
Appendix

A Outline

This appendix is organized as follows: In Section B we provide preliminaries and notations used
in the proofs. In Section C we prove auxiliary lemmas that characterize the dynamics of w (t) and
bound the norm of w (t). In Section D we prove the loss bound in Lemma 3. In Section E we prove
that Condition 5 holds for the linearized model. In the proofs we distinguish between the case D = 2
and D > 2 since the dynamics is different. In Section F we prove the results for D = 2 and in
Section G we prove the results for D > 2. Finally, in Section H we provide additional simulation
results and implementation details.

B Preliminaries and Notations for Proofs

To simplify notation in the proofs, without loss of generality we assume that ∀n : yn = 1, as
equivalently we can re-define ynxn as xn.

Path parametrization: In the proofs we parameterize the optimization path in terms of γ̃. Recall
that γ̃ = − log ε and γ̃(t) is monotonically increasing along the gradient flow path starting from
γ̃(0) = − log ε(0) = 0. Accordingly, the stopping criteria is γ̃(α) = γ̃(Tα) = − log ε(α). We also
overload notation and denote w(γ̃′) = w(tγ̃′) and γ(γ̃′) = γ(tγ̃′) where tγ̃′ is the unique t such that
γ̃(t) = γ̃′. Moreover, in this appendix we restate the conditions and theorems in terms of γ̃ rather
than ε.

Notation: We use the following notations:

• X = [x1, . . . ,xN ] ∈ Rd×N denotes the data matrix.

• X̃ = [x̃1, . . . , x̃N ] ∈ R2d×N denotes the augmented data matrix where x̃n =

[
xn
−xn

]
∈

R2d.
• x̄i =

∑N
n=1 |xn,i| where xn,i is the coordinate i of xn. Also x̄ = maxi (x̄i).

• xmax = maxn ‖xn‖2.
• For some vector z we denote by diag(z) the diagonal matrix with diagonal z, and [z]i is the
i coordinate.

• The `2 margin at time t is γ2 (t) =
minn(x>nw(t))
‖w(t)‖2

. Recall that γ2 = max‖w‖2=1 minn x
>
nw.

• ∂◦ denotes the local sub-differential (Clarle’s sub-differential) operator defined as
∂◦h (z) = conv {v : ∃zk s.t. zk → z and ∇h (zk)→ v} .

Specifically, for h (z) = ‖z‖1:

∂◦ ‖z‖1 =
{
v ∈ Rd : ∀i = 1, ..., d : −1 ≤ vi ≤ 1 and zi 6= 0⇒ vi = sign (zi)

}
.

• We denote r (t) = 1
N exp

(
−X>w (t)

)
. Note that ‖r (t)‖1 = L (t) = exp (−γ̃ (t)).

• We denote A (t) = diag
(

4
√

w2 (t) + 4α41
)

. This matrix is used in the proofs for D = 2.

• For D > 2 let:

hD (z) = (1− z)−
D
D−2 − (1 + z)

− D
D−2 , z ∈ (−1, 1) . (7)

Note that hD (z) is monotonically increasing, where hD (z)
z→−1→ −∞ and hD (z)

z→1→ ∞,
and thus the inverse h−1

D is well defined, h−1
D : (−∞,∞)→ (−1, 1). In addition, it is easy

to verify that for z ∈ (−1, 1)

h
′

D (z)
.
=
dhD (z)

dz
≥ 2D

D − 2
(8)

and

lim
z→0

hD (z)

z
=

2D

D − 2
. (9)
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• We denote AD (t) = diag
(
α2D−2D (D − 2)h

′

D

(
h−1
D

(
w(t)
αD

)))
. This matrix is used in

the proofs for D > 2.

Useful inequalities: From the definitions of L(t) and γ̃(t) we have that

L (t) =
1

N

N∑
n=1

exp
(
−x>nw (t)

)
= exp (−γ̃ (t))

and thus

1

N
exp (−γ (t)) ≤ 1

N

N∑
n=1

exp
(
−x>nw (t)

)
≤ 1

N
N exp (−γ (t))

⇒ 1

N
exp (−γ (t)) ≤ exp (−γ̃ (t)) ≤ exp (−γ (t))

⇒ γ (t) ≤ γ̃ (t) ≤ γ (t) + log (N) . (10)

From eq. (10) we have that limt→∞
γ̃(t)
γ(t) = 1 and thus

lim
α→∞

γ̃(Tα)

γ(Tα)
= 1 . (11)

In addition, using x>nw (t) ≤ xmax ‖w (t)‖2 we derive a lower bound on ‖w(t)‖2 as following:

L (t) =
1

N

N∑
n=1

exp
(
−x>nw (t)

)
≥ 1

N
N exp (−xmax ‖w (t)‖2)

= exp (−xmax ‖w (t)‖2)

and thus
xmax ‖w (t)‖2 ≥ log

1

L (t)
= γ̃ (t)

⇒ ‖w (t)‖2 ≥
γ̃ (t)

xmax
. (12)

Conditions: We restate Condition 5 in terms of γ̃, i.e., we substitute ε = exp(−γ̃). We consider
two cases:
Condition 8. For all k ∈ [N ] such that x>k ŵ > 1, and large enough α, there exists γ̃? (α) = o

(
αD
)

and ρ0 > 1 such that ∀γ̃ ∈ [γ̃? (α) , γ̃ (α)] :
x>k w(γ̃)
γ(γ̃) ≥ ρ0.

Condition 9. For all k ∈ [N ] such that x>k ŵ > 1, and large enough α, there exists γ̃? (α) =

o
(
α2 log γ̃(α)

α2

)
and ρ0 > 1 such that ∀γ̃ ∈ [γ̃? (α) , γ̃ (α)] :

x>k w(γ̃)
γ(γ̃) ≥ ρ0.

We prove the intermediate regime for D ≥ 2 and the rich regime for D > 2 under Condition 8. To
prove the rich regime for D = 2 the weaker Condition 9 will suffice.

C Auxiliary lemmas

C.1 The case D = 2

Lemma 10. For D = 2 and all t,

w (t) = 2α2 sinh

(
4X

∫ t

0

r(s)ds

)
(13)
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and
dw(t)

dt
=

4

N

√
w2 (t) + 4α41 ◦X exp

(
−X>w (t)

)
= A(t)Xr(t) (14)

where A (t) = diag
(

4
√
w2 (t) + 4α41

)
.

Proof. The gradient flow dynamics in the parameters space is given by

u̇ (t) = −∇uL (u(t)) =
2

N
u (t) ◦ X̃ exp

(
−X̃>u2 (t)

)
. (15)

It is easy to verify that the solution to eq. (15) can be written as

u (t)= u (0) ◦ exp

(
2

N
X̃

∫ t

0

exp
(
−X̃>u2 (s)

)
ds

)
= α exp

(
2

N
X̃

∫ t

0

exp
(
−X̃>u2 (s)

)
ds

)
.

(16)
From (16) and w = u2

+ − u2
− we get eq. (13). Taking the derivative of eq. (13) we have

ẇ (t) =
8

N
α2 cosh

(
4X

∫ t

0

r(s)ds

)
◦X exp

(
−X>w (t)

)
. (17)

By combining eqs. (13) and (17) we get

ẇ (t) =
8

N
α2 cosh

(
arcsinh

(
w (t)

2α2

))
◦X exp

(
−X>w (t)

)
.

Since cosh (arcsinh (x)) =
√
x2 + 1 we get eq. (14).

Lemma 11. For D = 2 and all t,

‖w (t)‖∞ ≤ 2α2 sinh

(
x̄

2γ2
2α

2
γ̃ (t)

)
.

Proof. Note that
dL (t)

dt
= (∇wL (t))

> dw (t)

dt
= − (Xr (t))

>
A (t)Xr (t)

⇒ dγ̃ (t)

dt
= − 1

L (t)

dL (t)

dt
=

(Xr (t))
>
A (t)Xr (t)

‖r (t)‖1
.

From Ai,i (t) ≥ 8α2 we have
dγ̃ (t)

dt
≥

8α2 ‖Xr (t)‖22
‖r (t)‖1

. (18)

From Lemma 2 of [21] we have that
‖Xr (t)‖2 ≥ γ2 ‖r (t)‖1 . (19)

Combining eqs. (18) and (19) we get
dγ̃ (t)

dt
≥ 8α2γ2

2 ‖r (t)‖1 = 8α2γ2
2 exp (−γ̃ (t)) . (20)

We employ the dynamics equation ẇ (t) = 4
N

√
w2 (t) + 4α41 ◦X exp

(
−X>w (t)

)
and change

variables t→ γ̃ (t). Using eq. (20) we get that∣∣∣∣dwi (γ̃)

dγ̃

∣∣∣∣ =

∣∣∣∣dwi (t)

dt

dt

dγ̃

∣∣∣∣ ≤ (√w2
i (γ̃) + 4α4

) ∣∣[X exp
(
−X>w (γ̃)

)]
i

∣∣ 1

2Nα2γ2
2 exp (−γ̃)

.

Using exp
(
−x>k w (γ̃)

)
≤ N exp (−γ̃) which follows from eq. (10) we get∣∣∣∣dwi (γ̃)

dγ̃

∣∣∣∣ ≤ x̄i
2α2γ2

2

√
w2
i (γ̃) + 4α4

and by the Grönwall’s inequality we get the desired bound

|wi (γ̃)| ≤ 2α2 sinh

(
x̄i

2γ2
2α

2
γ̃

)
≤ 2α2 sinh

(
x̄

2γ2
2α

2
γ̃

)
.
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C.2 The case D > 2

Lemma 12. For D > 2 and all t,

w (t) = αDhD

(
αD−2D (D − 2)X

∫ t

0

r (s) ds

)
and

dw (t)

dt
= AD (t)Xr (t)

where AD (t) = diag
(
α2D−2D (D − 2)h

′

D

(
h−1
D

(
w(t)
αD

)))
.

Proof. The gradient flow dynamics in the parameters space is given by

u̇ (t) = −∇uL (u(t)) =
D

N
uD−1 (t) ◦ X̃ exp

(
−X̃>uD (t)

)
. (21)

It is easy to verify that the solution to eq. (21) is

u (t) =

(
u2−D (0)− D (D − 2)

N
X̃

∫ t

0

exp
(
−X̃>uD (s)

)
ds

)− 1
D−2

=

(
α2−D1− D (D − 2)

N
X̃

∫ t

0

exp
(
−X̃>uD (s)

)
ds

)− 1
D−2

= α

(
1− αD−2D (D − 2)

N
X̃

∫ t

0

exp
(
−X̃>uD (s)

)
ds

)− 1
D−2

. (22)

From eq. (22) and w = uD+ − uD− we get

w (t) = αD

[(
1− αD−2D (D − 2)X

∫ t

0

r (s) ds

)− D
D−2

−
(
1 + αD−2D (D − 2)X

∫ t

0

r (s) ds

)− D
D−2

]
. (23)

As ui (t) ≥ 0 for all i (because ui (0) = α > 0; the gradient flow dynamics are continuous; and
ui (t) = 0⇒ u̇i (t) = 0) we get from eq. (22) that

−1 ≤ αD−2D (D − 2)

N
X

∫ t

0

exp
(
−X̃>uD (s)

)
ds ≤ 1 . (24)

Therefore we can write eq. (23) as

w (t) = αDhD

(
αD−2D (D − 2)X

∫ t

0

r (s) ds

)
(25)

⇒ αD−2D (D − 2)X

∫ t

0

r (s) ds = h−1
D

(
w (t)

αD

)
.

Taking the derivative of eq. (25) we get

ẇ (t) = αDh
′

D

(
αD−2D (D − 2)X

∫ t

0

r (s) ds

)
◦
(
αD−2D (D − 2)Xr (t)

)
= α2D−2D (D − 2)h

′

D

(
h−1
D

(
w (t)

αD

))
◦ (Xr (t)) . (26)

Lemma 13. For D > 2 and all t,

‖w (t)‖∞ ≤ α
DhD

(
(D − 2) x̄

2Dγ2
2α

D
γ̃ (t)

)
.
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Proof. Note that

dL (t)

dt
= (∇wL (t))

> dw (t)

dt
= − (Xr (t))

>
AD (t)Xr (t)

⇒ dγ̃ (t)

dt
= − 1

L (t)

dL (t)

dt
=

(Xr (t))
>
AD (t)Xr (t)

‖r (t)‖1
. (27)

From eq. (8) we get a lower bound on the entries of AD (t), AD (t) ≥ 2D2α2D−2. Combining with
eq. (27) we get

dγ̃ (t)

dt
≥

2D2α2D−2 ‖Xr (t)‖22
‖r (t)‖1

. (28)

From eqs. (28), (19) we get

dγ̃ (t)

dt
≥ 2D2α2D−2γ2

2 ‖r (t)‖1 = 2D2α2D−2γ2
2 exp (−γ̃ (t)) . (29)

We employ the dynamics equation eq. (26) and change variables t→ γ̃ (t). Using eq. (29) we get
that∣∣∣∣dwi (γ̃)

dγ̃

∣∣∣∣ =

∣∣∣∣dwi (t)

dt

dt

dγ̃

∣∣∣∣ ≤ α2D−2D (D − 2)h
′

D

(
h−1
D

(
wi (γ̃)

αD

)) ∣∣[X exp
(
−X>w (γ̃)

)]
i

∣∣
2ND2α2D−2γ2

2 exp (−γ̃)
.

Using exp
(
−x>k w (γ̃)

)
≤ N exp (−γ̃) which follows from eq. (10) we get∣∣∣∣dwi (γ̃)

dγ̃

∣∣∣∣ ≤ (D − 2) x̄i
2Dγ2

2

h
′

D

(
h−1
D

(
wi (γ̃)

αD

))
and by the Grönwall’s inequality we get the desired bound

|wi (γ̃)| ≤ αDhD
(

(D − 2) x̄i
2Dγ2

2α
D
γ̃

)
≤ αDhD

(
(D − 2) x̄

2Dγ2
2α

D
γ̃

)
.

D Proof of Lemma 3

We prove the loss bound for D ≥ 2, any fixed α, and ∀t:

L (t) ≤ 1

1 + 2D2α2D−2γ2
2t
.

Proof. We employ the Grönwall’s inequality. For D = 2 from eq. (20) we get

γ̃ (t) ≥ log
(
1 + 8α2γ2

2t
)

(30)

and thus

L (t) ≤ 1

1 + 8α2γ2
2t
. (31)

For D > 2 from eq. (29) we get

γ̃ (t) ≥ log
(
1 + 2D2α2D−2γ2

2t
)

(32)

and thus

L (t) ≤ 1

1 + 2D2α2D−2γ2
2t
. (33)

Note that by substituting D = 2 in eq. (33) we get eq. (31), so (33) is correct for D ≥ 2.
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E Condition 5 holds for the linearized model

We show that Condition 8, which is equivalent to Condition 5, holds for the linearized model. The
linearized model is

f̄ (ū,x) = f (ū (0) ,x) +∇>u f (ū (0) ,x) (ū− ū (0)) .

For the diagonal linear network f (u,x) = x>
(
uD+ − uD−

)
, where u =

[
u+

u−

]
∈ R2d. Let

ū =

[
ū+

ū−

]
∈ R2d. We consider the initialization u (0) = ū (0) = α1, thus

f (ū (0) ,x) = 0

∇uf (ū (0) ,x) = DαD−1

[
x
−x

]
∇>u f (ū (0) ,x) ū (0) = 0

and we get
f̄ (ū,x) = DαD−1x> (ū+ − ū−) .

Let w̄ = DαD−1 (ū+ − ū−). Then f̄ (w̄,x) = w̄>x. We consider gradient flow dū(t)
dt =

−∇L̄ (ū (t)) where

L̄ (ū (t)) =
1

N

N∑
n=1

exp
(
−f̄ (ū (t) ,xn)

)
.

Thus
dū+ (t)

dt
=

1

N
DαD−1

N∑
n=1

exp
(
−DαD−1x>n (ū+ − ū−)

)
xn

dū− (t)

dt
= − 1

N
DαD−1

N∑
n=1

exp
(
−DαD−1x>n (ū+ − ū−)

)
xn

and
dw̄ (t)

dt
= DαD−1

(
dū+ (t)

dt
− dū− (t)

dt

)
=

2

N
D2α2D−2

N∑
n=1

exp
(
−x>n w̄ (t)

)
xn . (34)

It follows that
dL̄ (t)

dt
=
(
∇w̄L̄ (t)

)> dw̄ (t)

dt

=

(
− 1

N

N∑
n=1

exp
(
−x>n w̄ (t)

)
xn

)>(
2

N
D2α2D−2

N∑
n=1

exp
(
−x>n w̄ (t)

)
xn

)

= −2D2α2D−2

∥∥∥∥∥ 1

N

N∑
n=1

exp
(
−x>n w̄ (t)

)
xn

∥∥∥∥∥
2

2

.

Let ¯̃γ (t) = log 1
L̄(t)

. Then

d¯̃γ (t)

dt
= − 1

L̄ (t)

dL̄ (t)

dt
=

1

L̄ (t)
2D2α2D−2

∥∥∥∥∥ 1

N

N∑
n=1

exp
(
−x>n w̄ (t)

)
xn

∥∥∥∥∥
2

2

. (35)

From Lemma 2 of [21] we know that∥∥∥∥∥ 1

N

N∑
n=1

exp
(
−x>n w̄ (t)

)
xn

∥∥∥∥∥
2

2

≥ γ2
2

(
1

N

N∑
n=1

exp
(
−x>n w̄ (t)

))2

= γ2
2 L̄2 (t) . (36)
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Combining eqs. (35) and (36) we get

d¯̃γ (t)

dt
≥ 2D2α2D−2γ2

2 L̄ (t) = 2D2α2D−2γ2
2 exp (−¯̃γ (t)) . (37)

In addition,∥∥∥∥∥ 1

N

N∑
n=1

exp
(
−x>n w̄ (t)

)
xn

∥∥∥∥∥
2

≤ 1

N

N∑
n=1

exp
(
−x>n w̄ (t)

)
‖xn‖2 ≤ xmaxL̄ (t) . (38)

Combining eqs. (35) and (38) we get

d¯̃γ (t)

dt
≤ 2D2α2D−2x2

maxL̄ (t) = 2D2α2D−2x2
max exp (−¯̃γ (t))

and by the Grönwall’s inequality we get

¯̃γ (t) ≤ log
(
1 + 2D2α2D−2x2

maxt
)

⇒ t ≥ exp (¯̃γ)− 1

2D2α2D−2x2
max

. (39)

The `2 max-margin solution is w`2 =
∑
n∈S2

νnxn where S2 denotes the set of support vectors of
w`2 . Let w̃ be a vector that satisfies exp

(
−x>n w̃

)
= νn for n ∈ S2. Such w̃ exists for almost all

datasets, where the support vectors of w`2 are associated with positive dual variables νn [28]. Let

κ (t) = w̄ (t)− log

(
2

N
D2α2D−2t

)
w`2 − w̃ . (40)

Then
dκ (t)

dt
=
dw̄ (t)

dt
− 1

t
w`2

and thus

1

2

d

dt
‖κ (t)‖22 =

(
dκ (t)

dt

)>
κ (t)

=

(
dw̄ (t)

dt
− 1

t
w`2

)>
κ (t)

(34)
=

2

N
D2α2D−2

N∑
n=1

exp
(
−x>n w̄ (t)

)
x>n κ (t)− 1

t
w>`2κ (t)

=

[
2

N
D2α2D−2

∑
n∈S2

exp
(
−x>n w̄ (t)

)
x>n κ (t)− 1

t
w>`2κ (t)

]

+

 2

N
D2α2D−2

∑
n/∈S2

exp
(
−x>n w̄ (t)

)
x>n κ (t)

 (41)

For n ∈ S2 we have that x>nw`2 = 1, thus

exp
(
−x>n w̄ (t)

)
= exp

(
−x>n

(
log

(
2

N
D2α2D−2t

)
w`2 + w̃ + κ (t)

))
=

1
2
ND

2α2D−2t
exp

(
−x>n w̃

)
exp

(
−x>n κ (t)

)
=

1
2
ND

2α2D−2t
νn exp

(
−x>n κ (t)

)
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and the first bracketed term in eq. (41) can be written as

2

N
D2α2D−2

∑
n∈S2

1
2
ND

2α2D−2t
νn exp

(
−x>n κ (t)

)
x>n κ (t)− 1

t

∑
n∈S2

νnx
>
n κ (t)

=
1

t

∑
n∈S2

[
νn
(
exp

(
−x>n κ (t)

)
− 1
)
x>n κ (t)

]
≤0 (42)

since (e−z − 1) z ≤ 0 for all z.

Let θ = minn/∈S2

(
x>nw`2

)
> 1 and c1 = maxn/∈S2

exp
(
−x>n w̃

)
. For n /∈ S2 we have that

exp
(
−x>n w̄ (t)

)
= exp

(
−x>n

(
log

(
2

N
D2α2D−2t

)
w`2 + w̃ + κ (t)

))
≤ 1(

2
ND

2α2D−2t
)θ exp

(
−x>n w̃

)
exp

(
−x>n κ (t)

)
≤ c1(

2
ND

2α2D−2t
)θ exp

(
−x>n κ (t)

)
and thus the second bracketed term in eq. (41) can be bounded as following

2

N
D2α2D−2

∑
n/∈S2

exp
(
−x>n w̄ (t)

)
x>n κ (t)

≤
2
ND

2α2D−2c1(
2
ND

2α2D−2t
)θ ∑

n/∈S2

exp
(
−x>n κ (t)

)
x>n κ (t)

≤ 2D2α2D−2c1(
2
ND

2α2D−2t
)θ (43)

since e−zz ≤ 1 for all z. Substituting eqs. (42) and (43) in eq. (41) we get

1

2

d

dt
‖κ (t)‖22 ≤

2D2α2D−2c1(
2
ND

2α2D−2t
)θ .

Using (39) we get

1

2

d

dt
‖κ (t)‖22 ≤

2D2α2D−2c1(
2
ND

2α2D−2 exp(¯̃γ(t))−1

2D2α2D−2x2
max

)θ =
2D2α2D−2c1(
1
N

exp(¯̃γ(t))−1

x2
max

)θ .
We change variables t→ ¯̃γ and get

1

2

d

d¯̃γ
‖κ (¯̃γ)‖22 =

1

2

d

dt
‖κ (¯̃γ (t))‖22

dt

d¯̃γ
(37)
≤ 2D2α2D−2c1(

1
N

exp(¯̃γ)−1

x2
max

)θ 1

2D2α2D−2γ2
2 exp (−¯̃γ)

=
c1 exp (− (θ − 1) ¯̃γ)

γ2
2

(
1
N

1−exp(−¯̃γ)
x2

max

)θ
≤ C exp (− (θ − 1) ¯̃γ)

(1− exp (−¯̃γ))
θ
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where C is a constant. Integrating we have that for all ¯̃γ0 > 0, ¯̃γ > ¯̃γ0

‖κ (¯̃γ)‖22 − ‖κ (¯̃γ0)‖22 ≤ C
∫ ¯̃γ

¯̃γ0

exp (− (θ − 1) ¯̃γ1)

(1− exp (−¯̃γ1))
θ
d¯̃γ1

≤ C
∫ ∞

¯̃γ0

exp (− (θ − 1) ¯̃γ1)

(1− exp (−¯̃γ1))
θ
d¯̃γ1

= C
1

(θ − 1) (exp (¯̃γ0)− 1)
θ−1

and thus
‖κ (¯̃γ)‖2 ≤ C

′ (44)

where C ′ is a constant. Finally, for k /∈ S2 we have that x>k w`2 ≥ θ > 1 and thus

x>k w̄ (¯̃γ)
¯̃γ

(40)
=

x>k
(
log
(

2
ND

2α2D−2t
)
w`2 + w̃ + κ (¯̃γ)

)
¯̃γ

(39)
≥

log

(
2
ND

2α2D−2 exp(¯̃γ)−1

2D2α2D−2x2
max

)
x>k w`2 + x>k w̃ + x>k κ (¯̃γ)

¯̃γ

(44)
≥

log

(
exp(¯̃γ)−1

Nx2
max

)
θ − log c1 − xmaxC

′

¯̃γ

=

log

(
exp(¯̃γ)−1

Nx2
max

)
¯̃γ

θ − log c1 + xmaxC
′

¯̃γ
.

Note that
log

(
exp(¯̃γ)−1

Nx2
max

)
¯̃γ

is monotonically increasing and

log

(
exp(¯̃γ)−1

Nx2
max

)
¯̃γ

¯̃γ→∞→ 1 .

Therefore there exists ¯̃γ? (independent of α!) such that for γ̃ ≥ ¯̃γ?

log

(
exp(¯̃γ)−1

Nx2
max

)
¯̃γ

≥ 3θ + 1

4θ

and
log c1 + xmaxC

′

¯̃γ
≤ θ − 1

4
.

It follows that for γ̃ ≥ ¯̃γ?

x>k w̄ (¯̃γ)
¯̃γ

≥ 3θ + 1

4θ
θ − θ − 1

4
=
θ + 1

2

.
= ρ0 > 1 .

From ¯̃γ ≥ γ̄ (where γ̄ (t) = minn
(
x>n w̄ (t)

)
) we get

x>k w̄ (¯̃γ)

γ̄
≥ x>k w̄ (¯̃γ)

¯̃γ
≥ ρ0 > 1

for γ̃ ≥ ¯̃γ? = o
(
αD
)

since ¯̃γ? is independent of α.
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F Proofs for D = 2

F.1 Kernel Regime Proof

Theorem 14 (Theorem 4 for D = 2). For D = 2, if γ̃(α) = o(α2) then

ŵ = argmin
w

‖w‖2 s.t. ∀n : x>nw ≥ 1 .

Proof. We show convergence of the `2 margin γ2 (Tα) =
minn(x>nw(Tα))
‖w(Tα)‖2

to the max-margin γ2

when α→∞. Note that by definition γ2 (Tα) ≤ γ2. Next we show that γ2 (Tα) ≥ γ2 when α→∞.
From eq. (10) we have that

γ2 (t) =
minn

(
x>nw (t)

)
‖w (t)‖2

≥ γ̃ (t)− log(N)

‖w (t)‖2
. (45)

In order to lower bound γ2 (t) we derive a lower bound on γ̃ (t) and an upper bound on ‖w (t)‖2.

Lower bound on γ̃ (t): Combining (18) and (19) we get
dγ̃ (t)

dt
≥ 8α2γ2 ‖Xr (t)‖2

⇒ γ̃ (t) ≥ 8α2γ2

∫ t

0

‖Xr (τ)‖2 dτ . (46)

Upper bound on ‖w (t)‖2: We decompose ẇ (t) to two terms:

ẇ (t) = 4
√
w2 (t) + 4α41 ◦Xr (t)

= 4
(√

w2 (t) + 4α41− 2α21
)
◦Xr (t) + 8α2Xr (t)

⇒ ‖ẇ (t)‖2 ≤ 4
∥∥∥(√w2 (t) + 4α41− 2α21

)
◦Xr (t)

∥∥∥
2

+ 8α2 ‖Xr (t)‖2

⇒ ‖w (t)‖2 ≤ 4

∫ t

0

∥∥∥(√w2 (τ) + 4α41− 2α21
)
◦Xr (τ)

∥∥∥
2
dτ +8α2

∫ t

0

‖Xr (τ)‖2 dτ . (47)

Let v (t) =
∥∥∥(√w2 (t) + 4α41− 2α21

)
◦Xr (t)

∥∥∥
2
. Then

v (t) ≤
∥∥∥√w2 (t) + 4α41− 2α21

∥∥∥
∞
xmax ‖r (t)‖1

=
∥∥∥√w2 (t) + 4α41− 2α21

∥∥∥
∞
xmax exp (−γ̃ (t)) .

Using Lemma 11 we get

v (t) ≤

(
2α2

√
sinh2

(
x̄

2α2γ2
2

γ̃ (t)

)
+ 1− 2α2

)
xmax exp (−γ̃ (t))

= 2α2

[
cosh

(
x̄

2α2γ2
2

γ̃ (t)

)
− 1

]
xmax exp (−γ̃ (t)) .

We are interested in bounding
∫ t

0
v (τ) dτ . We change variables t→ γ̃ (t) and proceed using (20),∫ t

0

v (τ) dτ ≤
∫ γ̃(t)

0

2α2

[
cosh

(
x̄

2α2γ2
2

γ̃

)
− 1

]
xmax exp (−γ̃)

1

8α2γ2
2 exp (−γ̃)

dγ̃

=
xmax

4γ2
2

∫ γ̃(t)

0

[
cosh

(
x̄

2α2γ2
2

γ̃

)
− 1

]
dγ̃

=
xmax

4γ2
2

[
2α2γ2

2

x̄
sinh

(
x̄

2α2γ2
2

γ̃ (t)

)
− γ̃ (t)

]
. (48)

Plugging eqs. (48) in (47) we get

‖w (t)‖2 ≤
xmax

γ2
2

[
2α2γ2

2

x̄
sinh

(
x̄

2α2γ2
2

γ̃ (t)

)
− γ̃ (t)

]
+ 8α2

∫ t

0

‖Xr (τ)‖2 dτ . (49)
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Putting things together: From eqs. (45) and (12) we have

γ2 (t) ≥ γ̃ (t)− log(N)

‖w (t)‖2
≥ γ̃(t)

‖w (t)‖2
− log(N)xmax

γ̃(t)
. (50)

Next we set t = Tα and take the limit α→∞. Note that γ̃(Tα)
α→∞→ ∞ since ε(Tα)

α→∞→ 0, and
thus the right term in eq. (50) is vanishing. Using eq. (49) we get

lim
α→∞

1

γ2 (Tα)
≤ lim
α→∞

‖w (Tα)‖2
γ̃ (Tα)

≤ lim
α→∞

[
xmax

γ2
2

[
2α2γ2

2

x̄γ̃ (Tα)
sinh

(
x̄

2α2γ2
2

γ̃ (Tα)

)
− 1

]
+

8α2

γ̃ (Tα)

∫ Tα

0

‖Xr (τ)‖2 dτ

]
.

We use γ̃(Tα)
α2

α→∞→ 0, limz→0
sinh z
z = 1 and eq. (46) to get

lim
α→∞

1

γ2 (Tα)
≤ 1

γ2
.

It follows that limα→∞ γ2 (Tα) = γ2.

F.2 Intermediate Regime Proof

Theorem 15 (Theorem 6 for D = 2). Under Condition 8, for D = 2 if lim
α→∞

α2

γ̃(α) = µ > 0, then

ŵ = argmin
w

Q2
µ (w) s.t. ∀n : x>nw ≥ 1

where Q2
µ (w) =

∑d
i=1 q2

(
wi
µ

)
and q2 (s) = 2−

√
4 + s2 + s · arcsinh

(
s
2

)
.

Proof. We show that the KKT conditions hold in the limit α → ∞. The KKT conditions are that
there exists ν ∈ RN≥0 such that

∇Q2
µ (ŵ) = Xν (51)

∀n : x>n ŵ ≥ 1 (52)

∀n : νn
(
x>n ŵ − 1

)
= 0. (53)

Primal feasibility (52): The condition (52) follows by definition of ŵ,

∀n : x>n ŵ = lim
α→∞

x>nw (Tα)

γ (Tα)
≥ lim
α→∞

minn
(
x>nw (Tα)

)
γ (Tα)

= 1 . (54)

Stationarity condition (51): To show the condition (51) let

ν =
4

µ
lim sup
α→∞

∫ Tα

0

r(s)ds ∈ RN≥0 . (55)

We need to show that

∇Qµ (ŵ) =
1

µ
arcsinh

(
ŵ

2µ

)
= Xν .

Indeed from eqs. (13) and (11) we have

ŵ = lim
α→∞

2α2 sinh
(

4X
∫ Tα

0
r(s)ds

)
γ (Tα)

= 2 lim
α→∞

γ̃(Tα)

γ (Tα)
lim
α→∞

α2

γ̃ (Tα)
lim sup
α→∞

sinh

(
4X

∫ Tα

0

r(s)ds

)

= 2µ sinh

[
µX

(
4

µ
lim sup
α→∞

∫ Tα

0

r(s)ds

)]
= 2µ sinh (µXν)

and thus 1
µ arcsinh

(
ŵ
2µ

)
= Xν, as desired.
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Complementary slackness (53): To show the condition (53) let k ∈ [N ] such that

x>k ŵ > 1 . (56)

We need to show that νk = 0. We change variables t→ γ̃ (t) and using eq. (20) we get∫ Tα

0

exp
(
−x>k w (s)

)
ds ≤ 1

8α2γ2
2

∫ γ̃(Tα)

0

exp
(
−x>k w (γ̃) + γ̃

)
dγ̃ . (57)

From Condition 8 we know that there exists γ̃? (α) = o
(
α2
)

and ρ0 > 1 such that for large enough

α and γ̃ ∈ [γ̃? (α) , γ̃ (α)], x>k w(γ̃)
γ(γ̃) ≥ ρ0. Let

γ̃?1 (α) = max

(
2ρ0 logN

ρ0 − 1
, γ̃? (α)

)
= o

(
α2
)

and ρ1 = ρ0+1
2 > 1. Then for large enough α and γ̃ ∈ [γ̃?1 (α) , γ̃ (α)], using γ̃ ≤ γ + logN we get

x>k w (γ̃)

γ̃
=

x>k w (γ̃)

γ

γ

γ̃

≥ ρ0
γ̃ − logN

γ̃

= ρ0 − ρ0
logN

γ̃

≥ ρ0 − ρ0
logN

2ρ0 logN
ρ0−1

= ρ1 .

Next we decompose the RHS of eq. (57) as following

1

8α2γ2
2

∫ γ̃(Tα)

0

exp
(
−x>k w (γ̃) + γ̃

)
dγ̃ =

1

8α2γ2
2

∫ γ̃?1 (α)

0

exp
(
−x>k w (γ̃) + γ̃

)
dγ̃

+
1

8α2γ2
2

∫ γ̃(Tα)

γ̃?1 (α)

exp
(
−x>k w (γ̃) + γ̃

)
dγ̃

= (I) + (II) (58)

From eq. (10) we have that exp
(
−x>k w (γ̃) + γ̃

)
≤ N and thus

(I) ≤ 1

8α2γ2
2

∫ γ̃?1 (α)

0

Ndγ̃ =
Nγ̃?1 (α)

8α2γ2
2

α→∞→ 0 (59)

since γ̃?1(α) = o(α2). For the second term in eq. (58) we have for large enough α,

(II) =
1

8α2γ2
2

∫ γ̃(Tα)

γ̃?1 (α)

exp

[
−
(
x>k

w (γ̃)

γ̃
− 1

)
γ̃

]
dγ̃

≤ 1

8α2γ2
2

∫ γ̃(Tα)

γ̃?1 (α)

exp [− (ρ1 − 1) γ̃] dγ̃

≤ 1

8α2γ2
2

∫ ∞
0

exp [− (ρ1 − 1) γ̃] dγ̃

=
1

8α2γ2
2 (ρ1 − 1)

α→∞→ 0 . (60)

By substituting eqs. (59) and (60) in eq. (58) we get that νk = 0.
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F.3 Rich Regime Proof

Theorem 16 (Theorem 7 for D = 2). Under Condition 9, for D = 2 if γ̃(α) = ω(α2) then

ŵ = argmin
w

‖w‖1 s.t. ∀n : x>nw ≥ 1 . (61)

Proof. We show that the KKT conditions for the `1 max-margin problem (61) hold in the limit
α→∞. The KKT conditions are that there exists ν(`1) ∈ RN≥0 such that

Xν(`1) ∈ ∂◦ ‖ŵ‖1 (62)

∀n : x>n ŵ ≥ 1 (63)

∀n : ν(`1)
n

(
x>n ŵ − 1

)
= 0. (64)

To this end let

ν(`1) = lim sup
α→∞

4

log γ̃(Tα)
α2

∫ Tα

0

r (s) ds ∈ RN≥0 . (65)

The proof for the primal feasibility condition (63) appears in eq. (54).

Stationarity condition (62):

ŵ = lim
α→∞

2α2 sinh
(

4X
∫ Tα

0
r (s) ds

)
γ (Tα)

(11)
= lim

α→∞

2α2 sinh

(
log γ̃(Tα)

α2
4X

log
γ̃(Tα)

α2

∫ Tα
0

r (s) ds

)
γ̃ (Tα)

= lim
α→∞

2 sinh

(
log
(
γ̃(Tα)
α2

) 4X

log
γ̃(Tα)

α2

∫ Tα
0

r(s)ds
)

γ̃(Tα)
α2

= lim
α→∞

2 sinh
(

log (g (α))
z(α)

)
g (α)

, (66)

where we defined

g (α) =
γ̃ (Tα)

α2
∈ R

z (α) =
4X

log γ̃(Tα)
α2

∫ Tα

0

r (s) ds ∈ Rd .

Note that from limα→∞
α2

γ̃(Tα) = 0 we have limα→∞ g (α) = ∞ and from (65) we get

lim supα→∞ z (α) = Xν(`1). In addition, for some f > 0 and a ∈ R:

2 sinh (log fa)

f
=
fa − 1

fa

f
= fa−1 − 1

fa+1
.

Therefore in (66) we have,

ŵ = lim
α→∞

(
g (α)

z(α)−1 − 1

g (α)
z(α)+1

)
.

Next, it is easy to verify that for all i = 1, ..., d:

ŵi > 0⇒ lim sup
α→∞

zi (α) = 1

ŵi < 0⇒ lim sup
α→∞

zi (α) = −1

ŵi = 0⇒ −1 ≤ lim sup
α→∞

zi (α) ≤ 1

and so Xν(`1) ∈ ∂◦ ‖ŵ‖1.
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Complementary slackness (64): We perform similar steps to the proof of the intermediate regime
in Appendix F.2. We change variables t→ γ̃ (t) and use the weaker Condition 9, where we replace
γ̃?(α) with γ̃?1(α) and ρ0 with ρ1 (see the proof of the intermediate regime in Appendix F.2). We get
that

4

N log γ̃(Tα)
α2

∫ Tα

0

exp
(
−x>k w (s)

)
ds ≤ 1

2Nα2γ2
2 log γ̃(Tα)

α2

∫ γ̃(Tα)

0

exp
(
−x>k w (γ̃) + γ̃

)
dγ̃

≤ 1

2Nα2γ2
2 log γ̃(Tα)

α2

∫ γ̃?1 (α)

0

exp
(
−x>k w (γ̃) + γ̃

)
dγ̃

+
1

2Nα2γ2
2 log γ̃(Tα)

α2

∫ γ̃(Tα)

γ̃?1 (α)

exp
(
−x>k w (γ̃) + γ̃

)
dγ̃

=(I) + (II) (67)

Using γ̃?1 (α) = o
(
α2 log γ̃(Tα)

α2

)
we bound the first term similarly to eq. (59):

(I) ≤ γ̃?1 (α)

2Nα2γ2
2 log γ̃(Tα)

α2

α→∞→ 0 . (68)

The second term is bounded similarly to eq. (60):

(II) ≤ 1

2Nα2γ2
2 log γ̃(Tα)

α2 (ρ1 − 1)

α→∞→ 0 . (69)

By substituting eqs. (68) and (69) in eq. (67) we get that ν(`1)
k = 0.

G Proofs for D > 2

G.1 Kernel Regime Proof

Theorem 17 (Theorem 4 for D > 2). For D > 2, if γ̃(α) = o(αD) then

ŵ = argmin
w

‖w‖2 s.t. ∀n : x>nw ≥ 1 .

The proof is similar in spirit to the proof for the case D = 2 (see Appendix F.1).

Proof. We show convergence of the `2 margin γ2 (Tα) =
minn(x>nw(Tα))
‖w(Tα)‖2

to the max-margin γ2 as
α→∞. We have that

γ2 (t) =
minn

(
x>nw (t)

)
‖w (t)‖2

≥ γ̃ (t)− log(N)

‖w (t)‖2
. (70)

Lower bound on γ̃ (t): Combining eqs. (28) and (19) we get

dγ̃ (t)

dt
≥ 2D2α2D−2γ2 ‖Xr (t)‖2

⇒ γ̃ (t) ≥ 2D2α2D−2γ2

∫ t

0

‖Xr (τ)‖2 dτ . (71)

Upper bound on ‖w (t)‖2: We decompose ẇ (t) to two terms:

ẇ (t) = α2D−2D (D − 2)h
′

D

(
h−1
D

(
w (t)

αD

))
◦Xr (t)

= α2D−2D2

[
D − 2

D
h
′

D

(
h−1
D

(
w (t)

αD

))
− 2 · 1

]
◦Xr (t) + 2D2α2D−2Xr (t)
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⇒ ‖ẇ (t)‖2 ≤ α
2D−2D2

∥∥∥∥[D − 2

D
h
′

D

(
h−1
D

(
w (t)

αD

))
− 2 · 1

]
◦Xr (t)

∥∥∥∥
2

+2D2α2D−2 ‖Xr (t)‖2

⇒ ‖w (t)‖2 ≤α
2D−2D2

∫ t

0

∥∥∥∥[D − 2

D
h
′

D

(
h−1
D

(
w (τ)

αD

))
− 2 · 1

]
◦Xr (τ)

∥∥∥∥
2

dτ

+ 2D2α2D−2

∫ t

0

‖Xr (τ)‖2 dτ . (72)

Let v (t) =
∥∥∥[D−2

D h
′

D

(
h−1
D

(
w(t)
αD

))
− 2 · 1

]
◦Xr (t)

∥∥∥
2
. Then

v (t) ≤
∥∥∥∥D − 2

D
h
′

D

(
h−1
D

(
w (t)

αD

))
− 2 · 1

∥∥∥∥
∞
xmax ‖r (t)‖1

=

∥∥∥∥D − 2

D
h
′

D

(
h−1
D

(
w (t)

αD

))
− 2 · 1

∥∥∥∥
∞
xmax exp (−γ̃ (t)) .

Using Lemma 13 we get

v (t) ≤
[
D − 2

D
h
′

D

(
(D − 2) x̄

2Dγ2
2α

D
γ̃ (t)

)
− 2

]
xmax exp (−γ̃ (t)) .

We are interested in bounding
∫ t

0
v (τ) dτ . We change variables t→ γ̃ (t) and proceed using eq. (29),∫ t

0

v (τ) dτ ≤
∫ γ̃(t)

0

[
D − 2

D
h
′

D

(
(D − 2) x̄

2Dγ2
2α

D
γ̃

)
− 2

]
xmax exp (−γ̃)

2α2D−2D2γ2
2 exp (−γ̃)

dγ̃

=
xmax

2α2D−2D2γ2
2

∫ γ̃(t)

0

[
D − 2

D
h
′

D

(
(D − 2) x̄

2Dγ2
2α

D
γ̃

)
− 2

]
dγ̃

=
xmax

2α2D−2D2γ2
2

[
2γ2

2α
D

x̄
hD

(
(D − 2) x̄

2Dγ2
2α

D
γ̃ (t)

)
− 2γ̃ (t)

]
. (73)

Plugging eq. (73) in eq. (72) we get

‖w (t)‖2 ≤
xmax

2γ2
2

[
2γ2

2α
D

x̄
hD

(
(D − 2) x̄

2Dγ2
2α

D
γ̃ (t)

)
− 2γ̃ (t)

]
+ 2D2α2D−2

∫ t

0

‖Xr (τ)‖2 dτ .

(74)

Putting things together: From eqs. (70) and (12) we have

γ2 (t) ≥ γ̃ (t)− log(N)

‖w (t)‖2
≥ γ̃(t)

‖w (t)‖2
− log(N)xmax

γ̃(t)
. (75)

Next we set t = Tα and take the limit α→∞. Note that γ̃(Tα)
α→∞→ ∞ since ε(Tα)

α→∞→ 0, and
thus the right term in eq. (75) is vanishing. Using eq. (74) we get

lim
α→∞

1

γ2 (Tα)
≤ lim
α→∞

‖w (Tα)‖2
γ̃ (Tα)

≤ lim
α→∞

[
xmax

2γ2
2

[
2γ2

2α
D

x̄γ̃ (Tα)
hD

(
(D − 2) x̄

2Dγ2
2α

D
γ̃ (Tα)

)
− 2

]
+

2D2α2D−2

γ̃ (Tα)

∫ Tα

0

‖Xr (τ)‖2 dτ

]
.

We use γ̃(Tα)
α2

α→∞→ 0, eq. (9) and eq. (71) to get

lim
α→∞

1

γ2 (Tα)
≤ 1

γ2
.

It follows that limα→∞ γ2 (Tα) = γ2.
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G.2 Intermediate Regime Proof

Theorem 18 (Theorem 6 for D > 2). Under Condition 8, for D > 2 if lim
α→∞

αD

γ̃(α) = µ > 0, then

ŵ = argmin
w

QDµ (w) s.t. ∀n : x>nw ≥ 1

where QDµ (w) =
∑d
i=1 qD

(
wi
µ

)
and qD (s) =

∫ s
0
h−1
D (z) dz for hD (z) = (1− z)−

D
D−2 −

(1 + z)
− D
D−2 .

Proof. The proof is similar in spirit to the proof for the case D = 2 (see Appendix F.2). We show
that the KKT conditions hold in the limit α→∞. The KKT conditions are that there exists ν ∈ RN≥0
such that

∇QDµ (ŵ) = Xν (76)

∀n : x>n ŵ ≥ 1 (77)

∀n : νn
(
x>n ŵ − 1

)
= 0. (78)

The proof of primal feasibility (77) for D = 2 applies also here.

Stationarity condition (76): Let

ν =
D (D − 2)

µ
lim sup
α→∞

(
αD−2

∫ Tα

0

r (s) ds

)
∈ RN≥0 . (79)

We need to show that

∇QDµ (w) =
1

µ
h−1
D

(
w

µ

)
= Xν .

Indeed using Lemma 12 and eq. (11) we have

ŵ = lim
α→∞

αDhD

(
αD−2D (D − 2)X

∫ Tα
0

r (s) ds
)

γ (Tα)

= lim
α→∞

γ̃ (Tα)

γ (Tα)
lim
α→∞

αD

γ̃ (Tα)
lim sup
α→∞

hD

(
αD−2D (D − 2)X

∫ Tα

0

r (s) ds

)

= µhD

[
µX

(
D (D − 2)

µ
lim sup
α→∞

(
αD−2

∫ Tα

0

r (s) ds

))]
= µhD (µXν)

and thus 1
µh
−1
D

(
ŵ
µ

)
= Xν, as desired.

Complementary slackness (78): Let k ∈ [N ] such that

x>k ŵ > 1 . (80)
We have to show that νk = 0. We change variables t→ γ̃ (t) and using eq. (29) we get

αD−2

∫ Tα

0

exp
(
−x>k w (s)

)
ds ≤ 1

2D2αDγ2
2

∫ γ̃(Tα)

0

exp
(
−x>k w (γ̃) + γ̃

)
dγ̃ . (81)

Next we decompose the RHS of eq. (81) and employ Condition 8, where similarly to the case D = 2
we replace γ̃?(α) with γ̃?1 (α) and ρ0 with ρ1 (see the proof of the intermediate regime for D = 2 in
Appendix F.2). We get that

1

2D2αDγ2
2

∫ γ̃(Tα)

0

exp
(
−x>k w (γ̃) + γ̃

)
dγ̃ =

1

2D2αDγ2
2

∫ γ̃?1 (α)

0

exp
(
−x>k w (γ̃) + γ̃

)
dγ̃

+
1

2D2αDγ2
2

∫ γ̃(Tα)

γ̃?1 (α)

exp
(
−x>k w (γ̃) + γ̃

)
dγ̃

= (I) + (II) (82)
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From eq. (10) we have that exp
(
−x>k w (γ̃) + γ̃

)
≤ N and thus

(I) ≤ 1

2D2αDγ2
2

∫ γ̃?1 (α)

0

Ndγ̃ =
Nγ̃?1 (α)

2D2αDγ2
2

α→∞→ 0 (83)

since γ̃?1 (α) = o(αD). For the second term in eq. (82) we get for large enough α,

(II) =
1

2D2αDγ2
2

∫ γ̃(Tα)

γ̃?1 (α)

exp

[
−
(
x>k

w (γ̃)

γ̃
− 1

)
γ̃

]
dγ̃

≤ 1

2D2αDγ2
2

∫ γ̃(Tα)

γ̃?1 (α)

exp [− (ρ1 − 1) γ̃] dγ̃

≤ 1

2D2αDγ2
2

∫ ∞
0

exp [− (ρ1 − 1) γ̃] dγ̃

=
1

2D2αDγ2
2 (ρ1 − 1)

α→∞→ 0 . (84)

By substituting eqs. (83) and (84) in eq. (82) and back in eq. (81) we get that νk = 0.

G.3 Rich Regime Proof

Theorem 19 (Theorem 7 for D > 2). Under Condition 8, for D > 2 if γ̃(α) = ω(αD) then

ŵ = argmin
w

‖w‖1 s.t. ∀n : x>nw ≥ 1 . (85)

Proof. We show that the KKT conditions (62), (63), (64) for the `1 max-margin problem (85) hold
in the limit α→∞. To this end let

ν(`1) = D (D − 2) lim sup
α→∞

(
αD−2

∫ Tα

0

r (s) ds

)
∈ RN≥0 . (86)

Note that this definition is similar to eq. (79), and if νk = 0 for some k then also ν(`1)
k = 0. Therefore

it is left to show the stationarity condition Xν(`1) ∈ ∂◦ ‖ŵ‖1. Indeed, from eq. (24) we know that
−1 ≤

[
Xν(`1)

]
i
≤ 1 for all i. In addition

ŵ = lim
α→∞

αDhD

(
αD−2D (D − 2)X

∫ Tα
0

r (s) ds
)

γ (Tα)

(11)
= lim

α→∞

(
αD

γ̃ (Tα)
hD

(
αD−2D (D − 2)X

∫ Tα

0

r (s) ds

))
.

Assume that ŵi > 0. As limα→∞

(
αD

γ̃(Tα)

)
= 0 we must have that[

αD−2D (D − 2)X

∫ Tα

0

r (s) ds

]
i

α→∞→ 1

and thus
[
Xν(`1)

]
i

α→∞→ 1. Similarly, if ŵi < 0 we get
[
Xν(`1)

]
i

α→∞→ −1. It follows that
Xν(`1) ∈ ∂◦ ‖ŵ‖1.

H Additional Simulation Results and Details

H.1 Optimization trajectories with γ̃ indicators

In Figure 6 we repeat the optimization trajectories from Figure 3, but we add indicators that indicate
the value of γ̃ along the path. Recall that γ̃(t) = − log ε(t). For example, a number 10 near some
point on the path means that the loss at this point is exp(−10).
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In all three examples we observe that for α = 100, where the trajectory first visits the `2 predictor,
around the `2 predictor we have γ̃ = 104 = α2, as suggested by our theoretical results. In the
top figure we also plot the path for α = 10000, and again around the `2 predictor it holds that
γ̃ = 108 = α2.

In addition we can see that in order to be rather close to `1 with large initialization, we need very
large γ̃, corresponding to extremely small loss ε. For example, consider the center plot. For α = 100
to be close to `1 direction we need γ̃ = 108, or ε = exp

(
−108

)
! However, with small initialization,

e.g., α = 0.001, γ̃ can be as small as 0.1, or ε = exp(−0.1) ≈ 0.9, and we are close to `1.

H.2 Understanding the non-unique `1 case

In Figure 3(c) we showed an example of optimization trajectories for data with non-unique `1
predictor. We can observe that for different initializations, the selected `1 direction, and thus the
implicit bias, is different.

It is interesting to understand what are the properties of different `1 solutions. To this end, in Figure 7
we plot the optimization trajectory in a different way. Instead of looking at the direction of the
predictor (as in Figure 3(c)), we consider the excess `1 and `2 norms along the path, defined as
‖w(t)‖1/‖w`1‖1 − 1 and ‖w(t)‖2/‖w`2‖2 − 1 where w`1 and w`2 are the `1 and `2 max-margin
(minimum norm) solutions accordingly.

We can observe that for large initialization, where we follow the Qµ path, the selected `1 predictor
has the smallest `2 norm. Moreover, for small initialization, the selected `1 predictor has the largest
`2 norm. Thus, in this case, we see an example where the asymptotic (at a long time/small loss)
implicit bias is affected by the initialization. This in contrast to previous results for exp-tailed losses
(e.g., [13, 16, 19, 20, 28]), where the asymptotic bias was independent of the initialization.

H.3 Local minima in high dimension

In Figure 8 we consider optimization trajectories for data in dimension 10. In this case we cannot
show the direction of the predictor w(t)

‖w(t)‖2 on a sphere, as we did for data in dimension 3. Instead,
we take the approach similar to Figure 7, where we show the excess margins.

We consider two datasets in dimension 10. The first is a random, yet separable, data composed of 10
points where the coordinates are drawn from ∼ U(0, 1). The second dataset is a sparse dataset of 4
points, where the first coordinate is 1 and the other 9 coordinates are random noise ∼ U(0, 0.5). This
dataset allows a large separation between the `2 max-margin and `1 max-margin solutions.

We train depth-3 linear diagonal network and plot the optimization trajectories in `2/3-`2 plane. We
observe that for the random data (Figure 8(a)), there are many local minima of the max `2/3 margin,
and depending on initialization we are biased towards different local-minima points. However, with a
large initialization we converge to a local point, quite close to the Qµ path and `1.

For the sparse data (Figure 8(b), and a zoom-in shown in Figure 8(c)) the local minima are quite far
away from the paths. Also, in this case, the `1 and `2/3 max-margin solutions are the same, and with
a large initialization we converge to them, along the Qµ path. This seems to suggest that for certain
structure data, like sparse data, we tend to converge to the global max `2/3-margin predictor.

H.4 Tangent kernel during training

In Figure 5(a) we showed how the excess `1-norm depends on α and depthD, and measured closeness
to the rich limit by excess `1-norm. An alternative and complementary approach is to look at the
tangent kernel Kt(x,x

′) = 〈∇uf(u(t),x),∇uf(u(t),x′)〉, which is directly related to closeness to
the kernel regime. As discussed in Section 2, the tangent kernel is almost fixed in the kernel regime,
yet can change significantly when we exit the kernel regime.

In Figure 9 we show the kernel distance during optimization for the same data and network (depth
2) as in Figure 5(a). The kernel distance is defined as 1 − CosineSimilarity (K(t),K(0)) where
K(0) ∈ RN×N is the tangent kernel at initialization, K(t) ∈ RN×N is the tangent kernel at time t,
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and

CosineSimilarity (K(t),K(0)) =
〈K(t),K(0)〉
‖K(t)‖2‖K(0)‖2

=
Tr
(
K(t)K>(0)

)
‖K(t)‖2‖K(0)‖2

.

Here we focus on exiting the kernel regime, rather than closeness to the rich regime. We observe
that increasing depth will help to exit the kernel regime (where distance ≈ 0) earlier, at a larger loss
value ε. Decreasing the initialization has a similar effect, and this is consistent with Figure 5(a).

H.5 Addressing Numerical Issues

In our simulations we employ the normalized gradient descent update rule, given by

u (t+ 1) = u (t)− η∇L (u (t))

L (u (t))

where u ∈ R2d is the vector of parameters and

L (u (t)) =
1

N

N∑
n=1

exp
(
−x̃>nuD (t)

)
.

This algorithm effectively enlarges the learning rate according to the current loss, and for single layer
linear models Nacson et al. [21] showed that the loss decreases exponentially faster.

Let G (u (t)) = ∇L(u(t))
L(u(t)) . During training the loss can become extremely small, e.g., well beyond

10−1000, and in this case also the gradient is very small. This can cause numerical issues in calculating
G. In order to have a numerically stable evaluation ofG, and avoid cases like 0/0, we take an approach
similar to [19]. Specifically, let

γ̄n(t) = x̃>nu
D (t) , γ(t) = min

n
γ̄n(t)

Then we have that

∇L (u (t)) = −D
N

uD−1 (t) ◦
N∑
n=1

exp (−γ̄n(t)) x̃n

and

G (u (t)) = −DuD−1 (t) ◦
∑N
n=1 exp (−γ̄n(t)) x̃n∑N
n=1 exp (−γ̄n(t))

= −DuD−1 (t) ◦
∑N
n=1 exp (− (γ̄n(t)− γ(t))) x̃n∑N
n=1 exp (− (γ̄n(t)− γ(t)))

. (87)

We calculate G according to (87). Note that maxn exp (− (γ̄n(t)− γ(t))) = 1 so the denominator is
at least 1 and the sum in the numerator will contain at least one support vector x̃n:γ̄n(t)=γ(t).

It is important to note that we never represent the loss values, but only the parameters u. Thus, as long
as u can be represented by float64 precision, the simulation can continue, and we get extremely
large parameters corresponding to an extremely small loss.
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Figure 6: The same optimization trajectories from Figure 3 with γ̃ values indications.
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Figure 8: Optimization trajectories for data in dimension 10.
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