they generate the proof and answer.
Models are fine-tuned on levels 2, 4, 6 only. Stories are
expressed with the amt template. Different proof settings are
evaluated: sp=short-proof, spr=short-proof-reversed, np=no-
proof. We compare the performance of models trained from
scratch (dotted lines; gtp2FS-) and of fine-tuned models
(solid lines; gpt2FT-).

In this section we report the an-
swer accuracy of GPT2 models (Rad-
ford et al., 2019) trained from-scratch
(gpt2FS-) on the CLUTRR dataset
and of pre-trained GPT2 models fine-
tuned (gpt2FT-) on the CLUTRR
dataset. We leverage the GPT2 im-
plementation from the huggingface
library (Wolf et al., 2019). The re-
sulting models have ∼125M param-
eters. In all experiments the models
are trained on stories expressed in the
amt template. Models are fine-tuned
on levels 2, 4 and 6. Each model is
given the story and query as input, and
triggered to generate the proof and an-
swer with the “<PROOF>” and “<AN-
SWER>” tokens respectively.

In Figure 8 we observe that in general,
fine-tuned models perform better than
the ones trained from scratch. We can
also see that reversed-proof strategies are better than their forward proof counterpart, which is in
accordance with what we discussed in Section 4.1. Although fine-tuning seems to improve the
generalization capacity of GPT2, it is also interesting to note that the benefit of fine-tuning GPT2 on
short-proofs (sp) is negligible compared to the benefits of fine-tuning GPT2 on short-proofs-reversed
(spr) or no-proof (np). This suggests that fine-tuning alone is not enough to yield strong generalization
performance, but the choice of proof strategy also influences greatly the answer accuracy.

16

6.6 Encoder-Decoder Network

0.000%

25.000%

50.000%

75.000%

100.000%

2 4 6 8 10

s2s-sp

s2s-lp

s2s-spr

s2s-lpr

s2s-np

mfr

Figure 9: Answer accuracy for all test levels from 2 to 10.
The models encodes the input “<STORY> [story] <QUERY>
[query]” and they decode the proof and answer. Models
are trained on levels 2, 4, 6 only. Stories are expressed
with the facts template. Different proof settings are eval-
uated: sp=short-proof, spr=short-proof-reversed, lp=long-
proof, lpr=long-proof-reversed, np=no-proof. We also re-
port the naive most-frequent-relation (mfr) baseline.

In this section we evaluate the answer
accuracy of sequence-to-sequence
models trained on facts templated
stories of level 2, 4 and 6. These mod-
els consist of a 5-layer Transformer
encoder and a 5-layer Transformer
decoder, each of them following the
same parameter settings than what is
described in the ‘small’ column of Ta-
ble 6. This resulted in 5.22M param-
eter models. Sequence-to-sequence
models are trained to encode the story
and question with the encoder, and
generate the proof and answer with
the decoder. Models trained on levels
2, 4 and 6. Each model is given the
story and query as input, and triggered
to generate the proof and answer with
the “<PROOF>” and “<ANSWER>”
tokens respectively.

In the results shown in Figure 9, we see that sequence-to-sequence models do not generalize well to
unseen difficulty levels, both in extrapolation settings (levels 7–10) but also in interpolation settings
(levels 3 and 5). This suggests that encoder-decoder architectures are more sensible to the sequence
length seen during training. On the other hand, it is important to note that the encoder network was
trained with the auto-regressive language modeling objective back-propagated from the decoder. It
would be interesting to see if pre-training the encoder with a more traditional objective, that is masked
language modeling (Devlin et al., 2019), would improve the generalization performance. We leave
this exercise as future work. In addition, we plan to explore pre-trained models such as T5 (Raffel
et al., 2020) in future work in order to improve performance with this type of architecture.

17

