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Appendix

A Notations

We will use r'(✓,x) and rr'(✓,x) to denote r✓'(✓,x) and r✓r✓'(✓,x), respectively. We
will use rK(✓,✓0) to denote r✓K(✓,✓0), rrK(✓,✓0) to denote r✓r✓K(✓,✓0), r0rK(✓,✓0)
to denote r✓0r✓K(✓,✓0), and r0r0

K(✓,✓0) to denote r✓0r✓0K(✓,✓0). We will write Vt(·) for
V (·, µt) and V1(·) for V (·, µ1).

Let D
0 = [t>0 supp µt. Under Assumption 2.4 and Proposition 2.6, D

0 is bounded, and we
denote its diameter by |D0|. We will use C', Cr' and Crr' to denote the supremum of
|'(✓,x)|, |r'(✓,x)| and |rr'(✓,x)| over ✓ 2 D

0 and x 2 supp ⌫̂, which are all finite under
Assumptions 2.2 and the boundedness of D

0. We will use Lrr' to denote the (uniform-in-x)
Lipschitz constant of rr'(✓,x) in ✓, which is also finite under Assumption 2.2.

The following notations will be used in Appendix E.2: Assuming that D is Euclidean (under
Assumption 2.2), let V(D) denote the space of random vector fields on D. It becomes a Hilbert space
once equipped with the inner product

⌦
⇠1, ⇠2

↵
0

:= E0

ˆ
D
⇠1(✓) · ⇠2(✓)µ0(d✓), (47)

where ⇠1, ⇠2 denotes two random vector fields in V(D). This inner product gives rise to the norm

k⇠k2
0 := E0

ˆ
D

|⇠(✓)|2µ0(d✓) . (48)

For each t, we define bt 2 V(D) as

bt(✓) =

ˆ
D

rK(⇥t(✓),⇥t(✓
0))!0(d✓

0) (49)

which depends on the random measure !0. We define two linear operators, A(K)
t and A(V )

t on V(D),
as

(A(K)
t ⇠)(✓) =

ˆ
D

r0rK(⇥t(✓),⇥t(✓
0))⇠(✓0)µ0(d✓

0) (50)

=

ˆ
⌦

r'(⇥t(✓),x)
⇣ ˆ

D
r'(⇥t(✓

0),x)|⇠(✓0)µ0(d✓
0)
⌘
⌫̂(dx) , (51)

(A(V )
t ⇠)(✓) =rrV (⇥t(✓), µt)⇠(✓) , (52)

for ⇠ 2 V(D). Under Assumption 2.4, we also define b1, A(K)
1 , and A(V )

1 similarly by replacing
⇥t(·) with ⇥1(·).
Let W(⌦) denote the space of random functions on ⌦. For a fixed set of data points {xl}nl=1, it
becomes a Hilbert space once equipped with the inner product

h⌘1, ⌘2i⌫̂,0 := E0

ˆ
⌦

⌘1(x)⌘2(x)⌫̂(dx) =
1

n
E0

nX

l=1

⌘1(xl)⌘2(xl) , (53)
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which gives rise to the norm
k⌘k2

⌫̂,0 := h⌘, ⌘i⌫̂,0 = E0k⌘k2
⌫̂ . (54)

With an abuse of notation, we will consider elements in W(⌦) equivalently as random vectors on Rn.
Next, we can define Bt to be the operator that maps ⌘ 2 W(⌦) into the vector field

(Bt⌘)(✓) =

ˆ
⌦

r'(⇥t(✓),x)⌘(x)⌫̂(dx) (55)

in V(D). Its transpose is

(B|
t ⇠)(x) =

ˆ
D

r'(⇥t(✓),x)⇠(✓)µ0(d✓), (56)

which maps a vector field ⇠ 2 V(D) back into W(⌦).

B Proximal Scheme, Gradient Flow and Mirror Descent

Proposition B.1 Given ⇥̄0(✓) = ✓ and ⌧ > 0, for p 2 N let ⇥p⌧ be specified via

⇥̄p⌧ 2 argmin

✓
1

2⌧
k⇥ � ⇥̄(p�1)⌧k2

0 + E(⇥) ,

◆
(57)

where we defined

k⇥k2
0 =

ˆ
D

|⇥(✓)|2µ0(d✓) (58)

and
E(⇥) = �

ˆ
D

F (⇥(✓))µ0(d✓) +
1

2

ˆ
D

K(⇥(✓),⇥(✓0))µ0(d✓)µ0(d✓
0) . (59)

Then
lim
⌧!0

⇥̄bt/⌧c⌧ = ⇥t µ0-almost surely , (60)

where ⇥t solves (14).

C Long-Time Properties of the Mean-Field Gradient Flow

Proof of Proposition 2.6: The compactness of [t�0 supp µt follows from (15) and the compactness
of supp µ0 assumed in Assumption 2.3. µt * µ1 follows from (12) and (15).

Under Assumption 2.4, ⇥1 is a local minimizer of the energy E defined in (59). Consider a local
perturbation ✏⇥� to ⇥. The energy value after the perturbation is

E(⇥1 + ✏⇥�) = �
ˆ
D

F (⇥1(✓) + ✏⇥�(✓))µ0(d✓)

+
1

2

ˆ
D

ˆ
D

K(⇥1(✓) + ✏⇥�(✓),⇥1(✓0) + ✏⇥�(✓0))µ0(d✓
0)µ0(d✓

0) .

(61)

Under Assumptions 2.2, using Taylor expansion, we have
F (⇥1(✓) + ✏⇥�(✓)) =F (⇥1(✓)) + ✏rF (⇥1(✓)) · ⇥�(✓)

+
1

2
✏
2h⇥�(✓), rrF (⇥1(✓))⇥�(✓)i + O(✏3)

(62)

K(⇥1(✓) + ✏⇥�(✓),⇥1(✓0) + ✏⇥�(✓0))

=K(⇥1(✓),⇥1(✓0)) + ✏rK(⇥1(✓),⇥1(✓0))⇥�(✓)

+ ✏r0
K(⇥1(✓),⇥1(✓0))⇥�(✓0) +

1

2
✏
2h⇥�(✓), rrK(⇥1(✓),⇥1(✓0))⇥�(✓)i

+
1

2
✏
2h⇥�(✓0), r0r0

K(⇥1(✓),⇥1(✓0))⇥�(✓0)i

+ ✏
2h⇥�(✓), r0rK(⇥1(✓),⇥1(✓0))⇥�(✓0)i + O(✏3) .

(63)
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Hence, there is
E(⇥1 + ✏⇥�) � E(⇥1)

=✏

ˆ
D

✓
�rF (⇥1(✓)) +

ˆ
D

rK(⇥1(✓),⇥1(✓0))µ0(d✓
0)

◆
⇥�(✓)µ0(d✓)

+
1

2
✏
2

 ˆ
D

h⇥�(✓),

✓
rrF (⇥1(✓)) +

ˆ
D

rrK(⇥1(✓),⇥1(✓0))µ0(d✓
0)

◆
⇥�(✓)iµ0(d✓)

+

ˆ
D

ˆ
D

h⇥�(✓), r0rK(⇥1(✓),⇥1(✓0))⇥�(✓0)iµ0(d✓)µ0(d✓
0)

!
+ O(✏3) .

(64)
Since ⇥� is arbitrary can ✏ can be taken arbitrarily small, we see that for ⇥1 to be a local minimizer,
the first-order condition is, 8✓ 2 supp µ0,

�rF (⇥1(✓)) +

ˆ
D

rK(⇥1(✓),⇥1(✓0))µ0(d✓
0) = 0 , (65)

or
rV (⇥1(✓), µ1) = 0 , (66)

and the second-order condition is, 8⇥�,ˆ
D

h⇥�(✓),

✓
rrF (⇥1(✓)) +

ˆ
D

rrK(⇥1(✓),⇥1(✓0))µ0(d✓
0)

◆
⇥�(✓)iµ0(d✓)

+

ˆ
D

ˆ
D

h⇥�(✓), r0rK(⇥1(✓),⇥1(✓0))⇥�(✓0)iµ0(d✓)µ0(d✓
0) � 0 ,

(67)

or ˆ
D

h⇥�(✓), rrV (⇥1(✓), µ1)⇥�(✓)iµ0(d✓)

+

ˆ
D

ˆ
D

h⇥�(✓), r0rK(⇥1(✓),⇥1(✓0))⇥�(✓0)iµ0(d✓)µ0(d✓
0) � 0 .

(68)

Suppose for contradiction that 9D
� ✓ D with µ0(D�) > 0 such that rrV (⇥1(✓), µ1) is not

positive semidefinite. Define ⇤1(✓) to be the least eigenvalue of rrV (⇥1(✓), µ1). Then there
is ⇤1(✓) < 0 on D

�. In addition, 9⇣ > 0, 9D
�
0 ✓ D

� with µ0(D
�
0 ) > 0 such that ⇤1(✓) < �⇣.

For ✓ 2 D
�
0 , let ⇥�,0(✓) be a normalized eigenvector to rrV (⇥1(✓), µ1) associated with its

least eigenvalue. Moreover, for J 2 N⇤ that is large enough, we can select any subset D
�
J ⇢ D

�
0

such that µ0(D
�
J ) = 1

J < µ0(D
�
0 ). Then, define

⇥�,J(✓) = J
1/21✓2D�

J
⇥�,0(✓) , (69)

Then, there is ˆ
D

ˆ
D

h⇥�(✓), r0rK(⇥1(✓),⇥1(✓0))⇥�(✓0)iµ0(d✓)µ0(d✓
0)

=

ˆ
⌦

����
ˆ
D

r'(⇥1(✓),x)⇥�,nµ0(d✓)

����
2

⌫̂(dx)

=

ˆ
⌦

�����J
1/2

ˆ
D�

J

r'(⇥1(✓),x)⇥�,0µ0(d✓)

�����

2

⌫̂(dx)

C
2
r'J

�1
.

(70)

On the other hand ˆ
D

h⇥�,J(✓), rrV (⇥1(✓), µ1)⇥�,J(✓)iµ0(d✓)

=

ˆ
D�

J

J
�1h⇥�,0(✓), rrV (⇥1(✓), µ1)⇥�,0(✓)iµ0(d✓)

 � ⇣ .

(71)
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Therefore, for J large enough, we will haveˆ
D

ˆ
D

h⇥�(✓), r0rK(⇥1(✓),⇥1(✓0))⇥�(✓0)iµ0(d✓)µ0(d✓
0)

+

ˆ
D

h⇥�,n(✓), rrV (⇥1(✓), µ1)⇥�,J(✓)iµ0(d✓) < 0 ,

(72)

which contradicts (68). Hence, we can conclude that µ0-almost surely, rrV (⇥1(✓), µ1) is
positive semidefinite.

D Derivations of the Dynamical Central Limit Theorem

D.1 Proof of Proposition 3.1 (Dynamical CLT - I)

The following derivation is an adaptation of the approach in [10] for Vlasov interacting particle
systems to our scenario. To start, ⇥t and ⇥(m)

t are governed by the following equations, respectively:

⇥̇t(✓) = �rV (⇥t(✓), µt), ⇥0(✓) = ✓

⇥̇
(m)
t (✓) = �rV (⇥(m)

t (✓), µ(m)
t ), ⇥(m)

0 (✓) = ✓
(73)

Taking the difference between the two equations in (73) and using the mean value theorem, we get

Ṫ
(m)
t (✓)

=m
1/2

⇣
⇥̇

(m)
t (✓) � ⇥̇t(✓)

⌘

= � m
1/2

⇣
rV (⇥(m)

t (✓), µ(m)
t ) � rV (⇥t(✓), µt)

⌘

= � m
1/2

⇣
rV (⇥(m)

t (✓), µt) � rV (⇥t(✓), µt)
⌘

� m
1/2

⇣
rV (⇥t, µ

(m)
t ) � rV (⇥t(✓), µt)

⌘

� m
1/2

h⇣
rV (⇥(m)

t (✓), µ(m)
t ) � rV (⇥t(✓), µ(m)

t )
⌘

�
⇣
rV (⇥(m)

t , µt) � rV (⇥t(✓), µt)
⌘i

= � rrV (⇥̃
(m)
t,1 (✓), µt)T

(m)
t (✓) �

ˆ
D

rK(⇥t(✓),✓0)!(m)
t (d✓0)

� m
�1/2

⇣ ˆ
D

rrK(⇥̃
(m)
t,2 (✓),✓0)!(m)

t (d✓0)
⌘
T (m)

t (✓) ,

(74)

where ⇥̃
(m)
t.1 (✓) and ⇥̃

(m)
t,2 (✓) denote points that lie on the line segment between ⇥t(✓) and ⇥(m)

t (✓).
Using (25), we can substitute !

(m)
t in the second term at the right hand side, for which we getˆ

D
rK(⇥t(✓),✓0)!(m)

t (d✓0) =

ˆ
D

rK(⇥t(✓),⇥t(✓
0))!(m)

0 (d✓0)

+

ˆ
D

r0rK(⇥t(✓), ⇥̃
(m)
t,3 (✓0))T (m)

t (✓0)µ0(d✓
0)

+ m
�1/2

ˆ
D

r0rK(⇥t(✓), ⇥̃
(m)
t,3 (✓0))T (m)

t (✓0)!(m)
0 (d✓0) .

(75)

Therefore, under Assumption 2.2, we have

Ṫ
(m)
t (✓) = �rrV (⇥̃

(m)
t,1 , µt)T

(m)
t (✓)

�
ˆ
D

r0rK(⇥t(✓), ⇥̃
(m)
t,3 (✓0))T (m)

t (✓0)µ0(d✓
0)

�
ˆ
D

rK(⇥t(✓),⇥t(✓
0))!(m)

0 (d✓0) + O(m�1/2) .

(76)
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Now, we consider the limit as m ! 1. By the standard CLT, we have that !
(m)
0 (d✓) * !0(d✓)

weakly with respect to P0, where !0(d✓) is the Gaussian measure with mean zero and covariance
defined in (27). On the other hand, by finite-time LLN, we have ⇥(m)

t (✓) ! ⇥t(✓) pointwise, P0-
almost surely, and as a consequence ⇥̃

(m)
t,1 (✓), ⇥̄

(m)
t,3 (✓) ! ⇥t(✓) as well. Therefore, T (m)

t (✓) !
T t(✓) pointwise, P0-almost surely, where the limiting T t(✓) solves the equation obtained by taking
the limit m ! 1 on both sides of (76), which becomes (28). (28) should be solved with initial
condition T 0(✓) = 0 since T (m)

0 (✓) = m
1/2(⇥(m)

0 (✓) � ⇥0(✓)) = 0.

Finally, taking the limit m ! 1 on both sides of the equation (25), we deduce that !
(m)
t (d✓) *

!t(d✓) weakly, in law with respect to P0, where the limiting !t(d✓) satisfies
ˆ
D

�(✓)!t(d✓) =

ˆ
D

�(⇥t(✓))!0(d✓) +

ˆ
D

r�(⇥t(✓)) · T t(✓)µ0(d✓) . (77)

This ends the proof of Proposition 3.1. ⇤

D.2 Proof of Proposition 3.3 (Dynamical CLT - II)

Recall from (28) that

Ṫ t(✓) = �rrV (⇥t(✓), µt)T t(✓) �
ˆ
D

r0rK(⇥t(✓),⇥t(✓
0))T t(✓

0)µ0(d✓
0)

�
ˆ
D

rK(⇥t(✓),⇥t(✓
0))!0(d✓

0)

= �rrV (⇥t(✓), µt)T t(✓) �
ˆ
D

rK(⇥t(✓),✓0)!t(d✓
0) .

(78)

Since T 0(✓) = 0, we can use Duhamel’s principle to deduce that

T t(✓) = �
ˆ t

0
Jt,s(✓)

ˆ
D

rK(⇥s(✓),✓0)!s(d✓
0)ds

= �
ˆ t

0

ˆ
⌦

Jt,s(✓)r'(⇥s(✓),x)

ˆ
D

'(✓0
,x)!s(d✓

0)⌫̂(dx)ds

= �
ˆ t

0

ˆ
⌦

Jt,s(✓)r'(⇥s(✓),x)gs(x)⌫̂(dx)ds,

(79)

where the tensor Jt,s(✓) is the Jacobian defined in Proposition 3.3. As a result

gt(x) =

ˆ
D

'(✓,x)!t(d✓)

=

ˆ
D

'(⇥t(✓),x)!0(d✓) +

ˆ
D

r'(⇥t(✓),x) · T t(✓)µ0(d✓)

=

ˆ
D

'(⇥t(✓),x)!0(d✓)

�
ˆ
D

ˆ t

0

ˆ
⌦
hr'(⇥t(✓),x), Jt,s(✓)r'(⇥s(✓),x0)igs(x0)⌫̂(dx0)dsµ0(d✓)

= ḡt(x) �
ˆ t

0

ˆ
⌦

ˆ
D

hr'(⇥t(✓),x), Jt,s(✓)r'(⇥s(✓),x0)iµ0(d✓)gs(x
0)⌫̂(dx0)ds

= ḡt(x) �
ˆ t

0

ˆ
⌦

�t,s(x,x0)gs(x
0)⌫̂(dx0)ds,

(80)

with ḡt(x) and �t,s(x,x0) defined in (32) and (34), respectively. This is (33). ⇤
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E Long-Time Behavior of the Fluctuations

E.1 Proof of Theorem 3.4 (µ0 = µ1 case)

With the argument outlined in Section 3.2, what remains to be shown is that �1
t�s is positive-

semidefinite as a Volterra kernel, according to the definition in [33]. We will utilize the following
known result:

Proposition E.1 (Gripenberg et al. [33]) Let k : [0, 1) ! Rn⇥n be a convolution-type kernel
for a linear Volterra equation in Rn . If 8⌘ 2 Rn, the function t 7! h⌘, k(t)⌘i is a nonnegative,
nonincreasing and convex function on (0, 1), then k is nonnegative, meaning that 8� : [0, 1) ! Rn

with compact support, there is
ˆ 1

0

ˆ t

0
h�(t), k(t � s)�(s)idsdt � 0 . (81)

Thus, to take advantage of this proposition, we need to verify that 8⌘ 2 Rn, h⌘, �1
t ⌘i is

(1) nonnegative:

h⌘, �1
t ⌘i

=

ˆ
⌦⇥⌦

ˆ
D

⌦
r'(⇥1(✓),x), e�trrV1(⇥1(✓))r'(⇥1(✓),x)

↵
⌘(x)⌘(x0)µ0(d✓)⌫̂(dx)⌫̂(dx0)

=

ˆ
D

D
b(✓), e�trrV1(⇥1(✓))b(✓)

E
µ0(d✓) � 0 ,

(82)

where

b(✓) =

ˆ
⌦

r'(⇥1(✓),x)⌘(x)⌫̂(dx) (83)

because by assumption, 8✓ 2 D, rrV1(⇥1(✓)) is positive semidefinite, and hence
e
�trrV1(⇥1(✓)) is a positive semidefinite operator;

(2) nonincreasing: Taking derivative with respect to time,

d

dt
h⌘, �1

t ⌘i = �
ˆ
D

D
b(✓), rrV (⇥1(✓))e�trrV1(⇥1(✓))b(✓)

E
µ0(d✓)  0, (84)

because again, rrV1(⇥1(✓)) is positive semidefinite;

(3) convex: Taking one more derivative with respect to time,

d
2

dt2
h⌘, �1

t ⌘i =

ˆ
D

D
b(✓), (rrV (⇥1(✓)))2e�trrV1(⇥1(✓))b(✓)

E
µ0(d✓) � 0, (85)

Therefore, we can apply Proposition E.1 to conclude that �1
t�s is PSD as a Volterra kernel, and so´ T

t0

´ t
t0

hgt, �1
t�sgsidsdt � 0.

E.2 Proof of Theorem 3.5 (Unregularized case)

Recall that

lim
m!1

mE0kf
(m)
t � ftk2

⌫̂ = E0kgtk2
⌫̂ = E0

ˆ
⌦

��
ˆ
D

'(✓,x)!t(d✓)
��2⌫̂(dx)

= E0

ˆ
D⇥D

K(✓,✓0)!t(d✓)!t(d✓
0) .

(86)
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From (26) in Proposition 3.1, this can be further expanded into

E0

ˆ
D⇥D

K(✓,✓0)!t(d✓)!t(d✓
0)

= E0

ˆ
D⇥D

hT t(✓), rr0
K(⇥t(✓),⇥t(✓

0))T t(✓
0)iµ0(d✓)µ0(d✓

0)

+ 2E0

ˆ
D⇥D

rK(⇥t(✓),⇥t(✓
0))T t(✓)µ0(d✓)!0(d✓

0)

+ E0

ˆ
D⇥D

K(⇥t(✓),⇥t(✓
0))!0(d✓)!0(d✓

0) .

(87)

The last term at the RHS is equal to E0kḡtk2
⌫̂ with ḡt defined in (32). Using (27), it can be explicitly

computed as

E0kḡtk2
⌫̂ =E0

ˆ
D⇥D

K(⇥t(✓),⇥t(✓
0))!0(d✓)!0(d✓

0)

=

ˆ
D⇥D

K(⇥t(✓),⇥t(✓
0))

�
µ0(d✓)�✓(d✓0) � µ0(d✓)µ0(d✓

0)
�

=

ˆ
D

K(✓,✓)µt(d✓) �
ˆ
D⇥D

K(✓,✓)µt(d✓)µt(d✓
0)

=

ˆ
D

K(✓,✓)µt(d✓) � kftk2
⌫̂ .

(88)

Thus,

lim
t!1

E0kḡtk2
⌫̂ = lim

t!1

ˆ
D

K(✓,✓)µt(d✓) � kftk2
⌫̂

=

ˆ
D

K(✓,✓)µ1(d✓) � kf1k2
⌫̂

=E0kḡ1k2
⌫̂

(89)

and so

lim
T!1

 T

0
E0kḡtk2

⌫̂dt = E0kḡ1k2
⌫̂ , (90)

where here and below we denote
� t
0 [·] dt = 1

t

´ t
0 [·] dt. As a result, to prove (41) or (44) in

Theorem 3.5, it suffices to establish that

lim
T!1

 T

0
Dtdt  0 , (91)

or

lim
T!1

 T

0
Dtdt  �E0kḡ1k2

⌫̂ , (92)

respectively, where we defined

Dt := E0

ˆ
D⇥D

K(✓,✓0)!t(d✓)!t(d✓
0) � E0

ˆ
D⇥D

K(⇥t(✓),⇥t(✓
0))!0(d✓)!0(d✓

0)

= E0

ˆ
D⇥D

hT t(✓), rr0
K(⇥t(✓),⇥t(✓

0))T t(✓
0)iµ0(d✓)µ0(d✓

0)

+ 2E0

ˆ
D⇥D

rK(⇥t(✓),⇥t(✓
0))T t(✓)µ0(d✓)!0(d✓

0) .

(93)

To this end, we examine (28) as an infinite-dimensional ODE. With the Hilbert space V(D) defined
in Appendix A and bt, A(K)

t and A(V )
t defined by (49), (51) and (52), respectively, we can rewrite

(28) as the following ODE on V(D):

Ṫ t = �(A(K)
t + A(V )

t )T t � bt, (94)

22



We can also rewrite (93) as

Dt = hT t, A(K)
t T ti0 + 2hT t, bti0 . (95)

From (94), we can deduce that
1

2

d

dt
kT tk2

0 = �hT t, A(V )
t T ti0 � hT t, A(K)

t T ti0 � hT t, bti0, (96)

or equivalently

hT t, A(K)
t T ti0 + hT t, bti0 = �1

2

d

dt
kT tk2

0 � hT t, A(V )
t T ti0 . (97)

Therefore, we can rewrite (93) as

Dt =2
⇣
hT t, A(K)

t T ti0 + hT t, bti0
⌘

� hT t, A(K)
t T ti0

=2

✓
�1

2

d

dt
kT tk2

0 � hT t, A(V )
t T ti0

◆
� hT t, A(K)

t T ti0

= � d

dt
kT tk2

0 � 2hT t, A(V )
t T ti0 � hT t, A(K)

t T ti0

(98)

and as a result, since T 0 = 0, T

0
Dtdt = � 1

T
kT T k2

0 � 2

 T

0
hT t, A(V )

t T ti0dt �
 T

0
hT t, A(K)

t T ti0dt . (99)

Note that for all t, A(K)
t is a positive semidefinite (PSD) operator on V(D), as 8⇠ 2 V(D),

hA(K)
t ⇠, ⇠i0 = E0

ˆ
D⇥D

h⇠(✓), rr0
K(⇥t(✓),⇥t(✓

0))⇠(✓0)iµ0(d✓)µ0(d✓
0)

= E0

ˆ
⌦

���
ˆ
D

r'(⇥t(✓)) · ⇠(✓)µ0(d✓)
���
2
⌫̂(dx) � 0 .

(100)

This implies that
� T
0 hT t, A(K)

t T ti0dt � 0. Hence, to establish (91), it is sufficient to show that

lim
T!1

 T

0
hT t, A(V )

t T ti0dt = 0 . (101)

To this end, we need two lemmas that are proved below in Appendices E.2.1 and E.2.2, respectively:

Lemma E.2 Assuming (42) and (43) together with Assumptions 2.2, 2.3 and 2.4, we haveˆ 1

0
kA(V )

t k0dt <1 (102)
ˆ 1

0
kA(K)

1 � A(K)
t k0dt <1 (103)

ˆ 1

0
kbt � b1k0dt <1 (104)

Lemma E.3 Assuming (42) and (43) together with Assumptions 2.2, 2.3 and 2.4, we have

sup
t<1

kT tk2
0 < 1 . (105)

With these two lemmas, we can show that
�����

ˆ T

0
hT t, A(V )

t T ti0dt

����� 
ˆ T

0
kA(V )

t k0kT tk2
0dt


 ˆ T

0
kA(V )

t k0dt

!
sup
t<1

kT tk2
0

<1 ,

(106)
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and therefore (101) is satisfied. This finishes the proof of (41) under (42) and (43) together with
Assumptions 2.2, 2.3 and 2.4.

Next, we show (44) under the additional condition of Assumption 2.1. Thanks to (99) and (101), it is
sufficient to establish that

lim
T!1

 T

0
hT t, A(K)

t T ti0dt = E0kḡ1k2
⌫̂ . (107)

Heuristically, if T1 := limt!1 T t exists, then from (94), it has to satisfy

�b1 =
⇣
A(V )

1 + A(K)
1

⌘
T1 = A(K)

1 T1 , (108)

as A(V )
1 = 0 (because rrV (✓, µ1) =

´
⌦ '(✓,x)(f1(x) � f⇤(x))⌫̂(dx) = 0 under the assump-

tion of (42)). This equation implies that

(T1)|| = �
⇣
A(K)

1

⌘†
b1 , (109)

where (T1)|| denotes the component of T1 in the range of A(K)
1 , and

⇣
A(K)

1

⌘†
denotes the

Moore-Penrose pseudoinverse of A(K)
1 . As a result,

hT1, A(K)
1 T1i0 =h(T1)||

, A(K)
1 (T1)||i0

=h�
⇣
A(K)

1

⌘†
b1, �A(K)

1

⇣
A(K)

1

⌘†
b1i0

=hb1,

⇣
A(K)

1

⌘†
b1i0 .

(110)

Rigorously, without assuming the existence of T1, we can establish that

Lemma E.4 Assuming (42) and (43) together with Assumptions 2.2, 2.3 and 2.4, we have

lim
t!1

 t

0
hT s, A(K)

s T si0ds � hb1,

⇣
A(K)

1

⌘†
b1i0 . (111)

As a consequence,

lim
t!1

 t

0
E0kgsk2

⌫̂dt  E0kḡ1k2
⌫̂ � hb1,

⇣
A(K)

1

⌘†
b1i0 . (112)

This lemma is proved in E.2.3. It implies that we only need to show that

hb1,

⇣
A(K)

1

⌘†
b1i0 = E0kḡ1k2

⌫̂ . (113)

This requires us to further exploit the relationship among A(K)
1 , b1 and ḡ1. With the Hilbert space

W(⌦) defined in Appendix A and Bt defined by (55), we can rewrite (51) as

A(K)
t = BtB|

t . (114)

Further, recall that

gt =

ˆ
D

'(✓, ·)!t(d✓) =

ˆ
D

'(⇥t(✓), ·)!0(d✓) +

ˆ
D

r'(⇥t(✓), ·) · T t(✓)µ0(d✓) (115)

ḡt =

ˆ
D

'(✓, ·)!̄t(d✓) =

ˆ
D

'(⇥t(✓), ·)!0(d✓) . (116)

Therefore, we can write
gt = ḡt + B|

t T t , (117)
and

bt = Btḡt, (118)
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Similar formulas hold when we replace t by 1. With these relations, we see that
⌧
b1,

⇣
A(K)

1

⌘†
b1

�

0

=
D
B1ḡ1, (B1B|

1)† B1ḡ1

E

0

=E0k (B1)† B1ḡ1k2
⌫̂ ,

(119)

because (B1B|
1)† = (B|

1)†(B1)†. Since (B1)† B1 is the projection operator (which becomes an
n ⇥ n matrix once we identify each random function in W(⌦) with a random vector in Rn) onto the
range of B|

1, it is then sufficient to prove that

Lemma E.5 Under Assumptions 2.1, 2.2, 2.3 and 2.4, P0-almost surely, ḡ1 2 Ran(B|
1).

Lemma E.5 is proven in Appendix E.2.4 and it concludes the proof of (44) in Theorem 3.5.

To show that kgtk⌫̂ decreases monotonically when µ0 = µ1, note that in this case µt = µ1, 8t � 0,
and so A(V )

t = A(V )
1 = 0, A(K)

t = A(K)
1 and bt = b1, 8t � 0. Thus, (94) becomes

Ṫ t = �A(K)
1 T t � b1, (120)

As will be shown in Lemma E.6, b1 is in the range of A(K)
1 . Therefore, defining

u1 = (A(K)
1 )†b1 , (121)

and
zt = T t + u1 , (122)

there is
żt = �A(K)

1 zt , (123)
whose solution can be written analytically as

zt = e
�tA(K)

1 z0 = e
�tA(K)

1 u1 . (124)

Thus,
T t = zt � u1 = �(I � e

�tA(K)
1 )u1 (125)

Therefore, as b1 = B1ḡ1, there is

gt =ḡ1 + B|
1T t

=ḡ1 � B|
1(I � e

�tA(K)
1 )u1

=ḡ1 � B|
1(I � e

�tA(K)
1 )(A(K)

1 )†B1ḡ1 .

(126)

Hence,

|g1|2 =|ḡ1|2 � 2(⇤) + (⇤⇤) , (127)

where

(⇤) = (B1ḡ1)| (I � e
�tA(K)

1 )(A(K)
1 )†B1ḡ1

=b|1(I � e
�tA(K)

1 )(A(K)
1 )†b1

(128)

and

(⇤⇤) =(B1ḡ1)|(A(K)
1 )†(I � e

�tA(K)
1 )B1B|

1(I � e
�tA(K)

1 )(A(K)
1 )†B1ḡ1

=b|1(I � e
�tA(K)

1 )B1B|
1(I � e

�tA(K)
1 )b1 .

(129)

In the ERM setting, A(K)
1 is PSD with a finite number of nonzero eigenspaces. Consider a set of

its orthonormal eigenfunctions that span those nonzero eigenspaces, v1, ..., vk, corresponding to
eigenvalues �1, ..., �k > 0, respectively. As b1 is in the range of A(K)

1 by Lemma E.6, we can
decompose it as

b1 =
kX

i=1

civi (130)
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for some real numbers ci’s. Thus, we can write

(⇤) =

 
kX

i=1

civi

!|

(I � e
�tA(K)

1 )(A(K)
1 )†

0

@
kX

j=1

cjvj

1

A

=

 
kX

i=1

civi

!|0

@
kX

j=1

cj�
�1
j (1 � e

��jt)vj

1

A

=
kX

i=1

�
�1
j (1 � e

��jt)c2
i ,

(131)

(⇤⇤) =

 
kX

i=1

civi

!|

(A(K)
1 )†(I � e

�tA(K)
1 )B1B|

1(I � e
�tA(K)

1 )(A(K)
1 )†

0

@
kX

j=1

cjvj

1

A

=

 
kX

i=1

civi

!|

(A(K)
1 )†(I � e

�tA(K)
1 )A(K)

1 (I � e
�tA(K)

1 )(A(K)
1 )†

0

@
kX

j=1

cjvj

1

A

=

 
kX

i=1

civi

!|0

@
kX

j=1

�
�1
j

�
1 � e

��jt
�2

cjvj

1

A

=
kX

i=1

�
�1
j

�
1 � e

��jt
�2

c
2
i .

(132)

Therefore,

|g1|2 =|ḡ1|2 � 2
kX

i=1

�
�1
j

�
1 � e

��jt
�
c
2
i +

kX

i=1

�
�1
j

�
1 � e

��jt
�2

c
2
i

=|ḡ1|2 +
kX

i=1

�
�1
j

�
1 � e

��jt
� �

�1 � e
��jt

�
c
2
i

=|ḡ1|2 �
kX

i=1

�
�1
j

�
1 � e

�2�jt
�
c
2
i ,

(133)

which is decreasing in time. This completes the proof of Theorem 3.5. ⇤

E.2.1 Proof of Lemma E.2

Proof of (102):
´1
0 kA(V )

t k0dt < 1.
By the definition of the operator norm induced by k · k0 on V(D), kA(V )

t k0 is the smallest number
Ct such that 8⇠, there is

kA(V )
t k0 = sup

⇠2V(D),k⇠k0 6=0

���h⇠, A(V )
t ⇠i0

���
k⇠k2

0

. (134)
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In the unregularized case, a straightforward bound of
���h⇠, A(V )

t ⇠i0
��� is

���h⇠, A(V )
t ⇠i0

��� =

����E0

ˆ
D

h⇠(✓), rrV (⇥t(✓), µt)⇠(✓)iµ0(d✓)

����

=

����E0

ˆ
D

ˆ
⌦
h⇠(✓), rr'(⇥t(✓),x)⇠(✓)i(ft(x) � f⇤(x))⌫̂(dx) µ0(d✓)

����

E0

ˆ
D

ˆ
⌦

Crr' |⇠(✓)|2 |ft(x) � f⇤(x)| ⌫̂(dx)µ0(d✓)

=Crr'k⇠k2
0

ˆ
⌦

|ft(x) � f⇤(x)| ⌫̂(dx)

n
1/2

Crr'k⇠k2
0kft � f⇤k⌫̂

=n
1/2

Crr'k⇠k2
0 (L(µt))

1/2
.

(135)

Thus, we have
kA(V )

t k0  n
1/2

Crr'k⇠k2
0 (L(µt))

1/2
. (136)

By the assumption (43), we thus have
ˆ 1

0
kA(V )

t k0dt  n
1/2

Crr'

ˆ 1

0
(L(µt))

1/2
dt < 1 (137)

which gives us the desired bound. ⇤

Proof of (103):
´1
0 kA(K)

1 � A(K)
t k0dt < 1.

We have

h⇠, (A(K)
t � A(K)

1 )⇠i0

=E0

ˆ
⌦

⇣⇣ ˆ
D

r'(⇥t(✓),x) · ⇠(✓)µ0(d✓)
⌘2

�
⇣ ˆ

D
r'(⇥1(✓),x) · ⇠(✓)µ0(d✓)

⌘2⌘
⌫̂(dx)

=E0

ˆ
⌦

⇣ ˆ
D

�
r'(⇥t(✓),x) + r'(⇥1(✓),x)

�
· ⇠(✓)µ0(d✓)

⌘

⇥
⇣ ˆ

D

�
r'(⇥t(✓),x) � r'(⇥1(✓),x)

�
· ⇠(✓)µ0(d✓)

⌘
⌫̂(dx) .

(138)

Hence, the absolute value of the expression above is upper-bounded by

E0

⇣ ˆ
D

|r'(⇥t(✓),x) + r'(⇥1(✓),x)||⇠(✓)|µ0(d✓)

⇥
ˆ
D

|r'(⇥t(✓),x) � r'(⇥1(✓),x)||⇠(✓)|µ0(d✓)
⌘

2Cr'Crr'k⇠k2
0

⇣ ˆ
D

|⇥t(✓) � ⇥1(✓)|2µ0(d✓)
⌘1/2

.

(139)

Thus, by the assumption (43), we have
ˆ 1

0
kA(K)

1 � A(K)
t k0dt 2Cr'Crr'

ˆ 1

0

✓ˆ
D

|⇥t(✓) � ⇥1(✓)|2µ0(d✓)

◆1/2

dt

2Cr'Crr'

ˆ 1

0
(L(µt))

1/2
dt

<1

(140)

⇤
Proof of (104):

´1
0 kbt � b1k0dt < 1.
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There is

bt(✓) � b1(✓)

=

ˆ
D

�
rK(⇥t(✓),⇥t(✓

0)) � rK(⇥1(✓),⇥1(✓0))
�
!0(d✓

0)

=

ˆ
D

ˆ
⌦

r'(⇥t(✓),x) · r'(⇥t(✓
0),x)| � r'(⇥1(✓),x) · r'(⇥1(✓0),x)|⌫̂(dx)!0(d✓

0)

=

ˆ
D

ˆ
⌦

r'(⇥t(✓),x) · r'(⇥t(✓
0),x)| � r'(⇥t(✓),x) · r'(⇥1(✓0),x)|⌫̂(dx)!0(d✓

0)

+

ˆ
D

ˆ
⌦

r'(⇥t(✓),x) · r'(⇥1(✓0),x)| � r'(⇥1(✓),x) · r'(⇥1(✓0),x)|!0(d✓
0)

=

ˆ
⌦

r'(⇥t(✓),x) ·
✓ˆ

D

�
r'(⇥t(✓

0),x) � r'(⇥1(✓0),x)
�
!0(d✓

0)

◆|
⌫̂(dx)

+

ˆ
⌦

(r'(⇥t(✓),x) � r'(⇥1(✓),x))

✓ˆ
D

r'(⇥1(✓0),x)!0(d✓
0)

◆|
⌫̂(dx) .

(141)

Thus,

E0 |bt(✓) � b1(✓)|2

E0

����
ˆ

⌦
r'(⇥t(✓),x) ·

✓ˆ
D

�
r'(⇥t(✓

0),x) � r'(⇥1(✓0),x)
�
!0(d✓

0)

◆|
⌫̂(dx)

����
2

+ E0

����
ˆ

⌦
(r'(⇥t(✓),x) � r'(⇥1(✓),x))

✓ˆ
D

r'(⇥1(✓0),x)!0(d✓
0)

◆|
⌫̂(dx)

����
2


ˆ

⌦
|r'(⇥t(✓),x)|2 E0

����
ˆ
D

�
r'(⇥t(✓

0),x) � r'(⇥1(✓0),x)
�
!0(d✓

0)

����
2

⌫̂(dx)

+

ˆ
⌦

|r'(⇥t(✓),x) � r'(⇥1(✓),x)|2 E0

����
ˆ
D

r'(⇥1(✓0),x)!0(d✓
0)

����
2

⌫̂(dx)

C
2
r'

ˆ
⌦
E0

����
ˆ
D

�
r'(⇥t(✓

0),x) � r'(⇥1(✓0),x)
�
!0(d✓

0)

����
2

⌫̂(dx)

+ C
2
rr' |⇥t(✓) � ⇥1(✓)|2

ˆ
⌦
E0

����
ˆ
D

r'(⇥1(✓0),x)!0(d✓
0)

����
2

⌫̂(dx) .

(142)

By the property of !0, there is

E0

����
ˆ
D

�(✓)!0(d✓)

����
2

=

ˆ
D

�����(✓) �
ˆ
D

�(✓0)µ0(d✓
0)

����
2

µ0(d✓)


ˆ
D

|�(✓)|2 µ0(d✓)

(143)

for a test function � on D. Thus,

E0 |bt(✓) � b1(✓)|2 C
2
r'

ˆ
⌦

ˆ
D

��r'(⇥t(✓
0),x) � r'(⇥1(✓0),x)

��2 µ0(d✓
0)

+ C
2
rr' |⇥t(✓) � ⇥1(✓)|2

ˆ
⌦

ˆ
D

��r'(⇥1(✓0),x)
��2 µ0(d✓

0)⌫̂(dx)

C
2
r'C

2
rr'

ˆ
D

��⇥t(✓
0) � ⇥1(✓0)

��2 µ0(d✓
0)

+ C
2
rr'C

2
r' |⇥t(✓) � ⇥1(✓)|2 .

(144)
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Therefore,

kbt � b1k2
0 =E0

ˆ
D

|bt(✓) � b1(✓)|2 µ0(d✓)

2C
2
r'C

2
rr'

ˆ
D

|⇥t(✓) � ⇥1(✓)|2 µ0(d✓) .

(145)

Since ˆ
D

|⇥t(✓) � ⇥1(✓)|2 µ0(d✓) 
ˆ
D

ˆ 1

t

���⇥̇s(✓)
���
2
dsµ0(d✓)

=

ˆ
D

ˆ 1

t
|rV (⇥t(✓), µt)|2 dsµ0(d✓)

= �
ˆ 1

t

d

ds
L(µs)ds

=L(µt) � L(µ1)

=L(µt)

(146)

we can conclude that ˆ 1

0
kbt � b1k0dt 

ˆ 1

0
|L(µt)|1/2 dt < 1 . (147)

⇤

E.2.2 Proof of Lemma E.3

Our goal is to show that kT tk0 remains bounded for all time. First note that, for all t, A(K)
t is a

positive semidefinite (PSD) operator on V(D) since

hA(K)
t ⇠, ⇠i0 = E0

ˆ
D⇥D

h⇠(✓), rr0
K(⇥t(✓),⇥t(✓

0))⇠(✓0)iµ0(d✓)µ0(d✓
0)

= E0

ˆ
⌦

���
ˆ
D

r'(⇥t(✓)) · ⇠(✓)µ0(d✓)
���
2
⌫̂(dx) � 0 .

(148)

Second, by Assumption 2.4, for µ0-almost-every ✓ 2 D, ⇥1(✓) = limt!1 ⇥t(✓) exists, which
allows us to define b1, A(K)

1 , and A(V )
1 similarly to (49), (51) and (52) by replacing ⇥t(·) with

⇥1(·). Since we assume that

8xk 2 supp ⌫̂ : f1(xk) =

ˆ
D

'(✓,xk)µ1(d✓) = f⇤(xk) (149)

we have

8✓ 2 D : rrV (✓, µ1) =

ˆ
⌦

rr'(✓,x)(f1(x) � f⇤(x))dx = 0 . (150)

This implies that A(V )
1 is the zero operator on V(D).

Third, we have the following observation:

Lemma E.6 Under Assumptions 2.2, 2.3 and 2.4, bt 2 Ran(A(K)
t ) for all t, and b1 2 Ran(A(K)

1 ).
Specifically, 9ũ1 2 V(D) such that ku1k0 < 1 and A(K)

1 ũ1 = b1.

Proof of Lemma E.6: Recall from (118) that b1 = B1ḡ1. Define ũ1 = B1 (B|
1B1)†

ḡ1. We
claim that A(K)

1 ũ1 = b1, because

A(K)
1 ũ1 = (B1B|

1) B1 (B|
1B1)†

ḡ1

=B1B|
1

⇣
B1 (B1)†

⌘
(B|

1)†
ḡ1

=B1

⇣
B|

1 (B|
1)†

⌘
ḡ1

=B1ḡ1

=b1 ,

(151)
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where the third equality is because B1 (B1)† is the projection operator onto Ran(B1) =

Nul?(B|
1), and the fourth equality is because B|

1 (B|
1)† is the projection operator onto Ran(B|

1) =
Nul?(B1).

It remains to establish that kũ1k0 < 1. To show this, we see thatˆ
D

|ũ1(✓)|2µ0(d✓)

=

ˆ
D

ˆ
⌦⇥⌦

⇣
r'(⇥1(✓),x)

�
M†

1ḡ1
�
(x)

⌘

·
⇣
r'(⇥1(✓),x0)

�
(M1)†

1ḡ1
�
(x0)

⌘
⌫̂(dx)⌫̂(dx0)µ0(d✓

0)

=

ˆ
⌦

ˆ
⌦

M(x,x0
, µ1)

�
M†

1ḡ1
�
(x)

�
M†

1ḡ1
�
(x0)⌫̂(dx)⌫̂(dx0)

=

ˆ
⌦

�
M†

1ḡ1
�
(x) · ḡ1(x)⌫̂(dx)

 �
�1
min

ˆ
⌦

|ḡ1(x)|2⌫̂(dx) ,

(152)

where �min is the least nonzero eigenvalue of the matrix M1 (and hence �
�1
min is the largest

eigenvalue of M†
1). Since

E0|ḡ1(x)|2 = E0

���
ˆ
D

'(⇥1(✓),x)!0(d✓)
���
2

=

ˆ
D

⇣
'(⇥1(✓),x) �

ˆ
D

'(⇥1(✓0),x)µ0(d✓
0)
⌘2

µ0(d✓)


ˆ
D

��'(⇥1(✓),x)
��2µ0(d✓) ,

(153)

there is

kũ1k2
0  E0

ˆ
D

|ũ1(✓)|2µ0(d✓)

 �
�1
min

ˆ
⌦

ˆ
D

�
'(⇥1(✓),x)

�2
µ0(d✓)⌫(dx)

 �
�1
minC

2
' < 1 ,

(154)

(End of the proof of Lemma E.6) ⇤

Coming back to the prof of Lemma E.3, we have shown that, as t ! 1, (94) approaches the
asymptotic dynamics

Ṫ t = �A(K)
1 T t � b1, (155)

with A(K)
1 positive semidefinite and b1 in the range of A(K)

1 . This is a stable system. Hence, the rest
of the task is to examine what happens at finite time. To do so, we perform a change-of-variable with

zt = T t + ũ1, (156)

with
u1 = B1(B|

1B1)†
ḡ1 (157)

as is defined in the proof of Lemma E.6. The dynamics of zt is governed by

żt = Ṫ t = � (A(K)
t + A(V )

t )T t � bt

= � A(K)
t zt � A(V )

t zt � (bt � (A(K)
t + A(V )

t )ũ1) .

(158)

Thus, in integral form,

zt = ⇧(t, 0)z0 +

ˆ t

0
⇧(t, s)

�
� A(V )

s zs � (bs � (A(K)
s + A(V )

s )ũ1)
�
ds, (159)
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where ⇧(t, s) is the fundamental solution (a.k.a. Green’s function) associated with the time-variant
homogeneous system

żt = �A(K)
t zt . (160)

Since A(K)
t is positive semidefinite for all t, there is k⇧(t, s)k0  1 for t > s, where with a slight

abuse of notation we also use k · k0 for the operator norm. Hence,

kztk0 k⇧(t, 0)k0kz0k0 +

ˆ t

0
k⇧(t, s)k0

⇣
kA(V )

s k0kzsk0 + kbs � (A(K)
s + A(V )

s )ũ1k0

⌘
ds

kz0k0 +

ˆ t

0

⇣
kA(V )

s k0kzsk0 + kbs � (A(K)
s + A(V )

s )ũ1k0

⌘
ds .

(161)

By Grönwall’s inequality, we thus have

kztk0 
⇣
kz0k0 +

ˆ t

0
kbs � (A(K)

s + A(V )
s )ũ1k0ds

⌘
e

´ t
0 kA(V )

s k0ds . (162)

Therefore, kztk0 remains bounded for all time if we can show thatˆ 1

0
kbt � (A(K)

t + A(V )
t )ũ1k0dt < 1,

ˆ 1

0
kA(V )

t k0dt < 1 . (163)

Since

kbt � (A(K)
t + A(V )

t )ũ1k0  kbt � b1k0 + k(A(K)
t � A(K)

1 )ũ1k0 + kA(V )
1 ũ1k0 (164)

we see that (163) is guaranteed by Lemmas E.2 and E.6.

This completes the proof of Lemma E.3. ⇤

E.2.3 Proof of Lemma E.4

From E.3, we have that

lim
t!1

����
 t

0
Ṫ sds

����
0

= lim
t!1

����
1

t
(T t � T 0) ds

����
0

= 0 . (165)

By (94), we then obtain that

lim
t!1

����
 t

0

⇣
A(K)

s T s + bs
⌘

ds +

 t

0
A(V )

s T sds

����
0

= 0 . (166)

By (102) in Lemma E.2 as well as Lemma E.3, we know that

lim
t!1

����
 t

0
A(V )

s T sds

����
0

= 0 . (167)

Therefore,

lim
t!1

����
 t

0

⇣
A(K)

s T s + bs
⌘

ds

����
0

= 0 . (168)

Next, by (103) and (104) in Lemma E.2 as well as Lemma E.3, we know that

lim
t!1

����
 t

0

⇣
A(K)

s T s + bs
⌘

ds �
 t

0

⇣
A(K)

1 T s + b1

⌘
ds

����
0

= 0 . (169)

Therefore,

lim
t!1

����
 t

0

⇣
A(K)

1 T s + b1

⌘
ds

����
0

= 0 . (170)

With ũ1 defined in (157), as b1 = A(K)
1 u1, there is

lim
t!1

����A
(K)
1

✓ t

0
T sds � u1

◆����
0

= 0 . (171)
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Let ⇠|| denote the component of a vector field ⇠ 2 V(D) that is in the range of A(K)
1 . In the ERM

setting, A(K)
1 has a least nonzero eigenvalue that is positive, and hence the above implies that

lim
t!1

�����

✓ t

0
T sds � ũ1

◆||�����
0

= 0 (172)

or

lim
t!1

�����

✓ t

0
T sds

◆||

� ũ1

�����
0

= 0 (173)

and therefore, as Nul(A(K)
1 ) = Nul(B1B|

1) = Nul(B|
1), it follows that

lim
t!1

����B
|
1

✓ t

0
T sds

◆
� B|

1ũ1

����
0

= 0 . (174)

Similar to (103), it can be shown that
´1
0 kBt � B1k0dt < 1. Therefore, we have

lim
t!1

����

✓ t

0
B|
sT sds

◆
� B|

1ũ1

����
0

= 0 . (175)

Now,  t

0
hT s, A(K)

s T si0ds =

 t

0
hB|

sT s, B|
sT si⌫̂,0ds

�
⌧✓ t

0
B|
sT sds

◆
,

✓ t

0
B|
sT sds

◆�

⌫̂,0

.

(176)

Hence,

lim
t!1

 t

0
hT s, A(K)

s T si0ds � lim
t!1

⌧✓ t

0
B|
sT sds

◆
,

✓ t

0
B|
sT sds

◆�

⌫̂,0

= hB|
1ũ1, B|

1ũ1i⌫̂,0

=

⌧
B|

1

⇣
A(K)

1

⌘†
b1, B|

1

⇣
A(K)

1

⌘†
b1ũ1

�

⌫̂,0

=

⌧⇣
A(K)

1

⌘†
b1,

⇣
A(K)

1

⌘⇣
A(K)

1

⌘†
b1

�

0

=

⌧
b1,

⇣
A(K)

1

⌘†
b1

�

0

.

(177)

⇤

E.2.4 Proof of Lemma E.5

Since
ḡ1(x) =

ˆ
D

'(✓,x)!0(d✓) , (178)

we know that when viewed as an n-dimensional random vector, ḡ1 has the distribution

ḡ1 ⇠ N (0, C̄1) , (179)

where
�
C̄1

�
ij

:=E0 [ḡ1(xi)ḡ1(xj)]

=

ˆ
D

'(✓,xi)'(✓,xj)µ1(d✓) �
ˆ
D

'(✓,xi)µ1(d✓)

ˆ
D

'(✓0
,xj)µ1(d✓0) ,

(180)

by the covariance of !0, (27). Thus, we decompose C̄1 as C̄1 = C̄
(1)
1 � C̄

(2)
1 , with

⇣
C̄

(1)
1

⌘

ij
=

ˆ
D

'(✓,xi)'(✓,xj)µ1(d✓) , (181)
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⇣
C̄

(2)
1

⌘

ij
=

ˆ
D

'(✓,xi)µ1(d✓)

ˆ
D

'(✓0
,xj)µ1(d✓0) . (182)

Since C̄1 is PSD, its square root
�
C̄1

�1/2 is well-defined. By the property of multivariate Gaussian,
we can write

ḡ1
d
=
�
C̄1

�1/2
w , (183)

where d
= denotes equality in distribution, and w 2 Rn follows the distribution

w ⇠ N (0, Idn) . (184)

This means that almost surely, ḡ1 2 Ran
⇣�

C̄1
�1/2⌘, and which would imply that ḡ1 2 Ran

�
C̄1

�
.

This means that almost surely, we can write

ḡ1 = C̄
(1)
1 w

(1) � C̄
(2)
1 w

(2) (185)

for some pair of w
(1)

, w
(2) 2 Rn. Our goal is then to show that both C̄

(1)
1 w

(1) and C̄
(2)
1 w

(2) belong
to Ran(B|

1). Here, under Assumption 2.1, since '(✓,x) = c'̂(z,x) when ✓ = [c z]
|, there is

r'(✓,x) =


'̂(z,x)

crz'̂(z,x)

�
. (186)

Therefore, first, we have

⇣
C̄

(1)
1 w

(1)
⌘

i
=

ˆ
D

'(✓,xi)

0

@
nX

j=1

'(✓,xj)w
(1)
j

1

Aµ1(d✓)

=

ˆ
D

r'(✓,xi)
| ·

"
c(✓)

⇣Pn
j=1 '(✓,xj)w

(1)
j

⌘

0

#
µ1(d✓)

=B|
1⇠(1)

,

(187)

with

⇠(✓)(1) =

"
c(✓)

⇣Pn
j=1 '(✓,xj)w

(1)
j

⌘

0

#
. (188)

This means that
⇣
C̄

(1)
1 w

(1)
⌘

2 Ran(B|
1).

Second, there is

⇣
C̄

(2)
1 w

(2)
⌘

i
=

✓ˆ
D

'(✓,xi)µ1(d✓)

◆0

@
nX

j=1

w
(2)
j

ˆ
D

'(✓0
,xj)µ1(d✓0)

1

A

=

ˆ
D

r'(✓,xi)
| ·

"
c(✓)

⇣Pn
j=1 w

(2)
j

´
D '(✓0

,xj)µ1(d✓0)
⌘

0

#
µ1(d✓)

=B|
1⇠(2)

,

(189)

with

⇠(✓)(2) =

"
c(✓)

⇣Pn
j=1 w

(2)
j

´
D '(✓0

,xj)µ1(d✓0)
⌘

0

#
(190)

This means that
⇣
C̄

(2)
1 w

(2)
⌘

2 Ran(B|
1). Hence the lemma is proved. ⇤

E.3 Long-time fluctuations under curvature assumptions

When the limiting measure µ1 does not necessarily interpolate the training data, such as in the
regularized case, we have the following condition on T t which guarantees that (41) holds:
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Lemma E.7 If

lim
T!1

E0

ˆ T

0

ˆ
D

hT t(✓), rrV (⇥t(✓), µt)T t(✓)iµ0(d✓)dt � 0 , (191)

(including when this limit is +1) then (41) holds.

Proof of Lemma E.7: With Dt defined in (93), for (41) to hold, it is sufficient to show that

lim
T!1

 T

0
Dtdt  0 . (192)

Recall from (99) that T

0
Dtdt = � 1

T
kT T k2

0 � 2

 T

0
hT t, A(V )

t T ti0dt �
 T

0
hT t, A(K)

t T ti0dt . (193)

Since T 0 = 0 and A(K)
t is PSD, we see that the assumption (191) is sufficient. ⇤

Note that condition (191) is natural since we know from Proposition 2.6 that
limt!1 rrV (⇥t(✓), µt) = rrV (⇥1(✓), µ1) exists and is positive semidefinite µ0-almost
surely. This lemma allow us to derive the following result:

Theorem E.8 (Long-time fluctuations under assumptions on the curvature) Let ⇤t(✓) denote
the smallest eigenvalue of rrV (⇥t(✓), µt) (defined in (29)) and assume that for a constant C

(to be specified in the proof) such that

�
ˆ
D

min{⇤t(✓), 0}µ0(d✓) = O(e�Ct) as t ! 1. (194)

Then (191) and hence (41) hold.

Remark E.9 To intuitively understand (194), note that we know from (18) in Proposition 2.6 that
⇤t(✓) ! 0 µ0-almost surely as t ! 1. Condition (194) can therefore be satisfied by having ⇤t(✓)
converge to zero sufficiently fast in the regions of D where it is negative, or having the measure of
these regions with respect to µ0 converge to zero sufficiently fast, or both.

Proof of Theorem E.8: Our goal is to verify (191) in order to apply Lemma E.7. We first see that

E0

ˆ
D

hT t(✓), rrV (⇥t(✓), µt)T t(✓)iµ0(d✓)

�E0

ˆ
D

�min(rrV (⇥t(✓), µt))|T t(✓)|2µ0(d✓)

�E0

ˆ
D

min {�min(rrV (⇥t(✓), µt)), 0} |T t(✓)|2µ0(d✓)

=

ˆ
D

min {�min(rrV (⇥t(✓), µt)), 0}
�
E0|T t(✓)|2

�
µ0(d✓)

�
ˆ
D

min {�min(rrV (⇥t(✓), µt)), 0}
 

sup
✓2suppµ0

E0|T t(✓)|2
!

µ0(d✓)

�kT tk2
sup

✓ˆ
D

min {�min(rrV (⇥t(✓), µt)), 0} µ0(d✓)

◆
,

(195)

where we define, for ⇠ 2 V(D),

k⇠ksup := sup
✓2suppµ0

⇣
E0|⇠(✓)|2

⌘1/2
, (196)

which is a norm on V(D).

Hence, if we assume that
��´

D min {�min(rrV (✓, µt)), 0} µ0(d✓)
�� is small asymptotically, then

what remains is to upper-bound kT tksup. Recall from (94) that the dynamics of T t is governed by

Ṫ t = �(A(K)
t + A(V )

t )T t � bt, (197)
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Thus, in the k · ksup norm defined above, we have

d

dt
kT tksup k � (A(K)

t + A(V )
t )T t � btksup

kA(K)
t T tksup + kA(V )

t T tksup + kbtksup .

(198)

We then want to bound the growth of kT tksup by upper-bounding the RHS. Note that for ⇠ 2 V(D),

kA(V )
t ⇠k2

sup = sup
✓2D

E0|(A(V )
t ⇠)(✓)|2

= sup
✓2D

E0|rrV (⇥t(✓), µt)⇠(✓)|2

 sup
✓2D

|rrV (⇥t(✓), µt)|2E0|⇠(✓)|2

(Crr'C' + �)2 sup
✓2D

E0|⇠(✓)|2

=(Crr'C' + �)2k⇠k2
sup ,

(199)

kA(K)
t ⇠k2

sup = sup
✓2D

E0|(A(K)
t ⇠)(✓)|2

= sup
✓2D

E0|
ˆ
D

r0rK(⇥t(✓),⇥t(✓
0))⇠(✓0)µ0(d✓

0)|2

 sup
✓2D

E0

ˆ
D

|r0rK(⇥t(✓),⇥t(✓
0))|2|⇠(✓0)|2µ0(d✓

0)

 sup
✓2D

(Cr')4
ˆ
D
E0|⇠(✓0)|2µ0(d✓

0)

(Cr')4 sup
✓02D

E0|⇠(✓0)|2

=(Cr')4k⇠k2
sup .

(200)

Thus,
kA(K)

t T tksup + kA(V )
t T tksup  (C2

r' + Crr'C' + �)kT tksup . (201)
To bound kbtksup, we recall that

bt(✓) =

ˆ
D

rK(⇥t(✓),⇥t(✓
0))!0(d✓

0)

=

ˆ
⌦

r'(⇥t(✓),x)ḡt(x)⌫̂(dx) ,

(202)

with
ḡt(x) =

ˆ
D

'(⇥t(✓),x)!0(d✓) . (203)

This implies that 8✓ 2 supp µ0,

|bt(✓)|  1

n
Cr'

nX

l=1

|ḡt(xl)| (204)

and so

E0|bt(✓)|2 C
2
r'E0

 
1

n

nX

l=1

|ḡt(xl)|
!2

C
2
r'E0

 
1

n

nX

l=1

|ḡt(xl)|2
!

C
2
r'

1

n

nX

l=1

E0|ḡt(xl)|2 .

(205)
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On the other hand, similar to (153), we have

E0|ḡt(x)|2 = E0

���
ˆ
D

'(⇥t(✓),x)!0(d✓)
���
2

=

ˆ
D

⇣
'(⇥t(✓),x) �

ˆ
D

'(⇥t(✓
0),x)µ0(d✓

0)
⌘2

µ0(d✓)


ˆ
D

��'(⇥t(✓),x)
��2µ0(d✓)

 (C')2 ,

(206)

Thus, there is 8✓ 2 supp µ0,
E0|bt(✓)|2  (Cr')2(C')2 (207)

and so
kbtksup  Cr'C' . (208)

Therefore, based on (198), we have

d

dt
kT tksup  ((Cr')2 + Crr'C' + �)kT tksup + Cr'C' . (209)

Since T 0 = 0, we thus have

kT tksup Cr'C'

ˆ t

0
e
((Cr')2+Crr'C'+�)(t�s)

ds

=Cr'C'e
((Cr')2+Crr'C'+�)t

ˆ t

0
e
�((Cr')2+Crr'C'+�)s

ds

 Cr'C'

(Cr')2 + Crr'C' + �
e
((Cr')2+Crr'C'+�)t

(210)

Now, using (195), we see that in order for (191) to hold, it is sufficient to have

lim
t!1

e
((Cr')2+Crr'C'+�)t

✓ˆ
D

min {�min(rrV (✓, µt)), 0} µ0(d✓)

◆
= 0 (211)

and therefore sufficient to have

�
ˆ
D

min {�min(rrV (✓, µt)), 0} µ0(d✓) ⇠ O

⇣
e
�((Cr')2+Crr'C'+�)t

⌘
(212)

⇤
To intuitively understand (194), note that we know from (18) in Proposition 2.6 that ⇤t(✓) ! 0
µ0-almost surely as t ! 1. Condition (194) can therefore be satisfied by having ⇤t(✓) converge to
zero sufficiently fast in the regions of D where it is negative, or having the measure of these regions
with respect to µ0 converge to zero sufficiently fast, or both.

E.4 Proof of Theorem 3.6 (Regularized case)

Recall from Proposition 3.3 that the dynamics of gt is governed by

gt(x) +

ˆ t

0

ˆ
⌦

�t,s(x,x0)gs(x
0)⌫̂(dx0)ds = ḡt(x) , (213)

with
�t,s(x,x0) =

ˆ
D

hr'(⇥t(✓),x), Jt,s(✓)r'(⇥s(✓),x0)iµ0(d✓) , (214)

with Jt,s being the Jacobian of the flow ⇥t.

In the ERM setting, supp ⌫̂ is singular, and we have ⌫̂(dx) = n
�1

Pn
l=1 �xl(dx), where n is the

total number of training data points. With the definitions given in Appendix A, we will also continue
to consider gt and ḡt equivalently as n-dimensional vectors,

(gt(x1) · · · gt(xn))
T

, (ḡt(x1) · · · ḡt(xn))
T

, (215)
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respectively. Thus, �t,s can also be represented by the n ⇥ n matrix
0

@
�t,s(x1,x1) · · · �t,s(x1,xn)

...
...

�t,s(xn,x1) · · · �t,s(xn,xn)

1

A . (216)

Under such an abuse of notations, we can simplify (213) into

gt +

ˆ t

0
�t,sgsds = ḡt . (217)

Thus, the goal is to prove that

lim
t!1

sup

 t

0
E0kgtk2

⌫̂dt  E0kḡ1k2
⌫̂ . (218)

In fact, we will prove that for any realization of the randomness of P0, there is

lim
t!1

sup

 t

0
kgtk2

⌫̂dt  kḡ1k2
⌫̂ . (219)

As in (38), we also define

�1
t�s(x,x0) =

ˆ
D

hr'(✓,x), e�(t�s)rrV1(✓)r'(✓,x0)iµ1(d✓) , (220)

where for simplicity, we write Vt(·) for V (·, µt) and V1(·) for V (·, µ1). Then the heuristic argument
outlined in Section 3.2 before Theorem 3.4 amounts to rewriting (217) as

gt +

ˆ t

0
�1
t�sgsds = ḡt +

ˆ t

0
(�1

t�s � �t,s)gsds (221)

and then arguing that 1) �1 is a nonnegative convolution-type Volterra kernel, and 2) the second
term on the RHS is small. Rigorously, we need to introduce an extra level of complication: for every
t0 > 0, we can rewrite (217) into

gt = ḡt �
ˆ t

t0

�t,sgsds �
ˆ t0

0
�t,sgsds

= ḡt �
ˆ t

t0

�1
t�sgsds +

ˆ t

t0

(�1
t�s � �t,s)gsds �

ˆ t0

0
�t,sgsds .

(222)

Then, for any T > t0, by multiplying gt and integrating from t0 to T , we getˆ T

t0

kgtk2
⌫̂dt +

ˆ T

t0

ˆ t

t0

hgt, �1
t�sgsi⌫̂dsdt


ˆ T

t0

hgt, ḡti⌫̂dt +

ˆ T

t0

hgt,
ˆ t

t0

(�1
t�s � �t,s)gsdsi⌫̂dt +

ˆ T

t0

hgt,
ˆ t0

0
�t,sgsdsi⌫̂dt .

(223)

Then firstly, the second term on the LHS is nonnegative because of the nonnegativity of �1
t as a

convolution-type Volterra kernel, as proven in Appendix E.1.

Hence, we haveˆ T

t0

kgtk2
⌫̂dt 

ˆ T

t0

hgt, ḡti⌫̂dt +

ˆ T

t0

hgt,
ˆ t

t0

(�1
t�s � �t,s)gsdsi⌫̂dt

+

ˆ T

t0

⌧
gt,

ˆ t0

0
�t,sgsds

�

⌫̂

dt .

(224)

By Cauchy-Schwartz,

ˆ T

t0

hgt, ḡti⌫̂dt 
 ˆ T

t0

kgtk2
⌫̂dt

! 1
2
 ˆ T

t0

kḡtk2
⌫̂dt

! 1
2

, (225)
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ˆ T

t0

⌧
gt,

ˆ t

t0

(�1
t�s � �t,s)gsds

�

⌫̂

dt


 ˆ T

t0

kgtk2
⌫̂dt

! 1
2
 ˆ T

t0

����
ˆ t

t0

(�1
t�s � �t,s)gsds

����
2

⌫̂

dt

! 1
2


 ˆ T

t0

kgtk2
⌫̂dt

! ˆ T

t0

ˆ t

t0

k�1
t�s � �t,sk2

⌫̂dsdt

! 1
2

,

(226)

and ˆ T

t0

⌧
gt,

ˆ t0

0
�t,sgsds

�

⌫̂

dt


 ˆ T

t0

kgtk2
⌫̂dt

! 1
2
 ˆ T

t0

����
ˆ t0

0
�t,sgsds

����
2

⌫̂

dt

! 1
2


 ˆ T

t0

kgtk2
⌫̂dt

! 1
2
 ˆ T

t0

✓ˆ t0

0
k�t,sk2

⌫̂ds

◆✓ˆ t0

0
kgsk2

⌫̂ds

◆
dt

! 1
2


 ˆ T

t0

kgtk2
⌫̂dt

! 1
2 ✓ˆ t0

0
kgtk2

⌫̂dt

◆ 1
2
 ˆ T

t0

ˆ t0

0
k�t,sk2

⌫̂dsdt

! 1
2

.

(227)

Therefore, putting everything together, we have
 ˆ T

t0

kgtk2
⌫̂dt

! 1
2


 ˆ T

t0

kḡtk2
⌫̂dt

! 1
2

+

 ˆ T

t0

kgtk2
⌫̂dt

! 1
2
 ˆ T

t0

ˆ t

t0

k�1
t�s � �t,sk2

⌫̂dsdt

! 1
2

+

✓ˆ t0

0
kgtk2

⌫̂dt

◆ 1
2
 ˆ T

t0

ˆ t0

0
k�t,sk2

⌫̂dsdt

! 1
2

,

(228)

and hence, using
� b
a · dt to denote the averaged integral 1

b�a

´ b
a · dt,

  T

t0

kgtk2
⌫̂dt

! 1
2


  T

t0

kḡtk2
⌫̂dt

! 1
2

+

  T

t0

kgtk2
⌫̂dt

! 1
2
 ˆ T

t0

ˆ t

t0

k�1
t�s � �t,sk2

⌫̂dsdt

! 1
2

+

✓ˆ t0

0
kgtk2

⌫̂dt

◆ 1
2
  T

t0

ˆ t0

0
k�t,sk2

⌫̂dsdt

! 1
2

,

(229)

or
0

@1 �
"ˆ T

t0

ˆ t

t0

k�1
t�s � �t,sk2

⌫̂dsdt

# 1
2

1

A
  T

t0

kgtk2
⌫̂dt

! 1
2


  T

t0

kḡtk2
⌫̂dt

! 1
2

+

✓ˆ t0

0
kgtk2

⌫̂dt

◆ 1
2
  T

t0

ˆ t0

0
k�t,sk2

⌫̂dsdt

! 1
2

.

(230)
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Lemma E.10 Under all assumptions in Theorem 3.6 except for (46) being replaced by a weaker
condition, ˆ 1

0

ˆ
D

�
|⇥t(✓) � ⇥1(✓)| + |Ut(✓)|2

�
e
C1(Ut(✓)+Ūt)µ0(d✓)dt < 1 , (231)

we have

lim
t0!1

ˆ 1

t0

ˆ t

t0

k�1
t�s � �t,sk2

⌫̂dsdt = 0 (232)

and 8t0 > 0,

lim
T!1

 T

t0

ˆ t0

0
k�t,sk2

dsdt = 0 . (233)

We will prove in Appendix E.4.2 that (46) indeed implies (231).

The lemma will be proved in Appendix E.4.1, and let us first proceed with the proof of the theorem
assuming this lemma. Suppose for contradiction that (219) does not hold, meaning that

lim
T!1

sup
�  T

0
kgtk2

⌫̂dt
� 1

2 = kḡ1k⌫̂ + ✏ (234)

for some ✏ > 0. We will select a pair of t0 and T for which the inequality (230) cannot be satisfied.
Firstly, by the convergence of ḡt to ḡ1, 9ta > 0 such that 8t1, t2 > ta,

✓ t2

t1

kḡtk2
⌫̂dt

◆ 1
2

 kḡ1k⌫̂ + 1
6✏ . (235)

Secondly, by our assumption (234) and the first part of Lemma E.10, 9t0 > ta such that both
✓ t0

0
kgtk2

⌫̂dt

◆ 1
2

 kḡ1k⌫̂ + 2✏ (236)

and ˆ 1

t0

ˆ t

t0

k�1
t�s � �t,sk2

⌫̂dsdt <
✏

6kḡ1k⌫̂ + 3✏
(237)

are satisfied. In particular, (236) implies
✓ˆ t0

0
|gt|2dt

◆ 1
2

 t
1
2
0 · (|ḡ1| + 2✏) (238)

Let

� =

 
✏

6t
1
2
0 · (kḡ1k⌫̂ + 2✏)

!2

> 0 . (239)

By the second part of Lemma E.10, 9tb > t0 such that 8T > tb,
 T

t0

ˆ t0

0
k�t,sk2

dsdt < � (240)

so that the last term in (230) satisfies
✓ˆ t0

0
kgtk2

⌫̂dt

◆ 1
2
  T

t0

ˆ t0

0
k�t,sk2

dsdt

! 1
2

<
1
6✏ (241)

By our assumption (234), we can choose a T > tb such that

�  T

0
kgtk2

⌫̂dt
� 1

2 � kḡ1k⌫̂ + 2
3✏ . (242)

Since ✓ t0

0
kgtk2

⌫̂dt

◆ 1
2

 kḡ1k⌫̂ + 2✏, (243)
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we can assume without loss of generality that T
t0

is large enough so that

�  T

t0

kgtk2
⌫̂dt

� 1
2 � kḡ1k⌫̂ + 1

2✏ . (244)

Thus, back to the inequality (230), the LHS is strictly lower-bounded by
�
kḡ1k⌫̂ + 1

2✏
��

1 � ✏

6kḡ1k⌫̂ + 3✏

�
=kḡ1k⌫̂ + 1

3✏, (245)

whereas the RHS is strictly upper-bounded by
kḡ1k⌫̂ + 1

6✏ + 1
6✏ = kḡ1k⌫̂ + 1

3✏ . (246)
This gives a contradiction, and hence we have proved Theorem 3.6. ⇤

E.4.1 Proof of Lemma E.10

It remains to prove Lemma E.10. To do so we will need an auxiliary result, that we state and prove
first:

Lemma E.11 Let ��t,s := �t,s � �1
t�s. If rrV is uniformly positive definite with eigenvalues

lower-bounded by �, then there exists constants C and C
0 whose values depend on |D0|, C', Cr',

Crr', and Lrr' such that

k��t,sk⌫̂  Ce
��(t�s)

ˆ
D

⇣
|�⇥t(✓)| + (|�⇥s(✓)| + Us(✓)) e

C0(Us(✓)+Ūs)
⌘

µ0(d✓) (247)

where �⇥t(✓) = ⇥t(✓) � ⇥1(✓).

Proof of Lemma E.11: To bound k��t,sk⌫̂ , we bound k��t,s⌘k⌫̂ for ⌘ 2 Rn. Note that ��t,s⌘ can
be obtained in the following way. Consider the two systems

8
>><

>>:

d

dt
⇠t(✓) = �rrVt(⇥t(✓))⇠t(✓)

⇠s(✓) =

ˆ
⌦

r'(⇥s(✓),x0)⌘(x0)⌫̂(dx0)
(248)

8
>><

>>:

d

dt
⇠0
t(✓) = �rrV1(⇥1(✓))⇠0

t(✓)

⇠0
s(✓) =

ˆ
⌦

r'(⇥1(✓),x0)⌘(x0)⌫̂(dx0)
(249)

Then there is

(�t,s⌘)(x) =

ˆ
D

r'(⇥t(✓),x) · ⇠t(✓)µ0(d✓)

(�1
t�s⌘)(x) =

ˆ
D

r'(⇥1(✓),x) · ⇠0
t(✓)µ0(d✓)

(250)

and hence

(��t,s⌘)(x) =

ˆ
D

r'(⇥t(✓),x)⇠t(✓)µ0(d✓) �
ˆ
D

r'(⇥1(✓),x)⇠0
t(✓)µ0(d✓)

=

ˆ
D

r'(⇥t(✓),x) ·
�
⇠t(✓) � ⇠0

t(✓)
�
µ0(d✓)

+

ˆ
D

�
r'(⇥t(✓),x) � r'(⇥1(✓),x)

�
· ⇠0

t(✓)µ0(d✓) .

(251)

We will first try to bound ⇠t(✓) � ⇠0
t(✓) as a function of ⌘. Define �⇠t(✓) = ⇠t(✓) � ⇠0

t(✓). Then
d

dr
�⇠r(✓) = �

�
rrVr(⇥r(✓)) � rrV1(⇥1(✓))

�
⇠r � rrV1(⇥1(✓))�⇠r(✓)

= � rrV1(⇥1(✓))�⇠r(✓)

�
�
rrVr(⇥r(✓)) � rrV1(⇥1(✓))

�
⇠0
r

�
�
rrVr(⇥r(✓)) � rrV1(⇥1(✓))

�
�⇠r .

(252)
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Thus,

�⇠t(✓) = e
�(t�s)rrV1(⇥1(✓))�⇠s(✓)

+

ˆ t

s
e
�(t�r)rrV1(⇥1(✓))

�
rrVr(⇥r(✓)) � rrV1(⇥1(✓))

�
⇠0
r(✓)dr

+

ˆ t

s
e
�(t�r)rrV1(⇥1(✓))

�
rrVr(⇥r(✓)) � rrV1(⇥1(✓))

�
�⇠r(✓)dr .

(253)

Since rrV1(⇥1(✓)) � �Id is positive semidefinite, we first have

|⇠0
r(✓)|  e

��(r�s)|⇠0
s(✓)| (254)

as well as

|�⇠t(✓)|  e
��(t�s)|�⇠s(✓)|

+

ˆ t

s
e
��(t�r)krrVr(⇥r(✓)) � rrV1(⇥1(✓))k|⇠0

r(✓)|dr

+

ˆ t

s
e
��(t�r)krrVr(⇥r(✓)) � rrV1(⇥1(✓))k|�⇠r(✓)|dr

 e
��(t�s)|�⇠s(✓)|

+

ˆ t

s
e
��(t�s)krrVr(⇥r(✓)) � rrV1(⇥1(✓))k|⇠0

s(✓)|dr

+

ˆ t

s
e
��(t�r)krrVr(⇥r(✓)) � rrV1(⇥1(✓))k|�⇠r(✓)|dr .

(255)

To prepare for an application of Gronwall’s inequality, we introduce a change-of-variable by defining,
for r 2 [s, t],

�⇠r(✓) = e
�(t�s)�⇠r(✓) . (256)

Then we can rewrite the equation above as

|�⇠t(✓)| = e
�(r�s)|�⇠t(✓)|

 |�⇠s(✓)| +

ˆ t

s
krrVr(⇥r(✓)) � rrV1(⇥1(✓))k|⇠0

s(✓)|dr

+

ˆ t

s
e
�(r�s)krrVr(⇥r(✓)) � rrV1(⇥1(✓))k|�⇠r(✓)|dr

 |�⇠s(✓)| +

ˆ t

s
krrVr(⇥r(✓)) � rrV1(⇥1(✓))k|⇠0

s(✓)|dr

+

ˆ t

s
krrVr(⇥r(✓)) � rrV1(⇥1(✓))k|�⇠r(✓)|dr .

(257)

Thus, by Gronwall’s inequality,

|�⇠t(✓)| 
⇣
|�⇠s(✓)| +

ˆ t

s
krrVr(⇥r(✓)) � rrV1(⇥1(✓))k|⇠0

s(✓)|dr

⌘

⇥ e

´ t
s krrVr(⇥r(✓))�rrV1(⇥1(✓))kdr

,

(258)

or, back in the original variable that we are interested in,

|�⇠t(✓)| 
⇣
|�⇠s(✓)| +

ˆ t

s
krrVr(⇥r(✓)) � rrV1(⇥1(✓))k|⇠0

s(✓)|dr

⌘

⇥ e
��(t�s)+

´ t
s krrVr(⇥r(✓))�rrV1(⇥1(✓))kdr

.

(259)
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Now, we have
|��t,s⌘(x)|

 k
ˆ
D

r'(⇥t(✓),x)| · �⇠t(✓)µ0(d✓)k⌫̂

+ k
ˆ
D

�
r'(⇥t(✓),x) � r'(⇥1(✓),x)

�|
⇠0
t(✓)µ0(d✓)k⌫̂

 Cr'

ˆ
D

|�⇠t(✓)|µ0(d✓) + Crr'

ˆ
D

|�⇥t(✓)||⇠0
t(✓)|µ0(d✓)

 Cr'e
��(t�s)

ˆ
D

⇣
|�⇠s(✓)| +

ˆ t

s
krrVr(⇥r(✓)) � rrV1(⇥1(✓))k|⇠0

s(✓)|dr

⌘

e

´ t
s krrVr(⇥r(✓))�rrV1(⇥1(✓))kdr

µ0(d✓)

+ Crr'e
��(t�s)

ˆ
D

|�⇥t(✓)||⇠0
s(✓)|µ0(d✓) .

(260)

Note that we have,

|⇠0
s(✓)| = |

ˆ
⌦

r'(⇥1(✓),x0)⌘(x0)⌫̂(dx0)|  Cr' sup
1ln

|⌘(xl)|  n
1
2 Cr'k⌘k⌫̂ , (261)

|�⇠s(✓)| = |
ˆ

⌦

�
r'(⇥s(✓),x) � r'(⇥1(✓),x)

�
⌘(x0)⌫̂(dx0)|


ˆ

⌦
|r'(⇥s(✓),x0) � r'(⇥1(✓),x0)||⌘(x0)|⌫̂(dx0)

 n
1
2 Crr'|�⇥s(✓)|k⌘k⌫̂

(262)

and, since rrVr(✓) =
´
⌦ rr'(✓,x)(fr(x) � f⇤(x))⌫̂(dx) and rrV1(✓) =´

⌦ rr'(✓,x)(f1(x) � f⇤(x))⌫̂(dx),

krrVr(⇥r(✓)) � rrV1(⇥1(✓))k
 krrVr(⇥r(✓)) � rrVr(⇥1(✓))k

+ krrVr(⇥1(✓)) � rrV1(⇥1(✓))k
 Lrr'C'|�⇥r(✓)| + Crr'k�frk⌫̂,1,

(263)

where we use kfk⌫̂,1 to denote supx2supp ⌫̂ |f(x)| and we defined �ft = ft � f1.

As a result, we have
k��t,sk⌫̂

 k⌘k�1
⌫̂ k��t,s⌘k⌫̂

 Cr'e
��(t�s)

ˆ
D

⇣
Crr'|�⇥s(✓)| +

ˆ t

s

�
Lrr'C'|�⇥r(✓)| + Crr'k�frk⌫̂,1

�
Cr'dr

⌘

⇥ e

´ t
s Lrr'C'|�⇥r(✓)|+Crr'k�frk⌫̂,1dr

µ0(d✓)

+ Crr'e
��(t�s)

ˆ
D

Cr'|�⇥t(✓)|µ0(d✓) .

(264)

Therefore, using C0, C1, etc. to represent constants that depend on C', Cr', Crr', Crr' and
Lrr', we have

k��t,sk⌫̂

 C0e
��(t�s)

⇣ ˆ
D

|�⇥t(✓)|µ0(d✓) +

ˆ
D

|�⇥s(✓)|eC1

´ t
s |�⇥r(✓)|+k�frk⌫̂,1dr

µ0(d✓)

+

ˆ
D

� ˆ t

s
|�⇥r(✓)| + kfr � f1k⌫̂,1dr

�
e
C1

´ t
s |�⇥r(✓)|+k�frk⌫̂,1dr

µ0(d✓)
⌘

.

(265)
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Note that k�frk⌫̂,1 can be further upper-bounded by C'

´
D |�⇥r(✓)|µ0(d✓). Furthermore, defin-

ing

�⇥t =

ˆ
D

|�⇥t(✓)|µ0(d✓) (266)

we can write the bound above as

k��t,sk⌫̂  C0e
��(t�s)

⇣ ˆ
D

|�⇥t(✓)|µ0(d✓) +

ˆ
D

|�⇥s(✓)|eC1

´ t
s |�⇥r(✓)|+�⇥rdrµ0(d✓)

+

ˆ
D

� ˆ t

s
|�⇥r(✓)| + �⇥rdr

�
e
C1

´ t
s |�⇥r(✓)|+�⇥rdrµ0(d✓)

⌘
.

(267)

Finally, let

Ut(✓) =

ˆ 1

t
|�⇥t(✓)|dt (268)

and

Ūt =

ˆ
D

Ut(✓)µ0(d✓) =

ˆ 1

t
�⇥tdt . (269)

Then there is

k��t,sk⌫̂  C0e
��(t�s)

ˆ
D

⇣
|�⇥t(✓)| +

�
|�⇥s(✓)| + Us(✓) + Ūs

�
e
C1(Us(✓)+Ūs)

⌘
µ0(d✓)

 2C0e
��(t�s)

ˆ
D

⇣
|�⇥t(✓)| + (|�⇥s(✓)| + Us(✓)) e

C1(Us(✓)+Ūs)
⌘

µ0(d✓) .

(270)

(End of the proof of Lemma E.11.) ⇤
Proof of Lemma E.10: Lemma E.11 entails that, 9C, C

0
> 0 such that

k��t,sk2
⌫̂  Ce

�2�(t�s)

 ˆ
D

 
|�⇥t(✓)| +

⇣
|�⇥s(✓)| + Us(✓)

⌘
e
C0(Us(✓)+Ūs)

!
µ0(d✓)

!2

 4Ce
�2�(t�s)

ˆ
D

|�⇥t(✓)|2 +
⇣
|�⇥s(✓)|2 + Us(✓)2

⌘
e
2C0(Us(✓)+Ūs)µ0(d✓)

 4C|D0|e�2�(t�s)

ˆ
D

|�⇥t(✓)| +
⇣
|�⇥s(✓)| + Us(✓)2

⌘
e
2C0(Us(✓)+Ūs)µ0(d✓),

(271)

where for the last inequality, we assume that |D0| � 1 (or, to accommodate the more general case,
just replace |D0| by max{|D0|, 1}).

To prove Lemma E.10, the first goal is to show

lim
t0!1

ˆ 1

t0

ˆ t

t0

k��t,sk2
⌫̂dsdt = 0 . (272)
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There isˆ 1

t0

ˆ t

t0

k��t,sk2
⌫̂dsdt

 4C|D0|
ˆ
D

ˆ 1

t0

ˆ t

t0

e
�2�(t�s)

✓
|�⇥t(✓)| +

⇣
|�⇥s(✓)| + Us(✓)2

⌘
e
2C0(Us(✓)+Ūs)

◆
dsdtµ0(d✓)

 4C|D0|
ˆ
D

✓ˆ 1

t0

⇣ ˆ t

t0

e
�2�(t�s)

ds

⌘
|�⇥t(✓)|dt

+

ˆ 1

t0

⇣ ˆ 1

s
e
�2�(t�s)

dt

⌘⇣
|�⇥s(✓)| + Us(✓)2

⌘
e
2C0(Us(✓)+Ūs)ds

◆
µ0(d✓)

 2C|D0|��1

ˆ
D

⇣ ˆ 1

t0

|�⇥t(✓)|dt +

ˆ 1

t0

⇣
|�⇥s(✓)| + Us(✓)2

⌘
e
2C0(Us(✓)+Ūs)ds

⌘
µ0(d✓)

 4C|D0|��1

ˆ
D

ˆ 1

t0

⇣
|�⇥s(✓)| + Us(✓)2

⌘
e
2C0(Us(✓)+Ūs)dsµ0(d✓) .

(273)

By our assumption, the RHS is finite for t0 > 0. Hence, by taking t0 large enough, the value of´1
t0

´ t
t0

k��t,sk2
⌫̂dsdt can be made arbitrarily close to zero.

The second goal is to show that 8t0 > 0,

lim
T!1

 T

t0

ˆ t0

0
k�t,sk2

dsdt = 0 . (274)

As a first step, we show that

lim
T!1

 T

t0

ˆ t0

0
k�1

t�sk2
⌫̂dsdt = 0 (275)

because 8⌘ 2 W(⌦), there is

|h⌘, �1
t�s⌘i⌫̂ | =

ˆ
D

⌦
b(✓), e�trrV1(⇥1(✓))b(✓)

⌘↵
µ0(d✓)

e
��(t�s)

ˆ
D

|b(✓)|2µ0(d✓)

e
��(t�s)kM1k⌫̂k⌘k2

⌫̂ ,

(276)

where
b(✓) =

ˆ
⌦

r'(⇥1(✓),x)⌘(x)⌫̂(dx). (277)

and M1 is defined as M1 := B|
1B1, or concretely, for ⌘ 2 WL(!),

(M1⌘)(x) :=

ˆ
⌦

⇣ ˆ
D

r'(⇥1(✓0),x)|r'(⇥1(✓0),x0)µ0(d✓
0)
⌘
⌘(x0)⌫̂(dx0)

=

ˆ
⌦

M(x,x0
, µ1)⌘(x0)⌫̂(dx0) ,

(278)

where
M(x,x0

, µ1) :=

ˆ
D

r'(⇥1(✓0),x) · r'(⇥1(✓0),x0)µ0(d✓
0) . (279)

In the ERM setting, M1 is effectively an n ⇥ n matrix. Thus,
 T

t0

ˆ t0

0
k�1

t�sk2
⌫̂dsdt 

 T

t0

ˆ t0

0
e
�2�(t�s)kM1k2

⌫̂dsdt

kM1k2
⌫̂

 T

t0

e
�2�(t�t0)dt ! 0 as T ! 1

(280)
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Hence, it is sufficient to show that

lim
T!1

 T

t0

ˆ t0

0
k��t,sk2

dsdt = 0 . (281)

We haveˆ T

t0

ˆ t0

0
k��t,sk2

dsdt

 4C|D0|
ˆ
D

✓ˆ T

t0

⇣ ˆ t0

0
e
�2�(t�s)

ds

⌘
|�⇥t(✓)|dt

+

ˆ t0

0

⇣ ˆ T

t0

e
�2�(t�s)

dt

⌘⇣
|�⇥s(✓)| + Us(✓)2

⌘
e
2C0(Us(✓)+Ūs)ds

◆
µ0(d✓)

 2C|D0|��1

ˆ
D

✓ˆ T

t0

e
�2�(t�t0)|�⇥t(✓)|dt

+

ˆ t0

0
e
�2�(t0�s)

⇣
|�⇥s(✓)| + Us(✓)2

⌘
e
2C0(Us(✓)+Ūs)ds

◆
µ0(d✓)

 4C|D0|��1

ˆ
D

ˆ 1

0

⇣
|�⇥s(✓)| + Us(✓)2

⌘
e
2C0(Us(✓)+Ūs)dsµ0(d✓)

<1

(282)

by assumption (231). Therefore, T

t0

ˆ t0

0
k��t,sk2

⌫̂dsdt =
1

T � t0

ˆ T

t0

ˆ t0

0
k��t,sk2

⌫̂dsdt ����!
T!1

0 . (283)

This concludes the proof of Lemma E.10. ⇤

E.4.2 Interpretation of the Assumption (231)

Below, we will illustrate the assumption (231)

Q :=

ˆ
D

ˆ 1

0

�
|�⇥t(✓)| + Ut(✓)2

�
e
C1(Ut(✓)+Ūt)dtµ0(d✓) < 1, (284)

in Theorem 3.6 by giving examples that satisfy this condition.

First, consider an example where 9 > 0, ↵ > 1 such that 8✓ 2 supp µ0 and 8 t > 0,

|�⇥t(✓)| < (t + 1)�↵
, (285)

that is, all characteristic flows share a uniform asymptotic convergence rate on the order of t
�↵. Then

8✓ 2 supp µ0,

Ut(✓) =

ˆ 1

t
|�⇥s(✓)|ds  

↵ � 1
(t + 1)�(↵�1) (286)

and thus
Ūt  

↵ � 1
(t + 1)�(↵�1)

. (287)

Therefore,

Q 
ˆ
D

ˆ 1

0

�
|�⇥t(✓)| + Ut(✓)2

�
e
C1(U0(✓)+Ū0)dtµ0(d✓)


ˆ 1

0

⇣
(t + 1)�↵ +

� 

↵ � 1

�2
(t + 1)�2(↵�1)

⌘
e

2C1
↵�1 dt,

(288)

which is finite as long as ↵ >
3
2 . Thus,

Proposition E.12 If 9 > 0, ↵ >
3
2 such that 8✓ 2 supp µ0 and 8t � 0,

|�⇥t(✓)| = |⇥t(✓) � ⇥1(✓)| < (t + 1)�↵
, (289)

then the condition (231) is satisfied.
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Moreover, the assumption allows flexibility in having non-uniform convergence rate for different
characteristic flows, ⇥t(✓). Suppose that 9 : suppµ0 ! R+ and ↵ >

3
2 such that 8✓ 2 supp µ0,

|�⇥t(✓)| < (✓)(t + 1)�↵
. (290)

Then
Ut(✓) =

ˆ 1

t
|�⇥s(✓)|ds  

↵ � 1
(t + 1)�(↵�1) (291)

and so

Q 
ˆ
D

ˆ 1

0

�
|�⇥t(✓)| + Ut(✓)2

�
e
2C1(U0(✓))

dtµ0(d✓)


ˆ
D

ˆ 1

0

⇣
(✓)(t + 1)�↵ +

� (✓)

↵ � 1

�2
(t + 1)�2(↵�1)

⌘
e

2C1(✓)
↵�1 dt

C2

ˆ
D

�
(✓) + (✓)2

�
e

2C1(✓)
↵�1 µ0(d✓) .

(292)

Therefore,

Proposition E.13 Suppose 9↵ >
3
2 and a function  : suppµ0 ! R+, which satisfiesˆ

D

⇣
(✓) + (✓)2

⌘
e

2C1(✓)
↵�1 µ0(d✓) < 1, (293)

such that 8✓ 2 supp µ0,

|�⇥t(✓)| = |⇥t(✓) � ⇥1(✓)|  (✓)(t + 1)�↵
. (294)

Then the condition (231) is satisfied.

E.5 Relationship between Theorem 3.6 and [11]

As a comparison to our result, Chizat [11, Theorem 3.8] shows that under assumptions including (45)
as well as the uniqueness and sparseness of the global minimizer, an alternative type of particle gradi-
ent descent (with a different homogeneity degree in the loss function and under the conic metric, which
give rise to gradient flow in Wasserstein-Fisher-Rao metric instead of Wasserstein metric) converges to
the global minimizer for large enough m (depending exponentially on d) with a uniform rate. This im-
plies that in that setting, limt!1 limm!1 mkf

(m)
t �ftk2

⌫̂ = limm!1 limt!1 mkf
(m)
t �ftk2

⌫̂ = 0,
P0-almost surely.

F The Monte-Carlo bound and variation norm

The bound (41) on the long-time fluctuations motivates us to control the term
´
D k'(✓, ·)k2

⌫̂µ1(d✓)
using a suitable choice of regularization in (3). In the following, we restrict our attention to the
shallow neural networks setting, and further assume that

Assumption F.1 D̂ is compact.

Under this assumption, there isˆ
D

k'(✓, ·)k2
⌫̂µ(d✓) =

ˆ
D

ˆ
⌦

|'(✓,x)|2⌫̂(dx)µ(d✓)  K̂M

ˆ
D

c
2
µ(d✓) , (295)

where K̂M = maxz2D̂ k'̂(z, ·)k2
⌫̂ . Thus, we consider regularization with r(✓) = 1

2c
2, in which case

(3) becomes

min
µ2P(D)

L(µ) with L(µ) := 1
2 kf [µ] � f⇤k2

⌫̂ + 1
2�

ˆ
D

c
2
µ(d✓) . (296)

Interestingly, this choice of regularization leads to learning in the function space F1 [5] associated
with '̂, which is equipped with the variation norm defined as

|�q(f)| := inf
µ2P(D)

�´
D|c|qµ(d✓); f(x) =

´
Dc'̂(z,x)µ(d✓)

 
= |�1(f)|q , q � 1 . (297)
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We call
´
D |c|qµ(d✓) the q-norm of µ. One can verify [44, Proposition 1] that indeed, using any

q � 1 above yields the same norm because µ, the object defining the integral representation (2), is in
fact a lifted version of a more ‘fundamental’ object � =

´
R cµ(dc, ·) 2 M(D̂), the space of signed

Radon measures over D̂. They are related via the projectionˆ
D̂

�(z)�(dz) =

ˆ
D

c�(z)µ(d✓) (298)

for all continuous test functions � : D̂ ! R. One can also verify [11] that �1(f) =
inf{k�kTV; f(x) =

´
D̂ '̂(z,x)�(dz)}, where k�kTV is the total variation of � [5].

The space F1 contains any RKHS whose kernel is generated as an expectation over features
k(x,x0) =

´
D̂ '̂(z,x)'̂(z,x0)µ̂0(dz) with a base measure µ̂0 2 P(D̂), but it provides crucial

approximation advantages over such RKHS at approximating certain non-smooth, high-dimensional
functions with hidden low-dimensional structure, giving rise to powerful generalization guarantees
[5]. This also motivates the study of overparametrized shallow networks with the scaling as in (1), as
opposed to the NTK scaling of m

�1/2 [36].

To learn in F1, a canonical approach is to consider the ERM problem
min
f2F1

1
2kf � f⇤k2

⌫̂ + 1
2��1(f), (299)

By (297), this is equivalent to (296). Next, we prove the following proposition, which characterizes
the properties of the minimizers and shows that the measure obtained from (296) indeed has its
2-norm controlled:

Proposition F.2 Under Assumptions 2.1, 2.2, and F.1, the minimizers of the loss L(µ) defined in (3)
are all in the form

µ�(dc, dz) = �c�(dc)µ̂+(dz) + ��c�(dc)µ̂�(dz) (300)
where c� � 0 and µ̂± 2 P(D̂) satisfy

8z 2 supp µ̂� : � F̂ (z) + c�

ˆ
D̂

K̂(z, z0) (µ̂+(dz0) � µ̂�(dz0)) = �c�,

8z 2 supp µ̂+ : � F̂ (z) + c�

ˆ
D̂

K̂(z, z0) (µ̂+(dz0) � µ̂�(dz0)) = ��c�,

8z 2 D̂ :
���� F̂ (z) + c�

ˆ
D̂

K̂(z, z0) (µ̂+(dz0) � µ̂�(dz0))
���  �c�.

(301)

In addition, the constant c� is unique and positive if F̂ (z) is not identically zero on D̂, the closure of
the supports of µ̂± are disjoint (i.e. supp µ̂+ \ supp µ̂� = ;), and the function

f� =

ˆ
D

c'̂(z, ·)µ�(dc, dz) = c�

ˆ
D̂

'̂(z, ·) (µ̂+(dz) � µ̂�(dz)) (302)

is the same for all minimizers and satisfies
1
4�

2|c�|2K̂�1
M  kf⇤ � f�k2

⌫̂ , kf⇤ � f�k2
⌫̂ + �|c�|2  �|�1(f⇤)|2. (303)

where K̂M = maxz2D̂ k'̂(z, ·)k2
⌫̂ = maxz2D̂ K̂(z, z).

Remark F.3 Note that the proposition automatically implies that �1(f�)  �1(f⇤) < 1. It also
implies that ˆ

D
|c|qµ�(dc, dz) = |c�|q = |��|qTV  |�1(f⇤)|q 8q 2 R+ (304)

where �� =
´
R cµ�(dc, ·). Finally note that the proposition holds if we replace the empirical loss by

the population loss.

Proof of Proposition F.2: The fact that this loss can only be minimized by minimizers follows from
the compactness of the sets {µ 2 P(D) : L(µ)  u, u 2 R}. The minimizers of L(µ) must satisfy
the following Euler-Lagrange equations [57]:

8(c, z) 2 D : �cF̂ (z)+c

ˆ
D

c
0
K̂(z, z0)µ(dc

0
, dz0)+ 1

2�|c|2 ⌘ cV̂ (z)+ 1
2�|c|2 � V̄ , (305)
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with equality on the support of µ and where V̄ is the expectation of the left hand side with respect
to µ(dc, dz). Minimizing the left hand side of (305) over c at fixed z, we deduce that

8z 2 D̂ : min
c

⇣
cV̂ (z) + 1

2�|c|2
⌘

� V̄ , (306)

with equality for z in the support of µ̂ =
´
R µ(dc, ·). This means that for any z 2 supp µ̂, there

can only be one c = c(z) in supp µ, with c(z) satisfying the Euler-Lagrange equation associated
with (306)

V̂ (z) + �c(z) = 0 , V̂ (z) = ��c(z) (307)

If we insert this equality back in c(z)V̂ (z) + 1
2�|c(z)|2 = V̄ , we deduce that |c(z)| = c�, with the

constant c� related to V̄ as
�1

2
�|c�|2 = V̄ , (308)

and furthermore, 8z 2 supp µ̂,

V̂ (z) =

⇢
��c� if c(z) = c�

�c� if c(z) = �c�
. (309)

These considerations imply that the minimizer must be of the form (300), and if we combine (306)
and (308) and evaluate the minimum on c explicitly we deduce that µ̂± and c� must satisfy the
equations in (301). It is also clear from (301) that we must have supp µ̂+ \ supp µ̂� = ;: indeed if
there was a point z 2 supp µ̂+ \ supp µ̂�, then at that point V̂ (z) would be discontinuous, which
is not possible since this function is continuously differentiable for any µ by our assumptions on
'̂. Finally, to show that we must have that c� > 0 if F (z) is not identically zero on D̂, note that if
c� = 0, (305) reduces to

8(c, z) 2 D : �cF̂ (z) + 1
2�|c|2 � 0 (310)

which can only be satisfied if F̂ (z) = 0.

To show that c� and the function in (302) are unique, let µ� and µ
0
� be two different minimizers and

consider
f� =

ˆ
D

c'̂(z, ·)µ�(dc, dz) and f
0
� =

ˆ
D

c'̂(z, ·)µ0
�(dc, dz) (311)

Let us evaluate the loss on aµ� + (1 � a)µ0
� 2 P(D) with a 2 [0, 1]. By convexity of E� we have

L(aµ� + (1 � a)µ0
�)  aL(µ�) + (1 � a)L(µ0

�) = L(µ�) = L(µ0
�) (312)

Since aµ� + (1 � a)µ0
� cannot have a lower loss than this minimum, we must have equality in (312),

which reduces to
kf⇤ � af� � (1 � a)f 0

�k2
⌫̂ + a�|c�|2 + (1 � a)�|c0

�|2

= kf⇤ � f�k2
⌫̂ + �|c�|2

= kf⇤ � f
0
�k2

⌫̂ + �|c0
�|2 ,

(313)

where c� and c
0
� are associated with µ� and µ

0
�, respectively. Clearly these equations can only be

fulfilled for all a 2 [0, 1] if c� = c
0
� and f� = f

0
� ⌫̂-a.e. on ⌦.

To establish (303), notice that if µ� is a minimizer and f� is given by (302), then we can derive from
(309) that

�
ˆ

⌦
f�(x)f⇤(x)⌫̂(dx) + kf�k2

⌫̂ + �|c�|2 = 0. (314)

This gives, using Cauchy-Schwartz,

�|c�|2 =

ˆ
⌦

f�(x)(f⇤(x) � f�(x))⌫̂(dx)  kf�k⌫̂ kf⇤ � f�k⌫̂ . (315)

Now notice that

kf�k2
⌫̂ = c

2
�

ˆ
D̂⇥D̂

K̂(z, z0) (µ̂+(dz) � µ̂�(dz)) (µ̂+(dz0) � µ̂�(dz0))  4c
2
�K̂M . (316)
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Using (316) in (315) and reorganizing gives the first inequality in (303). To establish the second,
let µ⇤ 2 M+(D) be the measure that minimizes

´
D |c|µ(dc, dz) under the constraint that f⇤ =´

D c'̂(z, ·)µ⇤(dc, dz), so that
´
D |c|µ⇤(dc, dz) = �1(f⇤)—the measure µ⇤ exists since we assumed

that f⇤ 2 F1. Evaluated on µ⇤, the loss is

L(µ⇤) = �|�1(f⇤)|2. (317)

Any minimizer µ� of L(µ) must do at least as well, i.e we must have

kf⇤ � f�k2
⌫̂ + �

ˆ
D

|c|2µ�(dc, dz) = kf⇤ � f�k2
⌫̂ + �|c�|2  �|�(f⇤)|2. (318)

This establishes the second inequality in (303). ⇤

G Additional Details of the Experiments

G.1 Setup of the experiments reported in Section 4

The numerical experiments reported in Figure 1 are under the student-teacher setting, where a teacher
network gives the target function for the student network to learn, with both the student and the
teacher being shallow neural networks. Both D̂ and ⌦ are taken to be the unit sphere of d = 16
dimensions, and we take '̂(z,x) = max(0, hz,xi). The teacher network has two neurons, (c1, z1)
and (c2, z2), in the hidden layer, with c1 = c2 = 1 and z1 and z2 sampled i.i.d. from the uniform
distribution on D̂ and then fixed across the experiments. We vary the width of the student network
in the range of m = 128, 256, 512, 1024 and 2048, with their z’s sampled i.i.d. from the uniform
distribution on D̂ and their c’s sampled i.i.d. from N (0, 1). We train the networks in the ERM setting,
where we sample n = 32 vectors i.i.d. from the uniform distribution ⌫ on ⌦ as the training dataset,
which then define the empirical data measure ⌫̂(dx) = 1

n

Pn
l=1 �xl(dx). We use the mean squared

error as the loss function. We rescale both the squared loss and the gradient by d in order to adjust to
the 1

d factor resulting from spherical integrals. The models are trained for 20000 epochs with learning
rate (which is multiplied to the RHS of (8)) set to be 1. For each choice of m, we run the experiment
 = 20 times with different random initializations of the student network. The average fluctuation is
defined as 1



P
k=1 kf

(m)
k � f̄

(m)k2
⌫̂ for the training loss and 1



P
k=1 kf

(m)
k � f̄

(m)k2
⌫ for the exact

population loss, with f̄
(m) = 1



P
k=1 f

(m)
k being the averaged model, similar to the approach in

[28]. The other plotted quantities – loss, TV-norm and 2-norm – are averaged across the  number of
runs. The TV-norm (i.e., 1-norm) and 2-norm are defined as in Appendix F.

In addition, we also run the same set of experiments except for initializing the c’s of the student
networks at 0 instead of i.i.d. from N (0, 1), for the unregularized case. We show the results in
Figure 2. Adding regularization or using zero-initialization both result in lower TV-norm and 2-norm,
and moreover, lower average fluctuation and (slightly) lower average value of the population loss.
This demonstrates their positive effects on both approximation and generalization.

G.2 Additional experiments using the population loss

In addition to the experiments described above, we also train the networks under the population loss.
In this setting, we optimize the student networks by gradient descent under the population loss where
the data distribution ⌫ is uniform on ⌦, which allows an analytical formula for the loss value and the
gradient using spherical integrals. We also consider both of the initialization schemes of the c’s of the
student network described above.

The results are shown in Figure 3. We observe that the mean squared fluctuations remain at a
1/m scaling with a general tendency to decay over time. In the unregularized case with non-zero
initialization, the mean squared fluctuation decays at the same rate for different m in roughly the first
103 epochs, after which it decays faster for smaller m. Interestingly, this coincides with the tendency
for student neurons with z not aligned with the teacher neurons to slowly have their |c| decrease to
zero due to a finite-m effect, which is also reflected in the decrease in TV-norm. Aside from this,
the mean-squared fluctuations decay at similar rates for different choices of m, which is consistent
with our theory, since their dynamics are governed by the same dynamical CLT. Moreover, the values
of the fluctuations for these choices of m are indeed lower than the asymptotic Monte-Carlo bound
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Figure 2: The first two rows are a replicate of Figure 1, whereas Row 3 shows the result for using
zero-initialization of the c’s in the student network and without regularizaton.

given in (41) with µ1 and f1 replaced by the target measure and function, respectively, as well as ⌫̂

by ⌫, whose analytical expression and numerical value in this setup are given in Appendix H. We
also see that the average loss values remain similar over time for different choices of m, justifying
the approximation by a mean-field dynamics. Also, we notice that with either regularization or
zero-initialization, the student neurons are aligned with one of the teacher neurons in both z and c

after training, which then results in lower TV-norms and 2-norms than using non-zero initialization
and without regularization.

The code is implemented in C++ and run on a cluster with single CPU. For n = 128, 256, 512, 1024
and 2048, the approximate running times of each run of 20000 epochs are 1 min, 2 min, 8 min, 30
min and 150 min, respectively.

The hyperparameter in regularization, �, is manually selected from 0.01, 0.05 and 0.1.

G.3 Additional experiments with a non-planted target

We also conduct an experiment in which the target function is not given by a teacher network. D̂, ⌦,
'̂ as well as the widths of the student networks remain the same as in the previous experiments. The
target function is f⇤(x) =

´
D̂ '̂(z,x)µ̂⇤(dz), where µ̂⇤ is the uniform measure on the 1-dimensional

great circle in the first 2 dimensions, i.e., {(cos ✓, sin ✓), 0, ..., 0 : ✓ 2 [0, 2⇡)} ✓ Sd. The student
networks are trained using gradient descent under the population loss where the data distribution ⌫ is
uniform on ⌦, which allows an analytical formula for the gradient using spherical integrals, similar
to the experiments in Appendix G.2.

The results are shown in Figure 4. We observe that the behavior of the fluctuations are similar to
those found in Figure 3.

H Analytical Calculations of the Resampling Error

Derivations similar to the one presented here can be found in [53, 15, 5]. In the setting of ReLU
without bias on unit sphere, we take D̂ = ⌦ = Sd ✓ Rd+1, '̂(z,x) = max(hz,xi, 0), and ⌫ is
equal to the uniform measure on Sd. In this case,

K̂(z, z0) =

ˆ
⌦

'̂(z,x)'̂(z0
,x)⌫(dx) =

1

2(d + 1)⇡
(sin ↵ + (⇡ � ↵) cos ↵), (319)

50



0 1 2 3

angle

�2

0

2

4

c

before

after

101 103

t

10�8

10�6

10�4

10�2

m
·A

vg
F

lu
c

m=128

m=256

m=512

m=1024

m=2048

101 103

t

10�8

10�6

10�4

10�2

A
vg

L
os

s

101 103

t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

A
vg

T
V

101 103

t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
vg

2-
no

rm

0 1 2 3

angle

�2

0

2

4

c

before

after

101 103

t

10�8

10�6

10�4

10�2

m
·A

vg
F

lu
c

m=128

m=256

m=512

m=1024

m=2048

101 103

t

10�8

10�6

10�4

10�2

A
vg

L
os

s

101 103

t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

A
vg

T
V

101 103

t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
vg

2-
no

rm

0 1 2 3

angle

�2

0

2

4

c

before

after

101 103

t

10�8

10�6

10�4

10�2

m
·A

vg
F

lu
c

m=128

m=256

m=512

m=1024

m=2048

101 103

t

10�8

10�6

10�4

10�2

A
vg

L
os

s
101 103

t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

A
vg

T
V

101 103

t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
vg

2-
no

rm

Figure 3: Results of the experiments in the student-teacher setting and where the student networks
are trained by gradient descent on the population loss, as described in Appendix G.2. Each row
corresponds to one setup. Row 1: Using unregularized loss and non-zero-initialization; Row 2: Using
regularized loss with � = 0.01 and non-zero-initialization; Row 3: Using unregularized loss and
zero-initialization. In each row, Column 1 plots the trajectory of the neurons, ✓i = (ci, zi), of a
student network of width 128 during its training, with x-coordinate being the angle between zi and
that of a chosen teacher’s neuron and y-coordinate being ci. The yellow dots, blue dots and cyan
curves marking their initial values, terminal values, and trajectory during training. Columns 2-5
plot the average fluctuations (scaled by m), average loss, average TV norm, and average 2-norm
during training, respectively, computed across  = 20 runs with different random initializations of
the student network for each choice of m. In Column 2, the solid curves give the average fluctuation
in the exact population loss and the black horizontal dashed line gives the asymptotic Monte-Carlo
bound in (41) computed in Appendix H for this setting. In Column 3, the solid curves give the total
population loss, and the dotted curves give the unregularized population loss (for the regularized case
only). In Columns 4 and 5, the horizontal dashed line gives the relevant norm of the teacher network.

with ↵ being the angle between z and z0, andˆ
⌦

|'̂(z,x)|2⌫(dx) =
1

2

ˆ
⌦
(hx, zi)2⌫(dx) =

1

2(d + 1)
(320)

Thus, taking µ⇤ to be the measure representing the teacher network, µ⇤ = 1
mt

Pmt

i=1 �zi(dz)�1(dc),
we have ˆ

D
k'(✓, ·)k2

⌫µ⇤(d✓) =

ˆ
D

ˆ
⌦

|'(✓,x)|2⌫(dx)µ⇤(d✓)

=

ˆ
D

c
2

2(d + 1)
µ⇤(d✓)

=
1

2(d + 1)

(321)

On the other hand,

kf⇤k2
⌫ =

ˆ
⌦

���
ˆ
D

'(✓,x)µ⇤(d✓)
���
2
⌫(dx)

=

ˆ
D

ˆ
D

cc
0
K̂(z, z0)µ⇤(d✓)µ⇤(d✓

0)

=
1

m2
t

mtX

i,j=1

K̂(zi, zj)

(322)
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Figure 4: Results of the experiments with a non-planted target using the population loss, as described
in G.3. Row 1: Using unregularized loss and non-zero-initialization; Row 2: Using regularized loss
with � = 0.01 and non-zero-initialization; Row 3: Using unregularized loss and zero-initialization.
In each row, Column 1 plots the projection of the neurons’ zi in the first two dimension. The other
columns are under the same setting as Figure 3.

In the experiments described in the main text, we take mt = 2, and z1 and z2 are initialized with a
fixed random seed such that their angle, ↵12, equal to 1.766. Thus,

kf⇤k2
⌫ =

1

4(d + 1)⇡
(0 + ⇡) +

1

4(d + 1)⇡
(sin ↵12 + (⇡ � ↵12) cos ↵12) ⇡ 0.012 (323)

Together, we get a numerical value of the RHS of (41) if we replace µ1, f1 and ⌫̂ by µ⇤, f⇤ and ⌫,
respectively.
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