
Supplementary Materials for Learning Latent Space
Energy-Based Prior Model

A Theoretical derivations

In this section, we shall derive most of the equations in the main text. We take a step by step approach,
starting from simple identities or results, and gradually reaching the main results. Our derivations are
unconventional, but they pertain more to our model and learning method.

A.1 A simple identity

Let x ∼ pθ(x). A useful identity is

Eθ[∇θ log pθ(x)] = 0, (1)

where Eθ (or Epθ ) is the expectation with respect to pθ.

The proof is one liner:

Eθ[∇θ log pθ(x)] =

∫
[∇θ log pθ(x)]pθ(x)dx =

∫
∇θpθ(x)dx = ∇θ

∫
pθ(x)dx = ∇θ1 = 0.

(2)

The above identity has generalized versions, such as the one underlying the policy gradient [18, 17],
∇θEθ[R(x)] = Eθ[R(x)∇θ log pθ(x)]. By letting R(x) = 1, we get (1).

A.2 Maximum likelihood estimating equation

The simple identity (1) also underlies the consistency of MLE. Suppose we observe (xi, i =
1, ..., n) ∼ pθtrue(x) independently, where θtrue is the true value of θ. The log-likelihood is

L(θ) =
1

n

n∑
i=1

log pθ(xi). (3)

The maximum likelihood estimating equation is

L′(θ) =
1

n

n∑
i=1

∇θ log pθ(xi) = 0. (4)

According to the law of large number, as n→∞, the above estimating equation converges to

Eθtrue [∇θ log pθ(x)] = 0, (5)

where θ is the unknown value to be solved, while θtrue is fixed. According to the simple identity (1),
θ = θtrue is the solution to the above estimating equation (5), no matter what θtrue is. Thus with
regularity conditions, such as identifiability of the model, the MLE converges to θtrue in probability.

The optimality of the maximum likelihood estimating equation among all the asymptotically unbiased
estimating equations can be established based on a further generalization of the simple identity (1).

We shall justify our learning method with short-run MCMC in terms of an estimating equation, which
is a perturbation of the maximum likelihood estimating equation (4).
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A.3 MLE learning gradient for θ

Recall that pθ(x, z) = pα(z)pβ(x|z), where θ = {α, β}. The learning gradient for an observation x
is as follows:

∇θ log pθ(x) = Epθ(z|x) [∇θ log pθ(x, z)] = Epθ(z|x) [∇θ(log pα(z) + log pβ(x|z))] . (6)

The above identity is a simple consequence of the simple identity (1).

Epθ(z|x) [∇θ log pθ(x, z)] = Epθ(z|x) [∇θ log pθ(z|x) +∇θ log pθ(x)] (7)

= Epθ(z|x) [∇θ log pθ(z|x)] + Epθ(z|x) [∇θ log pθ(x)] (8)

= 0 +∇θ log pθ(x), (9)

because of the fact that Epθ(z|x) [∇θ log pθ(z|x)] = 0 according to the simple identity (1), while
Epθ(z|x) [∇θ log pθ(x)] = ∇θ log pθ(x) because what is inside the expectation only depends on x,
but does not depend on z.

The above identity (6) is related to the EM algorithm [2], where x is the observed data, z is the
missing data, and log pθ(x, z) is the complete-data log-likelihood.

A.4 MLE learning gradient for α

For the prior model pα(z) = 1
Z(α) exp(fα(z))p0(z), we have log pα(z) = fα(z) − logZ(α) +

log p0(z). Applying the simple identity (1), we have

Eα[∇α log pα(z)] = Eα[∇αfα(z)−∇α logZ(α)] = Eα[∇αfα(z)]−∇α logZ(α) = 0. (10)

Thus

∇α logZ(α) = Eα[∇αfα(z)]. (11)

Hence the derivative of the log-likelihood is

∇α log pα(x) = ∇αfα(z)−∇α logZ(α) = ∇αfα(z)− Eα[∇αfα(z)]. (12)

According to equation (6) in the previous subsection, the learning gradient for α is

∇α log pθ(x) = Epθ(z|x) [∇α log pα(z)] (13)

= Epθ(z|x)[∇αfα(z)− Epα(z)[∇αfα(z))]] (14)

= Epθ(z|x)[∇αfα(z)]− Epα(z)[∇αfα(z)]. (15)

A.5 Re-deriving simple identity in terms of DKL

We shall provide a theoretical understanding of the learning method with short-run MCMC in terms
of Kullback-Leibler divergences. We start from some simple results.

The simple identity (1) also follows from Kullback-Leibler divergence. Consider

D(θ) = DKL(pθ∗(x)‖pθ(x)), (16)

as a function of θ with θ∗ fixed. Suppose the model pθ is identifiable, thenD(θ) achieves its minimum
0 at θ = θ∗, thus D′(θ∗) = 0. Meanwhile,

D′(θ) = −Eθ∗ [∇θ log pθ(x)]. (17)

Thus

Eθ∗ [∇θ log pθ∗(x)] = 0. (18)

Since θ∗ is arbitrary in the above derivation, we can replace it by a generic θ, i.e.,

Eθ[∇θ log pθ(x)] = 0, (19)

which is the simple identity (1).

As a notational convention, for a function f(θ), we write f ′(θ∗) = ∇θf(θ∗), i.e., the derivative of
f(θ) at θ∗.
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A.6 Re-deriving MLE learning gradient in terms of perturbation by DKL terms

We now re-derive MLE learning gradient in terms of perturbation of log-likelihood by Kullback-
Leibler divergence terms. Then the learning method with short-run MCMC can be easily understood.

At iteration t, fixing θt, we want to calculate the gradient of the log-likelihood function for an
observation x, log pθ(x), at θ = θt. Consider the following computationally tractable perturbation of
the log-likelihood

lθ(x) = log pθ(x)−DKL(pθt(z|x)‖pθ(z|x)) +DKL(pαt(z)‖pα(z)). (20)

In the above, as a function of θ, with θt fixed, DKL(pθt(z|x)‖pθ(z|x)) is minimized at θ = θt, thus
its derivative at θt is 0. As a function of α, with αt fixed, DKL(pαt(z)‖pα(z)) is minimized at
α = αt, thus its derivative at αt is 0. Thus

∇θ log pθt(x) = ∇θlθt(x). (21)

We now unpack lθ(x) to see that it is computationally tractable, and we can obtain its derivative at θt.

∇θlθ(x) = log pθ(x) + Epθt (z|x)[log pθ(z|x)]− Epαt (z)[log pα(z)] + c (22)

= Epθt (z|x)[log pθ(x, z)]− Epαt (z)[log pα(z)] + c (23)

= Epθt (z|x)[log pα(z) + log pβ(x|z)]− Epαt (z)[log pα(z)] + c (24)

= Epθt (z|x)[log pα(z)]− Epαt (z)[log pα(z)] + Epθt (z|x)[log pβ(x|z)] + c (25)

= Epθt (z|x)[fα(z)]− Epαt (z)[fα(z)] + Epθt (z|x)[log pβ(x|z)] + c+ c′, (26)

where logZ(α) term gets canceled,

c = −Epθt (z|x)[log pθt(z|x)] + Epαt (z)[log pαt(z)], (27)

c′ = Epθt (z|x)[log p0(z)]− Epαt (z)[log p0(z)], (28)

do not depend on θ. c consists of two entropy terms. Now taking derivative at θt, we have

δαt(x) = ∇αl(θt) = Epθt (z|x)[∇αfαt(z)]− Epαt (z)[∇αfαt(z)], (29)

δβt(x) = ∇βl(θt) = Epθt (z|x)[∇β log pβt(x|z)]. (30)

Averaging over the observed examples {xi, i = 1, ..., n} leads to MLE learning gradient.

In the above, we calculate the gradient of log pθ(x) at θt. Since θt is arbitrary in the above derivation,
if we replace θt by a generic θ, we get the gradient of log pθ(x) at a generic θ, i.e.,

δα(x) = ∇α log pθ(x) = Epθ(z|x)[∇αfα(z)]− Epα(z)[∇αfα(z)], (31)

δβ(x) = ∇β log pθ(x) = Epθ(z|x)[∇β log pβ(x|z)]. (32)

The above calculations are related to the EM algorithm [2] and the learning of energy-based model.

In EM algorithm, the complete-data log-likelihood Q serves as a surrogate for the observed-data
log-likelihood log pθ(x), where

Q(θ|θt) = log pθ(x)−DKL(pθt(z|x)‖pθ(z|x)), (33)

and θt+1 = arg maxθ Q(θ|θt), where Q(θ|θt) is a lower-bound of log pθ(x) or minorizes the latter.
Q(θ|θt) and log pθ(x) touch each other at θt, and they are co-tangent at θt. Thus the derivative of
log pθ(x) at θt is the same as the derivative of Q(θ|θt) at θ = θt.

In EBM, DKL(pαt(z)‖pα(z)) serves to cancel logZ(α) term in the EBM prior, and is related to the
second divergence term in contrastive divergence [6].

A.7 Maximum likelihood estimating equation for θ = (α, β)

The MLE estimating equation is

1

n

n∑
i=1

∇θ log pθ(xi) = 0. (34)
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Based on (31) and (32), the estimating equation is

1

n

n∑
i=1

δα(xi) =
1

n

n∑
i=1

Epθ(zi|xi)[∇αfα(zi)]− Epα(z)[∇αfα(z)] = 0, (35)

1

n

n∑
i=1

δβ(xi) =
1

n

n∑
i=1

Epθ(zi|xi)[∇β log pβ(xi|zi)] = 0. (36)

A.8 Learning with short-run MCMC as perturbation of log-likelihood

Based on the above derivations, we can see that learning with short-run MCMC is also a perturbation
of log-likelihood, except that we replace pθt(z|x) by p̃θt(z|x), and replace pαt(z) by p̃αt(z), where
p̃θt(z|x) and p̃αt(z) are produced by short-run MCMC.

At iteration t, fixing θt, the updating rule based on short-run MCMC follows the gradient of the
following function, which is a perturbation of log-likelihood for the observation x,

l̃θ(x) = log pθ(x)−DKL(p̃θt(z|x)‖pθ(z|x)) +DKL(p̃αt(z)‖pα(z)). (37)

The above is a function of θ, while θt is fixed.

In full parallel to the above subsection, we have

l̃θ(x) = Ep̃θt (z|x)[fα(z)]− Ep̃αt (z)[fα(z)] + Ep̃θt (z|x)[log pβ(x|z)] + c+ c′, (38)

where c and c′ do not depend on θ. Thus, taking derivative of the function l̃θ(x) at θ = θt, we have

δ̃αt(x) = ∇α l̃(θt) = Ep̃θt (z|x)[∇αfαt(z)]− Ep̃αt (z)[∇αfαt(z)], (39)

δ̃βt(x) = ∇β l̃(θt) = Ep̃θt (z|x)[∇β log pβt(x|z)]. (40)

Averaging over {xi, i = 1, ..., n}, we get the updating rule based on short-run MCMC. That is, the
learning rule based on short-run MCMC follows the gradient of a perturbation of the log-likelihood
function where the perturbations consists of two DKL terms.

DKL(p̃θt(z|x)‖pθ(z|x)) is related to VAE [10], where p̃θt(z|x) serves as an inference model, except
that we do not learn a separate inference network. DKL(p̃αt(z)‖pα(z)) is related to contrastive
divergence [6], except that p̃αt(z) is initialized from the Gaussian white noise p0(z), instead of the
data distribution of observed examples.

DKL(p̃θt(z|x)‖pθ(z|x)) and DKL(p̃αt(z)‖pα(z)) cause the bias relative to MLE learning. MLE is
impractical because we cannot do exact sampling with MCMC.

However, the bias may not be all that bad. In learning β, DKL(p̃θt(z|x)‖pθ(z|x)) may force the
model to be biased towards the approximate short-run posterior p̃θt(z|x), so that the short-run
posterior is close to the true posterior. In learning α, the update based on Ep̃θ(z|x)[∇αfα(z)] −
Ep̃α(z)[∇αfα(z)] may force the short-run prior p̃α(z) to match the short-run posterior p̃θ(z|x).

A.9 Perturbation of maximum likelihood estimating equation

The fixed point of the learning algorithm based on short-run MCMC is where the update is 0, i.e.,

1

n

n∑
i=1

δ̃α(xi) =
1

n

n∑
i=1

Ep̃θ(zi|xi)[∇αfα(zi)]− Ep̃α(z)[∇αfα(z)] = 0, (41)

1

n

n∑
i=1

δ̃β(xi) =
1

n

n∑
i=1

Ep̃θ(zi|xi)[∇β log pβ(xi|zi)] = 0. (42)

This is clearly a perturbation of the MLE estimating equation in (35) and (36). The above estimating
equation defines an estimator, where the learning algorithm with short-run MCMC converges.
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A.10 Three DKL terms

We can rewrite the objective function (37) in a more revealing form. Let (xi, i = 1, ..., n) ∼ pdata(x)
independently, where pdata(x) is the data distribution. At time step t, with fixed θt, learning based
on short-run MCMC follows the gradient of

1

n

n∑
i=1

[log pθ(xi)−DKL(p̃θt(zi|xi)‖pθ(zi|xi)) +DKL(p̃αt(z)‖pα(z))]. (43)

Let us assume n is large enough, so that the average is practically the expectation with respect to pdata.
Then MLE maximizes 1

n

∑n
i=1 log pθ(xi)

.
= Epdata(x)[log pθ(x)], which is equivalent to minimizing

DKL(pdata(x)‖pθ(x)). The learning with short-run MCMC follows the gradient that minimizes

DKL(pdata(x)‖pθ(x)) +DKL(p̃θt(z|x)‖pθ(z|x))−DKL(p̃αt(z)‖pα(z)), (44)

where, with some abuse of notation, we now define

DKL(p̃θt(z|x)‖pθ(z|x)) = Epdata(x)Ep̃θt (z|x)

[
log

p̃θt(z|x)

pθ(z|x)

]
, (45)

where we also average over x ∼ pdata(x), instead fixing x as before.

The objective (44) is clearly a perturbation of the MLE, as the MLE is based on the first DKL in (44).
The signs in front of the remaining two DKL perturbations also become clear. The sign in front of
DKL(p̃θt(z|x)‖pθ(z|x)) is positive because

DKL(pdata(x)‖pθ(x)) +DKL(p̃θt(z|x)‖pθ(z|x)) = DKL(pdata(x)p̃θt(z|x)‖pα(x)pβ(x|z)),
(46)

where the DKL on the right hand side is about the joint distributions of (x, z), and is more tractable
than the first DKL on the left hand side, which is for MLE. This underlies EM and VAE. Now
subtracting the third DKL, we have the following special form of contrastive divergence

DKL(pdata(x)p̃θt(z|x)‖pα(z)pβ(x|z))−DKL(p̃αt(z)‖pα(z)), (47)

where the negative sign in front of DKL(p̃αt(z)‖pα(z)) is to cancel the intractable logZ(α) term.

The above contrastive divergence also has an adversarial interpretation. When pα(z) or α is updated,
pα(z)pβ(x|z) gets closer to pdata(x)p̃θt(z|x), while getting away from p̃αt(z), i.e., pα seeks to
criticize the samples from p̃αt(z) by comparing them to the posterior samples of z inferred from the
real data.

As mentioned in the main text, we can also exponentially tilt p0(x, z) = p0(z)pβ(x|z) to pθ(x, z) =
1

Z(θ) exp(fα(x, z))p0(x, z), or equivalently, exponentially tilt p0(z, ε) = p0(z)p(ε). The above
derivations can be easily adapted to such a model, which we choose not to explore due to the
complexity of EBM in the data space.

A.11 Amortized inference and synthesis networks

We can jointly train two extra networks together with the original model to amortize the short-run
MCMC for inference and synthesis sampling. Specifically, we use an inference network qφ(z|x)
to amortize the short-run MCMC that produces p̃θ(z|x), and we use a synthesis network qψ(z) to
amortize the short-run MCMC that produces p̃α(z).

We can then define the following objective function in parallel with the objective function (44) in the
above subsection,

∆(θ, φ, ψ) = DKL(pdata(x)‖pθ(x)) +DKL(qφ(z|x)‖pθ(z|x))−DKL(qψ(z)‖pα(z)), (48)

and we can jointly learn θ, φ and ψ by

min
θ

min
φ

max
ψ

∆(θ, φ, ψ). (49)

See [4, 5] for related formulations. The learning of the inference network qφ(z|x) follows VAE. The
learning of the synthesis network qψ(z) is based on variational approximation to pα(z). The pair
pα(z) and qψ(z) play adversarial roles, where qψ(z) serves as an actor and pα(z) serves as a critic.
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B Experiments

B.1 Experiment details

Data. Image datasets include SVHN [15] (32 × 32 × 3), CIFAR-10 [11] (32 × 32 × 3), and
CelebA [13] (64× 64× 3). We use the full training split of SVHN (73, 257) and CIFAR-10 (50, 000)
and take 40, 000 examples of CelebA as training data following [16]. The training images are resized
and scaled to [−1, 1]. Text datasets include PTB [14], Yahoo [19], and SNLI [1], following recent
work on text generative modeling with latent variables [8, 20, 12].

Model architectures. The architecture of the EBM, fα(z), is displayed in Table 2. For text data, the
dimensionality of z is set to 32. The generator architectures for the image data are also shown in
Table 2. The generators for the text data are implemented with a one-layer unidirectional LSTM [7]
and Table 3 lists the number of word embeddings and hidden units of the generators for each dataset.

Short run dynamics. The hyperparameters for the short run dynamics are depicted in Table 1
where K0 and K1 denote the number of prior and posterior sampling steps with step sizes s0 and
s1, respectively. These are identical across models and data modalities, except for the model for
CIFAR-10 which is using K1 = 40 steps.

Short Run Dynamics Hyperparameters
Hyperparameter Value

K0 60
s0 0.4
K1 20
s1 0.1

Table 1: Hyperparameters for short run dynamics.

Optimization. The parameters for the EBM and image generators are initialized with Xavier nor-
mal [3] and those for the text generators are initialized from a uniform distribution, Unif(−0.1, 0.1),
following [8, 12]. Adam [9] is adopted for all model optimization. The models are trained until
convergence (taking approximately 70, 000 and 40, 000 parameter updates for image and text models,
respectively).

SNLI PTB Yahoo
Word Embedding Size 256 128 512

Hidden Size of Generator 256 512 1024

Table 3: The sizes of word embeddings and hidden units of the generators for SNLI, PTB, and Yahoo.

C Ablation study

We investigate a range of factors that are potentially affecting the model performance with SVHN
as an example. The highlighted number in Tables 4, 5, and 6 is the FID score reported in the main
text and compared to other baseline models. It is obtained from the model with the architecture and
hyperparameters specified in Table 1 and Table 2 which serve as the reference configuration for the
ablation study.

Fixed prior. We examine the expressivity endowed with the EBM prior by comparing it to models
with a fixed isotropic Gaussian prior. The results are displayed in Table 4. The model with an
EBM prior clearly outperforms the model with a fixed Gaussian prior and the same generator as
the reference model. The fixed Gaussian models exhibit an enhancement in performance as the
generator complexity increases. They however still have an inferior performance compared to the
model with an EBM prior even when the fixed Gaussian prior model has a generator with four times
more parameters than that of the reference model.
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EBM Model
Layers In-Out Size Stride
Input: z 100

Linear, LReLU 200 -
Linear, LReLU 200 -

Linear 1 -
Generator Model for SVHN, ngf = 64

Input: x 1x1x100
4x4 convT(ngf x 8), LReLU 4x4x(ngf x 8) 1
4x4 convT(ngf x 4), LReLU 8x8x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU 16x16x(ngf x 2) 2

4x4 convT(3), Tanh 32x32x3 2
Generator Model for CIFAR-10, ngf = 128

Input: x 1x1x128
8x8 convT(ngf x 8), LReLU 8x8x(ngf x 8) 1
4x4 convT(ngf x 4), LReLU 16x16x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU 32x32x(ngf x 2) 2

3x3 convT(3), Tanh 32x32x3 1
Generator Model for CelebA, ngf = 128

Input: x 1x1x100
4x4 convT(ngf x 8), LReLU 4x4x(ngf x 8) 1
4x4 convT(ngf x 4), LReLU 8x8x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU 16x16x(ngf x 2) 2
4x4 convT(ngf x 1), LReLU 32x32x(ngf x 1) 2

4x4 convT(3), Tanh 64x64x3 2

Table 2: EBM model architectures for all image and text datasets and generator model architectures
for SVHN (32× 32× 3), CIFAR-10 (32× 32× 3), and CelebA (64× 64× 3). convT(n) indicates
a transposed convolutional operation with n output feature maps. LReLU indicates the Leaky-ReLU
activation function. The leak factor for LReLU is 0.2 in EBM and 0.1 in Generator.

Model FID
Latent EBM Prior 29.44
Fixed Gaussian
same generator 43.39

generator with 2 times as many parameters 41.10
generator with 4 times as many parameters 39.50

Table 4: Comparison of the models with a latent EBM prior versus a fixed Gaussian prior. The
highlighted number is the reported FID for SVHN and compared to other baseline models in the main
text.

MCMC steps. We also study how the number of short run MCMC steps for prior inference (K0)
and posterior inference (K1). The left panel of Table 5 shows the results for K0 and the right panel
for K1. As the number of MCMC steps increases, we observe improved quality of synthesis in terms
of FID.
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Steps FID

K0 = 40 31.49
K0 = 60 29.44
K0 = 80 28.32

Steps FID

K1 = 20 29.44
K1 = 40 27.26
K1 = 60 26.13

Table 5: Influence of the number of prior and posterior short run steps K0 (left) and K1 (right). The
highlighted number is the reported FID for SVHN and compared to other baseline models in the main
text.

Prior EBM and generator complexity. Table 6 displays the FID scores as a function of the number
of hidden features of the prior EBM (nef) and the factor of the number of channels of the generator
(ngf, also see Table 2). In general, enhanced model complexity leads to improved generation.

nef 50 100 200

ngf
32 32.25 31.98 30.78
64 30.91 30.56 29.44

128 29.12 27.24 26.95

Table 6: Influence of prior and generator complexity. The highlighted number is the reported FID for
SVHN and compared to other baseline models in the main text. nef indicates the number of hidden
features of the prior EBM and ngf denotes the factor of the number of channels of the generator (also
see Table 2).
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D PyTorch code

i m p o r t t o r c h as t , t o r c h . nn as nn
i m p o r t t o r c h v i s i o n as tv , t o r c h v i s i o n . t r a n s f o r m s as t fm

img_s ize , b a t c h _ s i z e = 32 , 100
nz , nc , ndf , ngf = 100 , 3 , 200 , 64
K_0 , a_0 , K_1 , a_1 = 60 , 0 . 4 , 40 , 0 . 1
l l h d _ s i g m a = 0 . 3
n _ i t e r = 70000
d e v i c e = t . d e v i c e ( ’ cuda ’ i f t . cuda . i s _ a v a i l a b l e ( ) e l s e ’ cpu ’ )

c l a s s _G ( nn . Module ) :
d e f _ _ i n i t _ _ ( s e l f ) :

s u p e r ( ) . _ _ i n i t _ _ ( )
s e l f . gen = nn . S e q u e n t i a l ( nn . ConvTranspose2d ( nz , ngf ∗8 , 4 , 1 , 0 ) , nn . LeakyReLU ( ) ,

nn . ConvTranspose2d ( ngf ∗8 , ngf ∗4 , 4 , 2 , 1 ) , nn . LeakyReLU ( ) ,
nn . ConvTranspose2d ( ngf ∗4 , ngf ∗2 , 4 , 2 , 1 ) , nn . LeakyReLU ( ) ,
nn . ConvTranspose2d ( ngf ∗2 , nc , 4 , 2 , 1 ) , nn . Tanh ( ) )

d e f f o r w a r d ( s e l f , z ) :
r e t u r n s e l f . gen ( z )

c l a s s _E ( nn . Module ) :
d e f _ _ i n i t _ _ ( s e l f ) :

s u p e r ( ) . _ _ i n i t _ _ ( )
s e l f . ebm = nn . S e q u e n t i a l ( nn . L i n e a r ( nz , ndf ) , nn . LeakyReLU ( 0 . 2 ) ,

nn . L i n e a r ( ndf , ndf ) , nn . LeakyReLU ( 0 . 2 ) ,
nn . L i n e a r ( ndf , 1 ) )

d e f f o r w a r d ( s e l f , z ) :
r e t u r n s e l f . ebm ( z . s q u e e z e ( ) ) . view (−1 , 1 , 1 , 1 )

t r a n s f o r m = tfm . Compose ( [ t fm . R e s i z e ( i m g _ s i z e ) , t fm . ToTensor ( ) , t fm . Normal i ze ( ( [ 0 . 5 ] ∗ 3 ) , ( [ 0 . 5 ] ∗ 3 ) ) , ] )
d a t a = t . s t a c k ( [ x [ 0 ] f o r x i n t v . d a t a s e t s .SVHN( r o o t = ’ d a t a / svhn ’ , t r a n s f o r m = t r a n s f o r m ) ] ) . t o ( d e v i c e )

G, E = _G ( ) . t o ( d e v i c e ) , _E ( ) . t o ( d e v i c e )
mse = nn . MSELoss ( r e d u c t i o n = ’sum ’ )
optE = t . op t im . Adam( E . p a r a m e t e r s ( ) , l r =0 .00002 , b e t a s = ( 0 . 5 , 0 . 9 9 9 ) )
optG = t . op t im . Adam(G. p a r a m e t e r s ( ) , l r =0 .0001 , b e t a s = ( 0 . 5 , 0 . 9 9 9 ) )

d e f s a m p l e _ p _ d a t a ( ) :
r e t u r n d a t a [ t . LongTensor ( b a t c h _ s i z e ) . random_ ( 0 , d a t a . s i z e ( 0 ) ) ] . d e t a c h ( )

d e f sample_p_0 ( n= b a t c h _ s i z e ) :
r e t u r n t . r andn (∗ [ n , nz , 1 , 1 ] ) . t o ( d e v i c e )

d e f s a m p l e _ l a n g e v i n _ p r i o r ( z , E ) :
z = z . c l o n e ( ) . d e t a c h ( ) . r e q u i r e s _ g r a d _ ( True )
f o r i i n r a n g e ( K_0 ) :

en = E ( z )
z _g ra d = t . a u t o g r a d . g r ad ( en . sum ( ) , z ) [ 0 ]
z . d a t a = z . d a t a − 0 . 5 ∗ a_0 ∗ a_0 ∗ ( z _g ra d + 1 . 0 / z . d a t a ) + a_0 ∗ t . r a n d n _ l i k e ( z ) . d a t a

r e t u r n z . d e t a c h ( )

d e f s a m p l e _ l a n g e v i n _ p o s t e r i o r ( z , x , G, E ) :
z = z . c l o n e ( ) . d e t a c h ( ) . r e q u i r e s _ g r a d _ ( True )
f o r i i n r a n g e ( K_1 ) :

x _ h a t = G( z )
g _ l o g _ l k h d = 1 . 0 / ( 2 . 0 ∗ l l h d _ s i g m a ∗ l l h d _ s i g m a ) ∗ mse ( x_ha t , x )
g rad_g = t . a u t o g r a d . g r ad ( g_ log_ lkhd , z ) [ 0 ]
en = E ( z )
g r a d_ e = t . a u t o g r a d . g r ad ( en . sum ( ) , z ) [ 0 ]
z . d a t a = z . d a t a − 0 . 5 ∗ a_1 ∗ a_1 ∗ ( g rad_g + g ra d_ e + 1 . 0 / z . d a t a ) + a_1 ∗ t . r a n d n _ l i k e ( z ) . d a t a

r e t u r n z . d e t a c h ( )

f o r i i n r a n g e ( n _ i t e r ) :
x = s a m p l e _ p _ d a t a ( )
z_e_0 , z_g_0 = sample_p_0 ( ) , sample_p_0 ( )
z_e_k , z_g_k = s a m p l e _ l a n g e v i n _ p r i o r ( z_e_0 , E ) , s a m p l e _ l a n g e v i n _ p o s t e r i o r ( z_g_0 , x , G, E )

optG . z e r o _ g r a d ( )
x _ h a t = G( z_g_k . d e t a c h ( ) )
l o s s _ g = mse ( x_hat , x ) / b a t c h _ s i z e
l o s s _ g . backward ( )
optG . s t e p ( )

optE . z e r o _ g r a d ( )
en_pos , en_neg = E ( z_g_k . d e t a c h ( ) ) . mean ( ) , E ( z_e_k . d e t a c h ( ) ) . mean ( )
l o s s _ e = en_pos − en_neg
l o s s _ e . backward ( )
optE . s t e p ( )
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