
Supplementary Materials

A Detailed Background

In this section, we provide a more detailed background on linear quadratic RARL and the correspond-
ing zero-sum LQ games.

A.1 LQ RARL and Robust Control

Consider a linear dynamical system

xt+1 = Axt +But + Cwt, (A.1)

where the system state is xt ∈ Rd, the control input of the agent at time t is ut ∈ Rm1 , the
disturbance or any unmodeled error at time t is denoted by wt ∈ Rm2 . The matrices satisfy
A ∈ Rd×d, B ∈ Rd×m1 , and C ∈ Rd×m2 . We define the one-stage cost as ct(xt, ut, wt) :=
x>t Qxt +u>t R

uut−w>t Rwwt with some positive definite matrices Q ∈ Rd×d, Ru ∈ Rm1×m1 , and
Rw ∈ Rm2×m2 . Then the objective of the learning agent is to find {ut}t≥0 to minimize a cumulated
cost subject to the worst-case disturbance:

min
{ut}t≥0

sup
{wt}t≥0

C({ut}t≥0, {wt}t≥0) := E
[ ∞∑
t=0

ct(xt, ut, wt)

]
, (A.2)

where the expectation is taken over the trajectory {xt}t≥0. For simplicity, we assume here that the only
randomness stems from the initial state x0 ∼ D, with some distribution D and E[x0x

>
0 ] = Σ0 > 0.

In the zero-sum LQ dynamic game above, the disturbance is viewed as another player of the game
besides the learning agent. The disturbance player, referred to as adversary hereafter, always plays
against the agent by maximizing the long-term accumulated cost in (A.2). If the LQ game admits the
Nash equilibrium (NE) control-disturbance sequences {u∗t }t≥0 and {w∗t }t≥0 such that the following
inequality holds for any control-disturbance sequences {ut}t≥0 and {wt}t≥0,

C({u∗t }t≥0, {wt}t≥0) ≤ C({u∗t }t≥0, {w∗t }t≥0) ≤ C({ut}t≥0, {w∗t }t≥0), (A.3)

then the value of the game exists and can be calculated as C({u∗t }t≥0, {w∗t }t≥0) =
inf{ut}t≥0

sup{wt}t≥0
C({ut}t≥0, {wt}t≥0) = sup{wt}t≥0

inf{ut}t≥0
C({ut}t≥0, {wt}t≥0).

Clearly, the NE control sequence {u∗t }t≥0 solves the original robust optimization problem (A.2). In
the above setup, the “robust" control sequence coexists with the worst-case disturbance, i.e., the
solution to the problem is a pair of sequences ({u∗t }t≥0, {w∗t }t≥0).

By (A.3), the NE control sequence {u∗t }t≥0 is robust to any disturbance, since even the worst-case
disturbance {w∗t }t≥0 cannot drive the objective to infinity. Now we further explain the properties of
{u∗t }t≥0 from a robust control perspective. Consider the minimization of E

∑∞
t=0(x>t Qxt+u

>
t R

uut)
subject to (2.1). If {wt}t≥0 is an i.i.d. Gaussian process, the problem becomes the state-feedback
LQ Gaussian one, which shares the same solution as LQR. However, the statistical assumption on
{wt}t≥0 can be unrealistic. The robust control framework removes this statistical assumption and
considers the worst-case sequence from all {wt}t≥0 with bounded energy. Suppose the LQ game
(A.2) admits the NE control-disturbance sequences ({u∗t }t≥0, {w∗t }t≥0). Let {xt}t≥0 be generated
by the NE control sequence {u∗t }t≥0 and some disturbance sequence {wt}t≥0. We have the following
inequality.

∞∑
t=0

(x>t Qxt + (u∗t )
>Ruu∗t ) ≤ C({u∗t }t≥0, {w∗t }t≥0) +

∞∑
t=0

||wt||2Rw

Therefore, when {u∗t }t≥0 is applied, any disturbance {wt}t≥0 can only further degrade the cost∑∞
t=0(x>t Qxt + (u∗t )

>Ruu∗t ) from the value C({u∗t }t≥0, {w∗t }t≥0) by an amount quantified by the
weighted energy

∑∞
t=0 ||wt||2Rw . This provides some rationale for the game formulation of the robust

control problem.

14



A.2 Solution to LQ Dynamic Game

The solution to the above LQ game is characterized by the minimal positive semidefinite solution to
the following generalized algebraic Riccati equation (GARE)

P ∗ = A>P ∗A+Q−
[
A>P ∗B A>P ∗C

] [Ru +B>P ∗B B>P ∗C
C>P ∗B −Rw + C>P ∗C

]−1 [
B>P ∗A
C>P ∗A

]
.

(A.4)
To ensure that the NE exists, we make the following standard assumption in robust control [63, 7, 64],
which will be assumed throughout the paper.
Assumption A.1. There exists a minimal positive semidefinite solution P ∗ to (A.4) that satisfies
Rw − C>P ∗C > 0.

The existence of the NE ensures the existence of the game value. More importantly, under Assumption
A.1, the NE control-disturbance sequences can be generated by state-feedback in closed-forms. We
rephrase Theorem 3.7 in [7] to validate this.
Lemma A.2. Under Assumption A.1, for any x0 ∈ Rd, as Q > 0, it follows that the LQ game
admits the NE control-disturbance pair ({u∗t }t≥0, {w∗t }t≥0) generated by

u∗t = −K∗xt, w∗t = −L∗xt, (A.5)

where K∗ ∈ Rm1×d and L∗ ∈ Rm2×d are given by

K∗ =
{
Ru +B>[P ∗ − P ∗C(−Rw + C>P ∗C)−1C>P ∗]B

}−1

B>P ∗[A− C(−Rw + C>P ∗C)−1C>P ∗A], (A.6)

L∗ =
{
−Rw + C>[P ∗ − P ∗B(Ru +B>P ∗B)−1B>P ∗]C

}−1

C>P ∗[A−B(Ru +B>P ∗B)−1B>P ∗A]. (A.7)

Moreover, we have C({u∗t }t≥0, {w∗t }t≥0) = x>0 P
∗x0, and the pair (K∗, L∗) is stabilizing, i.e.,

ρ(A−BK∗ − CL∗) < 1.

As per Lemma A.2, it suffices to find the pair of stabilizing control gain matrices (K,L), such that
(A.6)-(A.7) holds. One can apply policy-based RARL algorithms to directly search for such an NE
in the matrix space Rm1×d × Rm2×d.

A.3 Policy-Based LQ RARL

By Lemma A.2, it suffices to find the NE (K∗, L∗) within the stabilizing state feedback policies
dictated by ut = −Kxt, andwt = −Lxt, with (K,L) ∈ Rm1×d×Rm2×d and ρ(A−BK−CL) < 1.
This can be viewed as a basic benchmark for the policy-based RARL. Specifically, the protagonist
aims at finding the robust control policy K, and the adversary tries to find the worst-case attack
policy L. The objective of LQ RARL is to find (K∗, L∗) using policy-based methods that solve the
following minimax problem

min
K

max
L
C(K,L) (A.8)

such that for any stabilizing K ∈ Rm1×d and L ∈ Rm2×d, C(K∗, L) ≤ C(K∗, L∗) ≤ C(K,L∗).
The original RARL algorithm in [2] is applicable. Specifically, it alternates between the two players:
the adversary improves its disturbing policy L with the agent’s policy K fixed; the agent then learns
its policyK while holding the adversary’s policy L fixed. This sequence is repeated until convergence
(if they do). We summarize such a scheme for LQ RARL as Algorithm 1. Note that we abstract out
the update rule for Kn and Ln as PolicyOptimizer functions, which can be policy gradient, or natural
PG updates that have been widely used in solving LQ problems [10, 15, 33]. We will present details
for the PolicyOptimizer functions later in this section.

Here, we will reexamine the stability and convergence of the above algorithm and its variants on the
proposed LQ RARL model. A few facts will be useful for our developments. First, the cost in (A.2)
can be rewritten as

C(K,L) := Ex0∼D

[ ∞∑
t=0

x>t (Q+K>RuK − L>RwL)xt

]
.

15



Algorithm 1 Policy-Based LQ RARL Scheme [2]

Input: LQ RARL environment, initial policies (K0, L0)
for n = 1, . . . , N do

Update Ln ← Ln−1

for j = 1, . . . , NL do
Update Ln ← PolicyOptimizer(Kn−1, Ln)

end for
Update Kn ← Kn−1

for i = 1, . . . , NK do
Update Kn ← PolicyOptimizer(Kn, Ln)

end for
end for
Return: policy pair (KN , LN )

Let PK,L be the unique solution to the Lyapunov equation

PK,L = Q+K>RuK − L>RwL+ (A−BK − CL)>PK,L(A−BK − CL). (A.9)

Then for any stablilizing policy pair (K,L), it follows that C(K,L) = Ex0∼D
(
x>0 PK,Lx0

)
. In

addition, we define ΣK,L as the state correlation matrix, i.e., ΣK,L := Ex0∼D
∑∞
t=0 xtx

>
t . Then the

policy gradient for the LQ RARL model can be calculated using the following lemma.
Lemma A.3. [33, 35] For discrete-time zero-sum LQ games, at any stabilizing policy pair (K,L)
with ρ(A − BK − CL) < 1, let AL := A − CL and AK := A − BK, the policy gradients of
C(K,L) have the following forms

∇KC(K,L) = 2[(Ru +B>PK,LB)K −B>PK,LAL]ΣK,L

∇LC(K,L) = 2[(−Rw + C>PK,LC)L− C>PK,LAK ]ΣK,L.

Now we are ready to present details for the PolicyOptimizer functions. When K is fixed, the
PolicyOptimizer updates L using either policy gradient or NPG:

L′ =

{
L+ η∇LC(K,L)Σ−1

K,L if NPG
L+ η∇LC(K,L) if PG

;

when L is fixed, the PolicyOptimizer updates K as:

K ′ =

{
K − η∇KC(K,L)Σ−1

K,L if NPG
K − η∇KC(K,L) if PG

,

where η > 0 is some properly chosen stepsize. In practice,∇LC(K,L),∇KC(K,L), and ΣK,L can
all be efficiently estimated from sample trajectories [10, 39]. As the focus of this paper is on the
fundamental stability and optimization landscape, we assume exact updates in PolicyOptimizer are
accessible. Note that by Lemma 3.2 in [33], the cost C(K,L) is nonconvex w.r.t. K and nonconcave
w.r.t. L, which makes finding the global Nash equilibrium NP-hard in general. However, we still have
the following desired landscape of zero-sum LQ games, namely, that the stationary point implies the
global NE under certain conditions. We summarize these existing results as follows for completeness.
Lemma A.4 ([33], Lemma 3.2). There exists a L ∈ Rm2×d such that minK C(K,L) is a noncon-
vex minimization problem; there exists a K ∈ Rm1×d, such that maxL C(K,L) is a nonconcave
maximization problem.
Lemma A.5 ([33], Lemma 3.3). For a stabilizing policy pair (K,L), i.e., ρ(A−BK − CL) < 1,
suppose ΣK,L is full-rank and (−Rw +C>PK,LC) is invertible. If∇KC(K,L) = ∇LC(K,L) = 0
and the induced PK,L defined in (2.5) is positive semidefinite, then (K,L) constitutes the control
gain pair at the Nash equilibrium.

A.4 Understanding the Robust Stability Condition in Definition 3.3

Now we provide more explanations for understanding the robust stability condition in Definition
3.3, related to H∞-control and the small gain theorem. From the Bounded Real Lemma (Lemma

16



3.5), the robust stability condition is equivalent to the feasibility of the LMI condition M(P,K) < 0
with some P > 0. Based on this LMI condition, one can apply either S-procedure or the dissipation
inequality argument to show that the dynamics xt+1 = Axt +But + Cwt is robustly stable for all
{wt}t≥0 satisfying a small gain condition, i.e.,

∑N
t=0 w

>
t R

wwt ≤
∑N
t=0 x

>
t (Q+K>RK)xt for all

N . This can be viewed as a variant of the well-known small gain theorem [65]. Notice that the above
small gain condition on {wt}t≥0 is general enough to cover many types of uncertainty models used
in robust control. For illustrative purposes, we review a few well-known examples here.

• Parametric uncertainty: Consider a linear system xt+1 = (Â−BK)xt where K is designed
to control the system. Typically one does not know Â exactly. In contrast, one has Â =

A + Aδ where A is some estimation of Â and Aδ captures the uncertainty in the system
dynamics. Although the exact value of Aδ is not known, the norm of this matrix is small and
can be bounded above. Therefore, the system dynamics becomes xt+1 = (A−BK)xt+wt
with wt = Aδxt. In this case, one can choose Rw properly so that the norm bound for Aδ is
transformed into the small gain condition on {wt}t≥0.

• Time-varying parameters: In the above example, we can further allow Aδ to change over
time, i.e. wt = (A

(t)
δ )xt. As long as there is a uniform upper bound on the norm of A(t)

δ ,
we will be able to obtain a small gain condition on {wt}t≥0.
• Dynamical uncertainty: Sometimes even the order of the model may be uncertain. For

example, one may use a rigid body model for control purposes when there are flexible modes
in the true dynamics. In this case, wt is not completely determined by xt. Importantly,
the computation of wt may require that the past information of the sequence {xt}t≥0, and
{wt}t≥0 may be generated as the output of some dynamical system whose state dimension is
even unknown. However, one may still be able to obtain some upper bound on theH∞-norm
of this unknown system and use this information to get the small gain condition on {wt}t≥0.

• Nonlinearity: Sometimes the true system is nonlinear and governed by the model xt+1 =
(A − BK)xt + φ(xt) where φ is some nonlinear function. Then one can model wt as
wt = φ(xt) and use the property of φ to construct the small gain condition.

From the above discussion, one can see that the robust stability condition in Definition 3.3 can
ensure that the controller K robustly stabilizes the system, even in the presence of “small” model
uncertainty and system nonlinearity. From a game-theoretic perspective, the robust stability condition
also ensures that the inner-loop problem maxL C(K,L) is well-defined, see Lemma 3.4, which is
substantiated as follows.

A.4.1 Proof of Lemma 3.4

The proof follows by applying Theorem 3.7 in [7] on the new system with the matricesA, B, Q, γ2I
in the book being replaced by A−BK, 0, Q+K>RuK, Rw. As Q > 0, the pair (A−BK,Q+
K>RuK) is detectable. Thus, for this fixed K, the GARE (3.52b) in [7] reduces to the ARE (3.1),
and the condition (3.53) therein is equivalent to our Rw − C>P ∗KC > 0 condition in Definition 3.3,
for the minimal positive definite solution P ∗K (note that by (ii) of Theorem 3.7 in [7], existence of a
positive semidefinite solution satisfying this condition is equivalent to the existence of a minimal
one that satisfies this). Thus, by applying Theorem 3.7 (ii), the inner-loop problem admits a finite
value, given by Ex0∼D

(
x>0 P

∗
Kx
)
. Applying Theorem 3.7 (iv) gives the form of the maximization

feedback solution (Eq. (3.51b) therein), as given in the lemma. By the theory of ARE [66, 63], we
know that this L(K) is stabilizing, and is unique among all stabilizing disturbance gain matrices
L for the system (A − BK,C), i.e., those that make ρ(A − BK − CL) < 1. Indeed, for any
stabilizing L, by comparing the Lyapunov equation (A.9) with the Riccati equation (3.1), letting
AK,L = A−BK − CL, we have

P ∗K − PK,L = A>K,L(P ∗K − PK,L)AK,L − (L(K)− L)>(−Rw + C>P ∗KC)(L(K)− L),

which, by Rw − C>P ∗KC > 0, implies P ∗K ≥ PK,L. This further means that for all stabilizing L,

Rw − C>PK,LC > 0. (A.10)
On the other hand, for fixed K and Σ0 > 0 (thus ΣK,L > 0), by setting the gradient∇LC(K,L) = 0

and Lemma A.3, we know that all the stationary points (if there are multiple) Ľ satisfy
(−Rw + C>PK,ĽC)L− C>PK,ĽAK = 0. (A.11)

17



Moreover, suppose that there are two such stabilizing stationary-points Ľ1, Ľ2. By comparing (A.9)
associated with Ľ1, Ľ2, we have
PK,Ľ1

− PK,Ľ2
= A>

K,Ľ2
(PK,Ľ1

− PK,Ľ2
)AK,Ľ2

− (Ľ1 − Ľ2)>(−Rw + C>PK,Ľ1
C)(Ľ1 − Ľ2),

PK,Ľ2
− PK,Ľ1

= A>
K,Ľ1

(PK,Ľ2
− PK,Ľ1

)AK,Ľ1
− (Ľ2 − Ľ1)>(−Rw + C>PK,Ľ2

C)(Ľ2 − Ľ1),

where (A.11) has been substituted in. This further implies PK,Ľ1
≥ PK,Ľ2

and PK,Ľ1
≤ PK,Ľ2

,
respectively, sinceRw−C>PK,ĽiC > 0 for both i = 1, 2 (by (A.10)). This shows that the stationary
point is in fact unique. This unique stationary point thus has to be that L(K) given before, which
completes the proof.

B Proofs

In this section, we provide proofs for the theoretical results in the main paper.

B.1 Proof of Lemma 4.1

Our proof is inspired by the matrix inequality technique developed in [34]. By Lemma 3.5, Kn+1

satisfies the robust stability condition if there exists P > 0 such that M(P,Kn+1) < 0. Obviously,
the Riccati equation (3.1) can be used to show P ∗Kn ≥ 0 and M(P ∗Kn ,Kn) ≤ 0. Due to the
NPG update (4.1), we can further verify M(P ∗Kn ,Kn+1) ≤ 0 using the Schur complement lemma.
Next, notice P ∗Kn can be further perturbed into a solution for the strict matrix inequality condition.
Since ρ(A − BKn − CL(Kn)) < 1, we can obtain a positive definite matrix P̄Kn satisfying the
Lyapunov equation (A− BKn − CL(Kn))>P̄Kn(A− BKn − CL(Kn))− P̄Kn = −I . We can
show M(P ∗Kn + αP̄Kn ,Kn+1) < 0 for sufficiently small α > 0. Therefore, Kn+1 satisfies the
robust stability condition. More details are provided as follows.

We now need to show that there exists a positive definite matrix P such that M(P,Kn+1) < 0. Our
proof includes two steps. In the first step, we prove the non-strict matrix inequalityM(P ∗Kn ,Kn+1) ≤
0. In the second step, we perturb P ∗Kn such that the strict matrix inequality condition holds.

Step 1: Feasibility of the non-strict matrix inequality. In this step, we verify M(P ∗Kn ,Kn+1) ≤
0. By Schur complement lemma, we only need to verify C>P ∗KnC −R

w ≤ 0 (which is obviously
true due to the robust stability condition on Kn) and another matrix inequality M1(P ∗Kn ,Kn+1) ≤ 0
where M1 maps any pair (P,K) to another matrix as

M1(P,K) = (A−BK)>P (A−BK)− P +Q+K>RuK

− (A−BK)>PC(C>PC −Rw)−1C>P (A−BK).

For clarification, we note that M1(P ∗Kn ,Kn+1) ≤ 0 is equivalent to the following matrix inequality:

(A−BKn+1)>P ∗Kn(A−BKn+1)− P ∗Kn +Q+K>n+1R
uKn+1

≤ (A−BKn+1)>P ∗KnC(C>P ∗KnC −R
w)−1C>P ∗Kn(A−BKn+1).

As discussed in the main paper, P ∗Kn is the unique stabilizing positive semidefinite solution to the
Riccati equation M1(P ∗Kn ,Kn) = 0. Recall that Kn+1 is updated using the NPG rule

Kn+1 = Kn − η∇KC(Kn, L(Kn))Σ−1
Kn,L(Kn)

= Kn − 2η((Ru +B>P ∗KnB)Kn −B>P ∗Kn(A− CL(Kn)))

= Kn − 2η((Ru +B>P̃ ∗KnB)Kn −B>P̃ ∗KnA),

where L(Kn) = (−Rw+C>P ∗KnC)−1C>P ∗Kn(A−BKn) and P̃ ∗Kn = P ∗Kn +P ∗KnC(C>P ∗KnC−
Rw)−1C>P ∗Kn . Therefore, a straightforward calculation yields

M1(P ∗Kn ,Kn+1)−M1(P ∗Kn ,Kn)

= (Kn −Kn+1)>B>P̃ ∗Kn(A−BKn) + (A−BKn)>P̃ ∗KnB(Kn −Kn+1)

+ (Kn −Kn+1)>(B>P̃ ∗KnB +Ru)(Kn −Kn+1) + (Kn+1 −Kn)>RuKn

+K>n R
u(Kn+1 −Kn).

18



Notice the following relation:

(Kn −Kn+1)>B>P̃ ∗Kn(A−BKn) + (Kn+1 −Kn)>RuKn

= (Kn+1 −Kn)>((B>P̃ ∗KnB +Ru)Kn −B>P̃ ∗KnA).

Therefore, we can show

M1(P ∗Kn ,Kn+1)−M1(P ∗Kn ,Kn) = E>Kn,L(Kn)

(
−4ηI + 4η2(B>P̃ ∗KnB +Ru)

)
EKn,L(Kn)

where

EKn,L(Kn) = (Ru +B>P ∗KnB)Kn −B>P ∗Kn(A− CL(Kn))

= (Ru +B>P̃ ∗KnB)Kn −B>P̃ ∗KnA.

Based on the assumption on η, we know −4ηI + 4η2(B>P̃ ∗KnB +Ru) ≤ 0. Therefore, we have

M1(P ∗Kn ,Kn+1) = M1(P ∗Kn ,Kn) + E>Kn,L(Kn)

(
−4ηI + 4η2(B>P̃ ∗KnB +Ru)

)
EKn,L(Kn)

≤M1(P ∗Kn ,Kn) = 0.

Step 2: Feasibility of the strict matrix inequality via perturbation. As ρ(A − BKn −
CL(Kn)) < 1, we know that there exists a unique positive definite matrix P̄Kn such that the
following equation holds

(A−BKn − CL(Kn))>P̄Kn(A−BKn − CL(Kn))− P̄Kn = −I.

If we choose a sufficiently small positive scalar ε > 0, then we will haveM(P ∗Kn+εP̄Kn ,Kn+1) < 0.
In other words, we can perturb the non-strict matrix inequality solution P ∗Kn into a strict matrix
inequality solution P ∗Kn+εP̄Kn . To prove this, we only need to verifyC>(P ∗Kn+εP̄Kn)C−Rw < 0

andM1(P ∗Kn+εP̄Kn ,Kn+1) < 0. We knowC>P ∗KnC−R
w < 0 and hence there exists a sufficiently

small ε such that C>(P ∗Kn + εP̄Kn)C −Rw < 0. Next, after some lengthy (but tedious) calculations,
we can use the matrix inversion lemma to show

M1(P ∗Kn + εP̄K,n,Kn+1)

= M1(P ∗Kn ,Kn+1) + ε
(
(A−BKn − CL(Kn))>P̄Kn(A−BKn − CL(Kn))− P̄Kn

)
+ o(ε)

= M1(P ∗Kn ,Kn+1) + εI + o(ε2).

Therefore, M1(P ∗Kn + εP̄K,n,Kn+1) > 0 for a sufficiently small ε. This completes the proof.

Remark B.1 (Comparison to Existing Results). Notice that a similar result is also established in
Section 9 (Lemma 9.2) of [35]. However, the proof techniques therein is based on a contradiction
argument, and is different from our linear matrix inequality-based techniques, which we first devel-
oped in [34]. In addition, the assumption (Assumption 1) in [35] is intended for general zero-sum
LQ games, while our assumption (Assumption A.1) follows the standardH∞-control literature. The
robust stability condition adopted in our theory has additional robust control implications and has
been used to develop our proposedH∞-based initialization technique. Note that both results improve
the previous results in [33], where the equivalent notion of “robust stability” was enforced by a
projection step, which can be restrictive and also has few robust control implications.

B.2 Proof of Theorem 4.2

With Lemma 4.1 being proved, this theorem can now be proved using the cost difference lemma
(see Lemma 6.7 in [33] and Lemma 5.1 in [34]) and a standard sublinear rate argument routine (e.g.
see Section 6.3 in [33] and Section 5.2 in [34]). Specifically, we can merge the Riccati equations
M1(P ∗Kn+1

,Kn+1) = 0 and M1(P ∗Kn ,Kn) = 0 to obtain the one-step descent Tr(P ∗Kn+1
) −

Tr(P ∗Kn) ≤ −2ηTr
(
E>Kn,L(Kn)EKn,L(Kn)

)
. In fact, following Section 5.2 in [34], a matrix-

wise descent is guaranteed, i.e., P ∗Kn+1
≤ P ∗Kn . This implies a uniform stepsize choice of η ≤

19



1/(2‖Ru +B>P̃ ∗K0
B‖). Therefore, we can sum up the inequality from n = 0 to some N > 0, and

obtain the following result

1

N + 1

N∑
n=0

Tr
(
E>Kn,L(Kn)EKn,L(Kn)

)
≤

Tr(P ∗K0
)

2η(N + 1)
,

which demonstrates that the outer-loop iteration Kn converges to the stationary point K∗ satisfying
EK∗,L(K∗) = 0 with the O(1/N) rate as promised. Note that by Lemma A.5, this stationary point is
the unique NE solution K∗, which completes the proof.

B.3 Proof of Lemma 4.4

We first prove the following supporting lemma.
Lemma B.2. Given a fixed policy K, let AK = A−BK. Suppose K satisfies the robust stability
condition (thus Rw − C>P ∗KC > 0). For any L satisfying ρ(AK − CL) < 1, PK,L ≤ P ∗K , and
Rw − C>PK,LC > 0, if ηL ≤ 1/(2‖Rw − C>PK,LC‖), then

C(K,L(K))− C
(
K,L+ ηL∇LC(K,L)Σ−1

K,L

)
≤ (1− C0ηL)(C(K,L(K))− C(K,L)), (B.1)

where C0 = 2µ‖ΣK,L(K)‖−1λmin

(
Rw − C>P ∗KC

)
with µ := λmin (Σ0) > 0.

Proof. Since K is fixed, the dynamical model becomes xt+1 = AKxt + Cwt. The one-stage cost
is x>t (Q+K>RuK)xt + w>t (−Rw)wt. Since (Q+K>RuK) is positive definite and (−Rw) is
negative definite, the inner-loop optimization is a nonstandard LQR problem, with a negative definite
cost weighting matrix −(Q + K>RuK). The cost difference formula for the standard LQR still
applies [10, 33, 35, 67]. Specifically, if (K,L) and (K,L′) are both stabilizing, one can verify that
PK,L′ − PK,L (B.2)

=

∞∑
k=0

((AK − CL′)>)k
(
∆>LEK,L + E>K,L∆L + ∆>L (C>PK,LC −Rw)∆L

)
(AK − CL′)k,

where EK,L = (−Rw + C>PK,LC)L− C>PK,LAK and ∆L = L′ − L. In the above formula, the
only requirement on L′ is ρ(AK − CL′) < 1.

Step 1: Stability of the NPG update. We first use (B.2) to show (K,L+ ηL∇LC(K,L)Σ−1
K,L) is

stabilizing given ηL ≤ 1/(2‖Rw − C>PK,LC‖). Since ρ(AK − CL) < 1 and the spectral radius is

continuous, there exists ζ such that ρ
(
AK − C(L+ ηL∇LC(K,L)Σ−1

K,L)
)
< 1 for any ηL < ζ and

ρ
(
AK − C(L+ ζ∇LC(K,L)Σ−1

K,L)
)

= 1. Now we use contradiction to show ζ > 1/(2‖Rw −
C>PK,LC‖). Suppose ζ ≤ 1/(2‖Rw − C>PK,LC‖). Consider L′ = L+ ηL∇LC(K,L)Σ−1

K,L =

L + 2ηLEK,L where ηL < ζ. Clearly, (K,L′) is a stabilizing pair by assumption. We have
∆L = 2ηLEK,L. Hence, (B.2) yields
PK,L′ − PK,L

=

∞∑
k=0

((AK − CL′)>)k
(
4ηLE

>
K,LEK,L + 4η2

LE
>
K,L(C>PK,LC −Rw)EK,L

)
(AK − CL′)k

≥
∞∑
k=0

((AK − CL′)>)k
(
2ηLE

>
K,LEK,L

)
(AK − CL′)k.

The last step relies on the assumption that ηL < ζ ≤ 1/(2‖Rw − C>PK,LC‖). Therefore, PK,L′ ≥
PK,L for the NPG update L′ = L+ ηL∇LC(K,L)Σ−1

K,L with ηL < ζ.

Next, notice that ρ(AK − CL(K)) < 1 and EK,L(K) = 0. Then (B.2) can be used to show the
following equation for any L′ = L+ ηL∇LC(K,L)Σ−1

K,L with ηL < ζ:

PK,L′ − PK,L(K) = (AK − CL′)>(PK,L′ − PK,L(K))(AK − CL′)
+ (L′ − L(K))(C>PK,L(K)C −Rw)(L′ − L(K)). (B.3)

20



Notice Rw − C>PK,L(K)C > 0. Hence we have PK,L ≤ PK,L′ ≤ PK,L(K). Now we consider a
sequence ζl ∈ [0, ζ) such that liml→∞ ζl = ζ. We denote Lζl = L + ζl∇LC(K,L)Σ−1

K,L. Clearly
PK,L ≤ PK,Lζl ≤ PK,L(K) for all ζl. The bounded sequence {PK,Lζl }l≥0 has at least one limit
point, and we denote this limit point as Z. Now we take the subsequence of {PK,Lζl }l≥0 which
converges to Z and take the limit of this subsequence on both sides of (B.3). This leads to the
following equation

Z − PK,L(K) = (AK − CLζ)>(Z − PK,L(K))(AK − CLζ)
+ (Lζ − L(K))(C>PK,L(K)C −Rw)(Lζ − L(K)). (B.4)

By assumption ρ(AK−CLζ) = 1, there exists a vector v satisfying (AK−CLζ)v = λv and |λ| = 1.
Combining the facts |λ| = 1, Rw − C>PK,L(K)C > 0, with (B.4), we can show Lζv = L(K)v.
Therefore, (AK − CL(K))v = λv with |λ| = 1. However, we already know ρ(AK − CL(K)) < 1.
This is a contradiction. Therefore, it is impossible to have ζ ≤ 1/(2‖Rw − C>PK,LC‖) in the first
place. Consequently, we have ζ > 1/(2‖Rw − C>PK,LC‖), and (K,L+ ηL∇LC(K,L)Σ−1

K,L) is
stabilizing given ηL ≤ 1/(2‖Rw − C>PK,LC‖).

Step 2: Convergence bound. We have shown ρ
(
AK − C(L+ ηL∇LC(K,L)Σ−1

K,L)
)
< 1. An

immediate consequence is that C
(
K,L+ ηL∇LC(K,L)Σ−1

K,L

)
is guaranteed to be finite. The rest

of the proof is standard. Recall that µ = λmin

(
Ex0∼D[x0x

>
0 ]
)
. By applying (B.2), we can obtain the

so-called almost smoothness condition [10]

C(K,L′)− C(K,L) = 2 Tr
(
ΣK,L′∆

>
LEK,L

)
+ Tr

(
ΣK,L′∆

>
L (C>PK,LC −Rw)∆L

)
. (B.5)

Applying completion of squares, we can obtain

C(K,L(K))− C(K,L) = 2 Tr
(
ΣK,L(K)∆

>
LEK,L

)
+ Tr

(
ΣK,L(K)∆

>
L (C>PK,LC −Rw)∆L

)
≤ Tr

(
ΣK,L(K)E

>
K,L(Rw − C>PK,LC)−1EK,L

)
≤ ‖ΣK,L(K)‖λmin

(
Rw − C>PK,L(K)C

)−1
Tr(E>K,LEK,L),

(B.6)

where the last step relies on the fact PK,L ≤ PK,L(K). Now we can set L′ = L+ 2ηLEK,L in (B.5)
to show

C
(
K,L+ ηL∇LC(K,L)Σ−1

K,L

)
− C(K,L) ≥ 2ηLµTr(E>K,LEK,L)

≥
2ηLµλmin(Rw − C>PK,L(K)C)

‖ΣK,L(K)‖
(C(K,L(K))− C(K,L))

which directly leads to the desired conclusion.

Now we return to prove Lemma 4.4. It remains to use induction to show that PK,L is nondecreasing
and the condition ηL ≤ 1/(2‖Rw − C>PK,LC‖) is guaranteed (as we update L), due to the
assumption that ηL ≤ 1/(2‖Rw − C>PK,L0C‖) for the stabilizing initialization L0. Therefore we
can apply Lemma B.2 at every step in the inner-loop optimization and obtain a convergence bound
with a linear rate (1− C0ηL)k with C0 = 2µ‖ΣK,L(K)‖−1λmin

(
Rw − C>PK,L(K)C

)
.

B.4 Discussions on Local Results

Much faster rates, i.e., (super-)linear rates, can be shown locally around K∗. We summarize the
results as follows. As they are not the focus of our paper, we only provide proof sketches/ideas.

Theorem B.3. Suppose K0 satisfies the robust stability condition.

1. Consider the NPG update with η ≤ 1/(2‖Ru +B>P̃ ∗K0
B‖). The outer-loop iteration achieves

local linear rate.

21



2. Suppose we update the outer-loop iteration using the Gauss-Newton method with stepsize
η = 1/2, i.e.,

Kn+1 = (Ru +B>P̃ ∗KnB)−1B>P̃ ∗KnA.

Then this method achieves locally Q-quadratic rates.

Proof Sketch. The proof can be established based on the standard argument which expands the Taylor
series of P̃ ∗Kn around Kn. For NPG, the resultant system is linear. For Gauss-Newton method, the
resultant system is quadratic. Explicit linear rates for NPG can also be obtained by the arguments in
[34, 33], e.g., see the proof of Theorem 4.6 in [34] and Theorem 5.3 in [33].

We note that the Gauss-Newton method can hardly be implemented in a model-free manner using
derivative-free methods [10, 34, 35], and thus is not the focus of our main paper. Finally, we comment
that similar linearization arguments can be combined with the Lyapunov’s indirect method [65], to
show the local linear convergence of the descent-ascent algorithm. The Taylor expansion calculations
are straightforward and we do not include the details here.

C Simulations

In this section, we provide more detailed simulation results to support our findings in the main paper.

C.1 Results for Section §3

We now show that the two stability issues identified in §3 can also easily occur in cases beyond the
one-dimension ones.

C.1.1 Stability issue due to bad initialization

Consider the system where

A =

1.2763 0.9780 0.2684 0.3809
0.7799 1.7385 0.4999 0.0659
0.4384 0.5011 1.8792 0.2881
0.7235 0.0721 0.8037 2.1096

 , B =

0.2134 0.6005
0.4521 0.9501
0.9312 0.2303
0.0249 0.5485

 , C =

0.0182 0.0134
0.0027 0.0094
0.0105 0.0041
0.0150 0.0098

 ,
Q = 1.0477 · I, Ru = 1.3724 · I, Rw = 1036.2265 · I.
We select the initialization K0 to be

K0 =

[
−0.6342 0.0619 1.3209 −1.1933
1.5035 0.5671 0.8931 2.3151

]
.

One can easily check that K0 is stabilizing, i.e., ρ(A−BK) = 0.9958 < 1. However, theH∞-norm
‖T (K0)‖∞ = 2.4325 > 1, i.e., K0 is not robustly stabilizing (see Lemma 5.2).

Now we adopt the conventional RARL scheme in [2], where we first fix K0, and try to optimize L to
obtain L(K0) using the NPG update in §2.2. The stepsize ηL for L update is chosen as infinitesimal
as ηL = 10−10. As shown in Figure 3, both the spectral radius ρ(A−BK0 − CL) and the distance
to the NE ‖K −K∗‖2 + ‖L− L∗‖2 blow up, even with such an infinitesimal stepsize. Particularly,
the updated L destabilizes the system under the control K0. The essential reason behind this non-
convergence result is that for a fixed K0 that is not robustly stabilizing, maxL C(K0, L) does not
yield a solution. Indeed, Matlab returns a solvability issue for solving the inner-loop Riccati equation
(3.1) induced by K0. This shows that even a stabilizing initialization K0 is not enough for LQ RARL,
as the solution L(K0) may either not necessarily exist, or destabilize the system, similar to what we
have observed in Example 3.2.

C.1.2 Stability issue due to bad choices of (NK , NL)

Consider the system where

A =

1.7865 0.3912 0.8758 0.5996
0.2756 1.3175 0.7692 0.4848
0.4764 0.9786 1.0618 0.7591
0.4489 0.7918 0.6014 1.7520

 , B =

0.1303 0.0312
0.1309 0.0528
0.7452 0.6727
0.2460 0.0743

 , C =

0.0058 0.0028
0.0015 0.0116
0.0188 0.0169
0.0056 0.0026

 ,
Q = 1.0613 · I, Ru = 1.1315 · I, Rw = 120.2944 · I.

22



(a) Spectral radius ρ(A−BK − CL) (b) Distance to NE

Figure 3: Stability issue (non-convergence) caused by bad initialization K0 that is not robustly
stabilizing. The iterations here denote the ones for updating L, with K0 fixed.

We initialize K0 as

K0 =

[
2.1548 1.3041 0.7464 −0.1457
1.5858 0.0962 1.7218 2.4581

]
,

which satisfies both ρ(A−BK0) = 0.9703 < 1 and ‖T (K0)‖∞ = 0.7718 < 1, i.e., K0 is robustly
stabilizing. We choose NL = 1000 and NK = 107 (large enough), to perform the RARL scheme in
[2]. We first fix K0, and update L0 = 0 to obtain L1. As ‖T (K0)‖∞ < 1, L(K0) is well-defined,
and has the value of

L(K0) =

[
−1.8588 0.4587 −0.6982 0.1612
−0.4100 0.0263 −0.2527 −0.1007

]
.

This L(K0) can be achieved by L1 within NL = 1000 steps using the NPG update for L with
ηL = 0.001. This verifies the fast inner-loop convergence (linear rate) we established in Lemma 4.4.

(a) Spectral radius ρ(A−BK − CL) (b) Distance to NE

Figure 4: Stability issue (non-convergence) due to bad choices of (NK , NL). The iterations here
denote the ones for updating K, with L1 = L(K0) fixed.

Then, as in [2], with L1 = L(K0) fixed, we improve K from K0 using the NPG update with stepsize
η = 10−9. However, as shown in Figure 4, such an infinitesimal stepsize still cannot prevent the
system from destabilizing. This phenomenon is essentially due to that for fixed L1 = L(K0), the
inner-loop problem minK C(K,L1) in turn is not necessarily well-defined. Indeed, Matlab returns a
solvability issue for solving the following Riccati equation induced by L1 = L(K0):

P ∗L1
= Q− L>1 RwL1 + (A− CL1)>

[
P ∗L1
− P ∗L1

B(Ru +B>P ∗L1
B)−1B>P ∗L1

]
(A− CL1),

where P ∗L = PK(L),L is the solution to the Lyapunov equation (2.5) under (K(L), L). Hence, even
with a robustly stabilizing initialization K0, the RARL update can still destabilize the system easily if
NK and NL are not chosen properly. This reinforces the stability issue we observed in Example 3.6.

23



0 500 1000 1500
10

-4

10
-3

10
-2

10
-1

10
0

10
1

(a) Distance to NE

0 500 1000 1500
10

-6

10
-4

10
-2

10
0

10
2

10
4

(b) ‖PK,L − P ∗‖2

Figure 5: Convergence of the double-loop algorithm on 8 randomly generated examples.

The two stability issues highlight the significance of both the initialization (being robustly stabilizing),
and the update rule (with properly chosen (NK , NL)). They motivate our robustification techniques
in §5, and the policy-based RARL algorithms in §4, respectively.

C.2 Results for Section §4: Double-Loop Algorithm

In the main paper, we have substantiated both the stability and convergence of the double loop
algorithm in §4 theoretically. Now we verify our theory via simulation examples.

Example C.1. We select A ∈ R4×4 to be I + ξ, where each element of ξ ∈ R4×4 ∼ Unif[0, 1];
B,C ∈ R4×2 with each element∼ Unif[0, 1]; Ru, Rw ∈ R2×2 to be I+ζ ·I , with ζ ∼ Unif[0, 0.5];
Q to be I + % · I , with % ∼ Unif[0, 0.1]. We initialize K0 randomly such that it satisfies the
robust stability condition. For each fixed K, we perform NPG update (4.2) until it converges to
L(K). We randomly run 8 example cases, and plot the convergence of the distance to the NE, i.e.,
‖K −K∗‖2 + ‖L− L∗‖2, and the norm of the difference between PK,L and P ∗ in Figure 5. The
stepsizes are η = ηL = 0.0005. It is shown that the double-loop algorithm converges to the NE as
expected, without any projection as suggested in [33].

C.3 Results for Section §4: Descent-Ascent Algorithms

Now we focus on the descent-ascent algorithms proposed in §4.4, the extensions of the double loop
algorithm with finite NK and NL (without necessarily solving the inner loop to the optimum). These
descent-ascent algorithms include the simultaneous-updating rule mentioned in §4.4. We present
some simulation results that are not included in the main paper due to space limitation.

Our main findings are restated here for clarity. We show that in many cases, the descent-ascent
updates with properly chosen NK and NL are effective, i.e., converge to the NE successfully. Most
of the successful cases require the initialization K0 to satisfy the robust stability condition. On the
other hand, if the initialization is not robustly stabilizing, descent-ascent updates do not always work
(but may work in some cases). These observations reinforce the significance of a robustly stabilizing
initialization.

C.3.1 Multi-Dimensional Convergent Cases

Robustly Stabilizing Initialization

We first test the descent-ascent NPG algorithms (with different choices of NK and NL), when
the initialization K0 is robustly stabilizing, on the randomly generated cases in Example C.1.
Recall that in Example C.1, we select A ∈ R4×4 to be I + ξ, where each element of ξ ∈ R4×4

∼ Unif[0, 1]; B,C ∈ R4×2 with each element ∼ Unif[0, 1]; Ru, Rw ∈ R2×2 to be I + ζ · I , with
ζ ∼ Unif[0, 0.5]; Q to be I+% · I , with % ∼ Unif[0, 0.1]. We use (K0, 0) as the initialization control
gain pair. We randomly run 8 example cases, and plot the convergence of the distance to the NE, i.e.,
‖K −K∗‖2 + ‖L− L∗‖2, and the norm of the difference between PK,L and P ∗ in the following
figures. The stepsizes are η = ηL = 0.001, and we choose NK = 1 and NL ranging from 500, 50, 1.

24



0 200 400 600 800 1000
10

-6

10
-4

10
-2

10
0

10
2

(a) Distance to NE

0 200 400 600 800 1000
10

-10

10
-5

10
0

10
5

(b) ‖PK,L − P ∗‖2

Figure 6: Convergence of the NPG descent-ascent algorithm on 8 randomly generated examples from
Example C.1, with NK = 1 and NL = 500, and with robustly stabilizing initialization K0. The
iterations here denote the ones for updating K.

It is seen from Figures 6-8 that all three update rules converge to the NE successfully. In particular,
the convergence with larger NL is relatively more stable, i.e., both the distance to NE and the
norm difference ‖PK,L − P ∗‖2 converge to zero monotonically. For the case where NL = 1, the
convergence can be slow (see Figure 8 (a)), and the norm difference ‖PK,L − P ∗‖2 may not be
monotonically decreasing (see Figure 8 (b)). But still, with robustly stabilizing initializations, these
descent-ascent update rules with finite NL, though not theoretically justified yet, are as effective as
the double-loop update rule shown in Figure 5. We also observe that the stepsizes allowed to use here
are a bit larger than those used in the double loop update rule that generated Figure 5. This yields a
faster convergence, and an easier implementation without fine-tuning the stepsizes. All these positive
observations have motivated us to study the convergence theory for the descent-ascent updates in our
future work.

0 200 400 600 800 1000
10

-3

10
-2

10
-1

10
0

10
1

(a) Distance to NE

0 200 400 600 800 1000
10

-6

10
-4

10
-2

10
0

10
2

10
4

(b) ‖PK,L − P ∗‖2

Figure 7: Convergence of the NPG descent-ascent algorithm on 8 randomly generated examples
from Example C.1, with NK = 1 and NL = 50, and with robustly stabilizing initialization K0. The
iterations here denote the ones for updating K.

In addition, we also test the case with not only NK = NL = 1, but simultaneously-updating agents.
Particularly, the update rule becomes

K ′ = K − η∇KC(K,L)Σ−1
K,L, L′ = L+ η∇LC(K,L)Σ−1

K,L,

without any timescale separation between the two agents. This is much easier to implement than
other double-loop/descent-ascent update rules. However, this seems to be less “safe” than the latter
ones, and may easily oscillate since the simultaneous moving of the opponent makes the environment
faced by one agent less stationary. Surprisingly, with our robustly stabilizing initialization, such
seemingly non-stationary updates still work. As shown in Figure 9, simultaneously-updating scheme
also converges to the NE for all 8 examples. Here we use stepsizes η = 0.001 for both agents.

25



0 200 400 600 800 1000
10

-3

10
-2

10
-1

10
0

10
1

(a) Distance to NE

0 200 400 600 800 1000
10

-6

10
-4

10
-2

10
0

10
2

10
4

(b) ‖PK,L − P ∗‖2

Figure 8: Convergence of the NPG descent-ascent algorithm on 8 randomly generated examples
from Example C.1, with NK = 1 and NL = 1, and with robustly stabilizing initialization K0. The
iterations here denote the ones for updating K.

0 200 400 600 800 1000
10

-4

10
-3

10
-2

10
-1

10
0

10
1

(a) Distance to NE

0 200 400 600 800 1000
10

-10

10
-5

10
0

10
5

(b) ‖PK,L − P ∗‖2

Figure 9: Convergence of the NPG descent-ascent algorithm on 8 randomly generated examples
from Example C.1, with NK = 1 and NL = 1, and with robustly stabilizing initialization K0. The
iterations here denote the ones for updating both K and L, as they are updated simultaneously.

0 200 400 600 800 1000
10

-3

10
-2

10
-1

10
0

10
1

(a) Distance to NE

0 200 400 600 800 1000
10

-4

10
-2

10
0

10
2

10
4

(b) ‖PK,L − P ∗‖2

Figure 10: Convergence of the NPG descent-ascent algorithm on 8 randomly generated examples
from Example C.1, with NK = 1 and NL = 1, and with non-robustly stabilizing initialization K0.
The iterations here denote the ones for updating K.

Similar behaviors occur as in the descent-ascent algorithm with NK = NL = 1 (see Figure 8), i.e.,
slower convergence can happen in some examples, and the norm difference ‖PK,L − P ∗‖2 is not
monotonically decreasing.

Non-Robustly Stabilizing Initialization

26



Interestingly, when both NK and NL are finite, sometimes even a non-robustly stabilizing K0 would
work. Consider the same setting as above (also as in Example C.1), except that the matrix Rw
is now chosen differently. In order to easily generate initialization K0 that is stabilizing but not
robustly stabilizing for certain Rw, we here first generate K0 ∈ R4×2 randomly, with each element
∼ Unif[−3.5, 3.5] such that ρ(A−BK0) < 1. We then calculate theH∞-norm ‖T (K0)‖∞, with
T (K0) defined in (5.1), and Rw therein replaced by I . Then, we choose Rw = τ · ‖T (K0)‖∞ · I
for some τ ∈ (0, 1). This way, the actualH∞-norm ‖T (K0)‖∞ under the chosen Rw will be > 1,
i.e., K0 is non-robustly stabilizing. We have randomly generated 8 examples with τ ∼ Unif(0.7, 1),
and tested the descent-ascent update with NK = NL = 1 (the most “non-stationary” one according
to Figures 6-8). We choose the stepsizes η = ηL = 0.001. As shown in Figure 10, the descent-ascent
algorithm still converges successfully to the NE.

This implies that the descent-ascent algorithms with a carefully chosen (NK , NL) may have the
potential to enlarge the convergent initialization, compared to the double-loop counterparts. Recall
that for the latter, a non-robustly stabilizingK0 is not even sensible, since the inner-loop problem over
L is not even well-defined for this K0. Thus, the inner-loop update will blow up with a large NL (and
even an infinitesimal stepsize) (see Example 3.2 and §C.1.1). This can be more desired in practice,
as it shows that the requirement for initialization can be relaxed sometimes, for descent-ascent
updates. However, lacking theoretical guarantees, it may still be unsafe to use non-robustly stabilizing
initializations, as we will show next in §C.3.2.

C.3.2 Multi-Dimensional Non-Convergent Cases

It is not uncommon to have cases where a non-robustly stabilizing initialization yields non-convergent
results for descent-ascent algorithms. We enumerate four such randomly generated cases with
different random seeds. The examples are also generated as in Example C.1, except that as above,
the non-robustly stabilizing initialization is produced by first randomly generating a stabilizing K0,
and then select Rw = τ · ‖T (K0)‖∞ · I for some τ ∈ (0, 1). We choose τ = 0.3 for Case 1, and
τ = 0.05 for Cases 2, 3, 4. The first two cases use the same random seed. We choose the stepsizes
η = ηL = 10−6, much smaller than those used for the convergent cases in §C.3.1. We also choose
NL = 60, a moderate number.

0 1 2 3

10
4

0.8

0.85

0.9

0.95

1

(a) Case 1

0 40000 80000 120000

0.8

0.85

0.9

0.95

1

(b) Case 2

0 50000 100000 150000

0.7

0.75

0.8

0.85

0.9

0.95

1

(c) Case 3

0 1 2 3

10
4

0.85

0.9

0.95

1

(d) Case 4

Figure 11: Non-convergence of descent-ascent algorithms due to non-robustly stabilizing initialization.
After large enough numbers of iterations, even with an infinitesimal stepsize, the spectral radius
ρ(A−BK − CL) still blows up to > 1. The iterations here denote the ones for updating K.

As shown in Figure 11, the descent-ascent algorithm drives the spectral radius ρ(A−BK − CL) to
be > 1, and finally destabilizes the system, for all four cases. This implies that the success in Figure
10 is only because τ is relatively large (τ ∼ Unif(0.7, 1)), i.e., K0 is not too far out of the robustly
stabilizing region. With a much less robust initialization K0 when τ is small, the descent-ascent
algorithms can still fail. Interestingly, note that Cases 1 and 2 have the same random seed, and the
only difference is that the τ for Case 1 is larger, i.e., the initialization K0 is less robust under the
Rw in Case 2. Hence, intuitively, the algorithm should explode faster in Case 2. However, the more
robust initialization in Case 1 enables a much faster explosion (as per Figure 11 (a) and (b)). This
implies that it is not necessarily true that the farther away from the robustly stabilizing region, the
faster it will destabilize the system. This highlights the complexity of the optimization landscape of
policy-based LQ RARL. We further illustrate this by revisiting the one-dimensional case in §3 next.

C.3.3 Revisiting the One-Dimensional Example

We now revisit the one-dimensional case in Example 3.2. As shown in (12), we recall that the blue,
cyan, and green regions represent the stabilizing region of (K,L) (where ρ(A−BK − CL) < 1),

27



(a) NL = 1 (b) NL = 30

Figure 12: Illustrating the region of initializations of (K,L) (in black) that yield the convergence of
the descent-ascent algorithms, with different NL, on the one-dimensional case in Example 3.2.

the stabilizing region of K (where ρ(A−BK) < 1), and the robustly stabilizing region of K (where
‖T (K)‖∞ < 1), respectively. The former region includes the latter ones. The Nash equilibrium
of the game (A.8) (in red), which yields the optimal robust controller, is contained in the robustly
stabilizing region.

We then test the convergence of the descent-ascent algorithms. For the first case, we choose NK =
NL = 1, and stepsizes η = ηL = 0.05. We label all the initializations that yield convergence to
the NE, named convergent initialization, as black in Figure 12 (a). Recall that for the double loop
algorithm, where NL →∞, the convergent initialization region has been proved to be the robustly
stabilizing region (green) (see Theorem 4.2). Indeed, for those K outside the green region, the
inner-loop optimization over L is not even well-defined. Interestingly, it is seen in Figure 12 (a)
that the convergent initialization region is enlarged by the descent-ascent algorithm, as we have
observed in the multi-dimensional cases in §C.3.1. Such an enlarged region contains the green one,
and even reaches the (K,L) stabilizing region where K is not stabilizing (blue region). This might
be appealing in practice, as a stabilizing K (easier to obtain than a robustly stabilizing one) might be
enough for initialization. But still, as we point out in the multi-dimensional case in (C.3.2), this may
not be safe, since there are other parts in cyan that do not lead to convergence. Careful choices of
NL, η, and ηL are crucial for the update rule to work.

We have also increased NL to 30, and used stepsizes η = 0.05 and ηL = 0.01. As shown in Figure
12 (b), the convergent initialization region is smaller than that in (b), but still goes beyond the robustly
stabilizing region (green). This means that the setup with NK = NL = 1, though might be less
stable during the iterations (see Figures 8 and 10), requires less restricted initializations than those
with NL = 30. Another interesting observation is that there is some small green region that does not
lead to convergence. This shows that even a robustly stabilizing initialization may not be effective
for descent-ascent algorithms, with certain choices of the stepsizes and (NK , NL). This reaffirms
the complicated intertwinement between the update rule and the initialization, in order to guarantee
robust stability on-the-fly.

In sum, the observations in this subsection have highlighted the significance of a robustly stabilizing
initialization: it is the safest one that enables all proposed RARL schemes to work, though it can
be relaxed sometimes with a carefully chosen (NK , NL), and an initialization not too far out of the
robustly stabilizing region.

C.4 Results for Section §5

In this section, we validate the effectiveness of ourH∞-based initialization robustification techniques
proposed in §5.

28



C.4.1 Finite-Difference Method

We first test the finite-difference method. As in the one-dimensional example, i.e., Example 5.4, in
§5, we robustify the case that has stability issues caused by a bad initialization, i.e., the case in §C.1.1.
Recall the robustification update rule in (5.2), and the finite-difference estimate of the subgradient of
‖T (K)‖∞ in (5.3). Here we choose ε = 10−10 in (5.3), and the stepsize α = 5× 10−9 in (5.2). We
require the robustified initialization to have theH∞-norm ‖T (K)‖∞ < 0.9.

As shown in Figure 13 (a), ‖T (K)‖∞ decreases monotonically to be < 1 (in fact, < 0.9) using the
simple update (5.2), within only 9 iterations. After the robustification, as shown in (b) and (c), all
three proposed RARL schemes converge to the NE, in contrast to the divergence shown in Figure 3.

1 2 3 4 5 6 7 8 9

1

1.5

2

2.5

(a) Robustification using (5.2)

0 1000 2000 3000 4000 5000

10
-2

10
-1

10
0

10
1

(b) Distance to NE

0 1000 2000 3000 4000 5000
10

-2

10
0

10
2

10
4

10
6

(c) ‖PK,L − P ∗‖2

Figure 13: Illustrating the effectiveness of theH∞-based robustification using the finite-difference
method, on the non-convergent case in §C.1.1. (a) shows the convergence of the update rule (5.2). (b)
and (c) show the convergence of all proposed RARL schemes after the robustification. The iterations
here denote the ones for updating K.

In addition, we have also tested the method on the first non-convergent case, Case 1, in §C.3.2. As
shown in Figure 14, the robustification technique still works, and enables all three RARL schemes to
converge to the NE successfully, including the descent-ascent algorithm with NL = 60, which did
not work before robustification, as shown in §C.3.2.

2 4 6 8 10

0.8

1

1.2

1.4

1.6

1.8

(a) Robustification using (5.2)

0 0.5 1 1.5 2

10
4

10
-4

10
-2

10
0

10
2

10
4

(b) Distance to NE

0 0.5 1 1.5 2

10
4

10
-4

10
-2

10
0

10
2

10
4

(c) ‖PK,L − P ∗‖2

Figure 14: Illustrating the effectiveness of theH∞-based robustification using the finite-difference
method, on the first non-convergent case, Case 1, in §C.3.2. (a) shows the convergence of the update
rule (5.2). (b) and (c) show the convergence of all proposed RARL schemes after the robustification.
The iterations here denote the ones for updating K.

C.4.2 Stochastic Zeroth-Order Method

In addition to the finite-difference method, the subgradient of ‖T (K)‖∞ can also be estimated via
stochastic zeroth-order methods [59, 60, 61], which can be viewed as stochastic variants of the
finite-difference method. Specifically, the subgradient is estimated by ĝ ∈ Rm1×d, which is defined
as

ĝ(K,∆) = ĝ :=
‖̂T (K̃)‖∞m1d

r
·∆, with K̃ = K + r∆, (C.1)

29



1 2 3 4

0

1

2

3

4

(a) Robustification using (5.2)

0 1000 2000 3000 4000 5000
10

-2

10
-1

10
0

10
1

(b) Distance to NE

0 1000 2000 3000 4000 5000
10

-2

10
0

10
2

10
4

10
6

(c) ‖PK,L − P ∗‖2

Figure 15: Illustrating the effectiveness of theH∞-based robustification using the one-point stochastic
zeroth-order method, on the non-convergent case in §C.1.1. (a) shows the convergence of the update
rule (5.2), when (C.1) is used for subgradient estimation. (b) and (c) show the convergence of all
proposed RARL schemes after the robustification. The iterations denote the ones for updating K.

where ‖̂T (K̃)‖∞ is a noisy stochastic estimate of the actual H∞-norm ‖T (K̃)‖∞, r > 0 is the
smoothing radius, and ∆ ∼ Unif(S), with S := {∆ ∈ Rm1×d : ‖∆‖F = 1} being the sphere of

matrices with Frobenius norm 1. Note that if ‖̂T (K̃)‖∞ is an unbiased estimate of ‖T (K̃)‖∞, and
independent of ∆, then ĝ is an unbiased estimate of the subgradient of ‖T (K)‖∞. This estimate in
(C.1) is also referred to as one-point estimate [59, 61]. Another common estimate is the two-point
one [62, 61], where

ĝ(K,∆) = ĝ :=

[ ̂‖T (K̃1)‖∞ − ̂‖T (K̃2)‖∞
]
m1d

2r
·∆, with K̃1 = K + r∆, K̃2 = K − r∆.

(C.2)

Both approximations become more and more accurate as the smoothing radius r gets smaller.
Nonetheless, small values of r may lead to estimates with large variances. Also, such an r should
not be too large, as it needs to ensure that K̃ is stabilizing (so that ‖T (K̃)‖∞ is well-defined). An
appropriate choice of r is thus critical for the algorithm to perform well. With these approximations
at hand, the update becomes K ′ = K − αĝ with some stepsize α > 0.

Compared with the finite-difference method, in particular, the subgradient does not need to be
estimated element-wise. Moreover, the oracle that calculates theH∞-norm needs not to be exact. It
can be a stochastic and noisy estimate of it.

We use both one-point and two-point zeroth order methods to robustify the non-convergent case
in §C.1.1. Here we choose r = 10−4, α = 5 × 10−10 and α = 10−9 for one-point and two-point
updates, respectively. Also, we allow some noises to be added onto the actual ‖T (K̃)‖∞, i.e.,

‖̂T (K̃)‖∞ = ‖T (K̃)‖∞ + σ, with σ being drawn from standard normal distribution N (0, 1). As in
§C.4.1, we require the robustified K0 to have ‖T (K0)‖∞ < 0.9.

As shown in Figures 15 and 2, both robustification updates indeed reduce ‖T (K)‖∞ to be < 0.9,
within 4 and 10 iterations, respectively. Note that the one-point method usually suffers from larger
variances, requiring a smaller stepsize α. Indeed, the H∞-norm does not decrease monotonically
in Figure 15 (a). Convergence of the two-point method is more stable, even with a larger stepsize
α. However, as our objective here is only to decrease ‖T (K)‖∞ to be < 0.9, the advantages of the
two-point method may not be very essential. One-point method may robustify K0 even faster. With a
robustified initialization in hand, all three RARL schemes enjoy similar convergence performance, as
that obtained using the finite-difference method, as shown in Figure 13.

Finally, we point out that although the method seems quite effective, and inherits the idea from
zeroth-order smooth (convex) optimization, its global convergence can be challenging to analyze.
Indeed, establishing the convergence of zeroth-order methods for nonconvex-nonsmooth optimization
is still a relatively open and active research area [68, 69, 70, 71], wherein most of the works only
address specific settings such as the objective with a finite-sum form and/or with only nonsmooth
regularization terms. We leave the global convergence analysis of this approach as future work.

30


