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Abstract

We consider the problem of reconstructing a rank-one matrix from a revealed subset
of its entries when some of the revealed entries are corrupted with perturbations that
are unknown and can be arbitrarily large. It is not known which revealed entries are
corrupted. We propose a new algorithm combining alternating minimization with
extreme-value filtering and provide sufficient and necessary conditions to recover
the original rank-one matrix. In particular, we show that our proposed algorithm is
optimal when the set of revealed entries is given by an Erdős-Rényi random graph.

These results are then applied to the problem of classification from crowdsourced
data under the assumption that while the majority of the workers are governed by
the standard single-coin David-Skene model (i.e., they output the correct answer
with a certain probability), some of the workers can deviate arbitrarily from this
model. In particular, the “adversarial” workers could even make decisions designed
to make the algorithm output an incorrect answer. Extensive experimental results
show our algorithm for this problem, based on rank-one matrix completion with
perturbations, outperforms all other state-of-the-art methods in such an adversarial
scenario.1

1 Introduction

Matrix completion [10] [9] [13] refers to the problem of recovering a low-rank matrix from a subset
of its entries. A fundamental challenge in the study of matrix completion is that, in some applications,
the revealed entries will be inaccurate or corrupted. When these perturbations can be arbitrarily large,
we will refer to the problem as “robust matrix completion.” In particular, the motivating application
for this paper is estimation of worker reliability in crowdsourcing [30] [41] [21][19][45], where this
issue appears if some workers deviate from their instructions.

The simplest and one of the most widely used crowdsourcing models is Dawid & Skene’s (D&S)
single coin model [6]. In the D&S model, the workers are assumed to make mistakes independently
of other workers and with the same error probability for each task. It has previously been observed
that optimal estimation in the D&S model requires estimation of worker reliabilities [1], which in
turn can be framed as a rank-one matrix completion problem [30].

In the case when some of the workers are poorly described by the D&S model or even consciously
acting to subvert the underlying algorithm, the problem is naturally framed as a robust rank-one
matrix completion problem. The motivating scenario is either a platform such as Amazon Mechanical
Turk where workers without a long record of reliability typically have cheaper rates, or estimation
from online ratings on a platform such as Yelp, where there is strong incentive for business owners to
write fake reviews.

1The code is available on https://github.com/maqqbu/MMSR
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We propose a new algorithm for robust rank-one matrix completion which, in at least one regime, is
provably optimal. We then perform a computational study which compares our method to twelve
state-of-the-art methods from the crowdsourcing literature on both synthetic and real world datasets
(in the latter case, we introduce the corrupted workers ourselves), and show that our method strongly
outperforms all of them in this adversarial setting.

Notation and conventions: [n] = {1, · · · , n}; |S| is the size of set P ; dxe is the smallest integer
greater than x; bxc is the largest integer smaller than x; ‖X‖∗ is the nuclear norm of matrix L,
i.e., the sum of the singular values of matrix X; Z+ is the set of positive integers; Z≥i is the
set of integers which are greater than i; Given S1, S2, the reduction of S1 by S2 is denoted as
S1\S2 = {i ∈ S1 : i /∈ S2}; finally, A(n) ≈ B(n) means A(n)/B(n)→ 1 as n→∞.

2 Related Work

Matrix Completion: the standard approach to low-rank matrix completion [2][3] usually proceeds
by nuclear norm minimization:

minL ‖L‖∗
s.t. [L]ij = [L0]ij , ∀(i, j) ∈ Ω, (1)

where ‖L‖∗ is the nuclear norm of matrix L, Ω is the set of locations of the observed entries, L0

is the matrix to be recovered. Candès and Recht [2] proved that L0 can be recovered with high
probability via solving (1) if L0 is incoherent and Ω is sampled uniformly at random. These are strong
assumptions and many papers, including this one, have sought to relax them. A popular approach has
been to focus on non-uniform sampling. In particular, Negahban et al. [31] relaxed the condition
of uniform sampling to weighted entrywise sampling. Király et al. [20] considered deterministic
sampling. Liu et al. proposed a new hypothesis called "isomeric condition" in [27], which is weaker
than uniform sampling, and proved that the matrix L0 can be recovered by a nonconvex approach
under this condition.

Unlike these general methods, we consider rank-one matrix completion problem with arbitrary Ω as
well as adversarial corruptions. We do not assume any kind of incoherence of the underlying matrix.
Of course, the rank-one matrix completion problem for uncorrupted cases is trivial and can be solved
by going through the revealed answers recursively. Nevertheless, of particular note to us is Gamarnik
et al. [10] which studied how well an alternating minimization methods in the uncorrupted case; we
will build on those results in this work. Very closely related to our work is the recent paper Fatahi
et al. [9], which considered solving the robust rank-one matrix completion with perturbations by
solving the optimization problem

minu∈Rm+ ,v∈Rn+ ‖PΩ(X − uv>)‖1 +Rβ(u,v),

where Ω represents the set of observed entries and Rβ represents a regularization term. The approach
in [9] can deal with asymmetric matrices as well as sparse unknown perturbations. However, their
approach has strong assumption for the structure of the graph G(Ω) and can only deal with sparse
perturbations.

Crowdsourcing: For crowdsourcing problems [46] [39] [35], the D&S model has become a standard
theoretical framework and has led to a flurry of research in recent years, e.g., [41][11][15] among
many others. In the D&S model, the workers are assumed to make errors independently with each
other and the error probabilities of the workers are task-independent. In the single-coin D&S model,
each worker is further assumed to have the same accuracy on each task.

Ghosh et al. [11] considered a binary classification problem based on single coin D&S model, and a
SVD-based algorithm was proposed. The underlying assumption was that the observation matrix
(representing which workers give answers for which tasks) is dense. To relax this constraint, Dalvi et
al. [5] proposed another SVD-based algorithm which allows the observation matrix to be sparser.
Karger et al. [18] extended the single coin D&S model to multi-class labeling issues, and they
proposed an iterative algorithm to solve it. Zhang et al. [41] developed a two-stage spectral method
for multi-class crowdsourcing labeling problems based on general D&S model. In [30], the skill
estimate of workers in single one-coin D&S model were formulated as a rank-one matrix completion
problem, which is also the approach we will adopt in this paper. We mention that in Section 6, we
will compare our proposed algorithm with these existing approaches from [11][5][18][41][30].
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The adversarial version of the D&S model, where adversaries represent workers who deviate from
the model, has previously been investigated in a number of papers. Raykar et al. [34] assumed the
adversaries are workers who give answers randomly, and they proposed approach to eliminate such
adversaries in general D&S model. Jagabathula [17] also considered the specific types of adversaries
(e.g all the adversaries provide a label +1) and tried to detect these adversaries from normal workers
and eliminate their impact to the final predictions. Kleindessner et al. [21] proposed an approach to
deal with arbitrary and colluding adversaries in the David&Skene model. Overall, the algorithm in
[21] can deal with cases when nearly half of the workers are adversaries. However, this theoretical
guarantee requires the task assignment matrix to be full matrix or dense matrix. Our work considers
the same problem as [21] but without assuming the task assignment matrix is dense.

3 Problem Setup and Formulation

Let X = M + P ∈ Rm×n, where M = ab> is a positive rank-1 matrix with a =

[a1 a2 · · · am]
>, b = [b1 b2 · · · bn]

>. Let XΩ be a subset of the entries of X , i.e.,

XΩ = {Xij = Mij + Pij | ∀(i, j) ∈ Ω}, (2)

where Ω ⊂ [m]× [n]. Our goal is to efficiently reconstruct M given XΩ. The elements of the matrix
P can take on any value; if Pij 6= 0 we will say that the (i, j)’th entry of X is “corrupted.” An entry
that is not corrupted will be referred to as “normal.” We will be considering the situation where a
number of rows and columns of X are completely corrupted, and our goal is to correctly recover the
remaining rows and columns.

We begin with a sequence of definitions. The structure of the set of pairs Ω can be conveniently
represented by an undirected bipartite graph G(Ω) as follows:

Definition 1. G(Ω) is defined to be a bipartite graph with vertex partitions Vu := {1, 2, · · · ,m} and
Vv := {1, · · · , n} and includes the edge (i, j), with i ∈ Vu, j ∈ Vv , if and only if (i, j) ∈ Ω.

For i ∈ Vu, we let Ωi denotes the set of neighbors of node i, and similarly for j ∈ Vv , let Ω′j denote
the set of neighbors of node j (the apostrophe will be useful to be able to tell at a glance whether
a node belongs to Vu or Vv). Our next step is to formalize the fault model, i.e., what we will be
assuming about the corruption matrix P .

Definition 2. A set S ⊂ V (G) is F -local if its intersection with each Ωi and each Ω′j has at most F
nodes.

Definition 3. A node i ∈ Vu is corrupted if Pij 6= 0 for some (i, j) ∈ Ω. Likewise, a node j ∈ Vv is
corrupted if Pij 6= 0, for some (i, j) ∈ Ω. The graph G(Ω) is said to be F-local corrupted if the set
of corrupted nodes is F-local.

Next, we will introduce some concepts from [25] dealing with the redundancy of edges between
subsets of nodes; later, these will turn out to be closely related to the robustness of the graph G(Ω) to
corruptions.

Definition 4. A set S ⊂ V (G) is an r-reachable set if there exists a node in S with at least r
neighbors outside S. G(Ω) is r-robust if for every pair of nonempty, disjoint subsets of V (G), at least
one of the subsets is r-reachable.

Crowdsourcing: we now explain the connection between robust rank-one matrix completion and
crowdsourcing. We consider the single-coin D&S model where W workers are asked to provide
labels for a series of M -class classification tasks. The ground truths gt (t ∈ [T ]) for these tasks are
unknown (here T is the number of tasks). The set A ⊂ [W ]× [T ] is a worker-task assignment set.
The observations (Yw,t)(i,t)∈A are a collection of independent random variables. The single-coin
D&S model supposes the accuracy of the worker i is pi which means that the answer it returns is:

P(Yi,t = `|gt) = pi1{`=gt} +
1− pi
M − 1

1{ 6̀=gt}.

In words, worker i returns the correct answer with probability pi and a random incorrect answer
with probability 1− pi. Under such assumptions, it was observed [30] that the probability of each
worker can be estimated via solving a rank-one matrix completion problem as follows: letting
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si = M
M−1pi −

1
M−1 we have that [30]

E

[
M

M − 1
C̃ − 1

M − 1
11>

]
= ss>, (3)

where C̃ is the covariance matrix between agents i and j, 11> is the all-ones matrix which has the
same size as C̃. Since the RHS of (3) is a rank-one matrix, the skill level vector s can be estimated
by computing the empirical covariance matrix and applying a rank-one matrix completion method.

In the adversarial setting, we need to further consider the case when worker i may deviate from the
D&S model. In that case, all the entries in row i and column i should be viewed as corruptions as the
derivation of Eq. (3) is no longer valid for that row; this is why we adopt a model in this paper where
entire rows/columns are corrupted. Naturally, we do not know which rows/columns are corrupted.
Extending our notation from above, we will refer to uncorrupted rows and columns as normal.

The hope is that identification of skill levels for the uncorrupted agents is still possible if the number
of corrupted agents is not too large, or the corrupted agents are not placed in central location in the
graph G(Ω); making this intuition into a precise theorem is one of the goals of this paper.

With the above background in place, we can now state the main concerns of our paper formally:
(i) Given XΩ, how can we reconstruct the normal rows and columns of the rank-one matrix M under
F -local fault-models?
(ii) How can we estimate the workers’ skill level s and consequently give accurate predictions for
tasks in the single-coin D&S model with adversaries?

4 The M-MSR method

In this section, we present the details of our approach. We will start by explaining how our algorithm
was constructed. For the uncorrupted rank-one matrix completion problem, we begin by observing
that if (a, b) is an optimal solution, then we actually have the group of optimal solutions (u,v) =
(ka, k−1b). On the other hand, given arbitrary positive vectors u,v, we can represent them as

u = [a1k1 a2k2 · · · amkm]
>
, v =

[
b1
k′1

b2
k′2
· · · bn

k′n

]>
,

where ai, bj represent the values of optimal solution (a, b). We will refer to ki as the “value” of
vertex i and likewise for k′j . Observe that to find the optimal solution, we need some algorithms to
update u and v so that all the vertices can have the same value. To accomplish this, our starting point
is the update

ui(t+ 1) =
∑

j∈Ωi
wij

Xij

vj(t)
, ∀i ∈ [m],

vj(t+ 1) =
∑

i∈Ω′j
w′ij

Xij

ui(t+ 1)
, ∀j ∈ [n], (4)

where the coefficients wij , w′ij form a convex combination. This update rule is motivated by [10], to
which it is closely related, and can be interpreted in terms of an minimization method which alternates
between finding the best u and the best v. In the unperturbed case, via elementary algebra this can be
rewritten in terms of the variables ki, k′j introduced above as

ki(t+ 1) =
∑

j∈Ωi
wijkj(t), ∀i ∈ [m],

1

k′j(t+ 1)
=
∑

i∈Ω′j
w′ij

1

ki(t+ 1)
, ∀j ∈ [n]. (5)

We will show with update rule (5), all the vertices can converge to the same value.

The main difficulty is what to do to account for corruptions: since the corrupted elements can be
arbitrary, even a single corrupted element can completely destabilize this iteration. A natural approach
is to filter the extreme values in each update of Eq. (4). To that end, let us define

Ji(t) =

{
Xij

vj(t)

∣∣∣∣j ∈ Ωi

}
.
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We will then set Ri(t) to be the set of nodes with the F largest and smallest values in Ji(t) (if
there are fewer than F values strictly smaller/larger than ui(t), then Ri(t) contains the ones that are
strictly smaller/larger than ui(t)); the quantities J ′j(t), R

′
j(t) are defined similarly for nodes j ∈ Vv .

Our algorithm is presented next; we will call it the Matrix-Mean-Subsequence-Reduced (M-MSR)
algorithm.

Algorithm 1 M-MSR
Input: Positive matrix X , set Ω, F and v(0) > 0

Output: X̂ = u(T )v(T )>

1: for t = 1, 2, . . . , T do
2: For each i = 1, · · · ,m, let

ui(t + 1) =
∑

j∈Ωi\Ri(t)
wij

Xij

vj(t)
, (6)

where the coefficients wij form a convex combination.
3: For each j = 1, · · · , n, let

vj(t + 1) =
∑

i∈Ω′j\R
′
j(t)

w′
ij

Xij

ui(t + 1)
, (7)

where the coefficients w′
ij form a convex combination.

4: end for
5: return u(t) = [u1(t), u2(t), · · · , um(t)]>, v(t) = [v1(t), v2(t), · · · , vn(t)]>

For convenience, we will not consider the case m = n = 1. We will be assuming that G(Ω) is
connected. Finally, introducing the notation α for the smallest of wij , w′ij , we will be assuming that
α ≤ 1/2. This can easily satisfied by e.g., choosing wij = 1/degree(i) and likewise for w′ij .

5 Convergence Analysis

We begin by considering the case where the revealed entry set Ω is randomly chosen, which cor-
responds to the case of G(Ω) being an Erdős-Rényi bipartite graphs. For simplicity, we assume
m = n.

Theorem 1(a). Suppose G(Ω) is a random bipartite graph Gn,n,p where each edge is generated with
probability p. Then a sufficient condition for M-MSR algorithm (with parameter F ) to successfully
recover the normal rows and columns of X under the assumption the the corruptions are F -local is

p ≥ log n+ 2F log log n+ x

n
, (8)

where x = o(log log n)→∞, when n→∞.

Thus, on a random graph, the M-MSR method can successfully recover the true matrix provided the
graph is not too sparse. We will later discuss the guarantees this theorem implies on the total fraction
of corruptions (note that F is an upper bound on the number of corruptions in each neighborhood).
For now we observe that Theorem 1(a) is tight in a sense described next.

As we will argue in the supplementary information, M-MSR has the property that it is skew nonam-
plifying in the following sense: at every step of the method, it maintains estimates u(t), v(t) such
that ui(t)vj(t) converges to the correct answer aibj when i, j are normal and which satisfy

min
normal i

{
ui(t)

ai
,
bi
vi(t)

}
≥ min

normal i

{
ui(0)

ai
,
bi

vi(0)

}
, (9)

max
normal i

{
ui(t)

ai
,
bi
vi(t)

}
≤ max

normal i

{
ui(0)

ai
,
bi

vi(0)

}
, (10)

Intuitively, the quantities ui(t)/ai and bi/vi(t) measure the “skew” between the vectors u(t), v(t) and
the optimal solution. Let us call any algorithm that satisfies Eq. (9) and Eq. (10) skew-nonamplifying.

Skew nonamplification is clearly a desirable property. In principle, any algorithm for robust rank-1
matrix factorization can converge to (αa)(α−1bT ) where abT is the true rank-1 matrix and α can
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be any real number. It is natural to bound how large the constants α and α−1 can be. The skew-
nonamplifying property does that by ensuring the final skew is not worse than the skew on the initial
conditions.

Our next result shows that M-MSR is essentially optimal on random graphs among all skew-
nonamplifying methods.

Theorem 1(b). Suppose G(Ω) is a random bipartite graph Gn,n,p where each edge is generated with
probability p. Suppose

p =
log n+ 2F log logn− x

n
,

where x = o(log log n)→∞, when n→∞. Then, with probability approaching 1 as n→∞, the
normal rows and columns of X cannot be recovered by any skew-nonamplifying algorithm in the
presence of F -local corruptions.

In other words, if Eq. (8) just barely fails due to the replacement of x by −x, then Theorem 1(b)
tells us that Gn,n,p will, with high probability, be a graph for which there exists a set of F -local
corruptions which prevent any skew-nonamplifying algorithm from recovering the true matrix X .

Theorem 1 in parts (a) and (b) provides a justification for the M-MSR algorithm: it is essentially
an optimal algorithm to use on bipartite random graphs. This theorem is actually derived from
the following somewhat more general theorem, which gives the exact conditions for the M-MSR
algorithm to work on an arbitrary graph.

Theorem 2. Suppose G(Ω) is a connected graph where the nodes are updated according to M-MSR
algorithm with parameter F . Under F -local nodes-corrupted model, the rows and columns of
X without corruptions can be correctly recovered by the M-MSR method if and only if G(Ω) is
2F + 1-robust.

Theorem 2 gives substance to the intuition that recovery is possible if the number of adversarial agents
is not too large, and if their placement in the graph is not central. It quantifies this intuition through
the concept of 2F + 1 robustness. The proofs of these theorems can be found in the supplementary
information. Our results are connected to earlier work in resilient consensus [25] which introduced
the concept of robustness, as well as the work [40] which analyzed the threshold of robustness in
general random graphs.

5.1 Applying M-MSR to crowdsourcing

We have already spelled out how skill determination in crowdsourcing with adversaries can be reduced
to rank-one matrix completion with perturbations. Here we discuss additional details that are needed
to apply the M-MSR method.

Prediction. When the skills are known, according to [26], the optimal prediction method under D&S
model is weighted majority voting, i.e.

γ∗s,A(Y ) = arg max
`∈[M ]

∑
i:(i,t)∈A

v∗i 1{Yi,t = `}, (11)

where v∗i = log (M−1)pi
1−pi , ∀i ∈ [W ]. As discussed above, we will use perturbed rank-one matrix

completion to estimate the skills.

Implications of Theorem 1. Consider the case where a total of βn adversaries exist among n
workers, where β < 1. Of course, it is unknown who is an adversary. As explained earlier, a certain
correlation matrix between the normal workers is rank-1 in expectation. Of course, we may not know
all the entries of this correlation matrix, since only correlations among workers with tasks in common
are revealed. A natural approach is to create a random bipartite graph of revealed entries by assigning
tasks randomly.

This can be done in a number of ways. We may, for example, generate a random bipartite graph G
from Gn,n,p first. Then, assuming there is a sufficiently large incoming stream of tasks, we assign
each task to a random pair of workers i and j such (i, j) is an edge in G. After each pair of agents
has been assigned enough tasks, the empirical correlation matrix is approximately rank-1, and we
reveal the entries of this matrix corresponding to G. Note that, even though the correlation matrix is
symmetric, this method will reveal an asymmetric subset of entries. Other methods to generate the
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graph randomly via random task assignment are also possible, for example by assigning tasks to more
than two workers. The key point, however, is that the fraction of adversaries in every neighborhood
will then concentrate around β: for each node i, each of its randomly chosen neighbors is adversarial
with probability β.

How many adversaries can we have and still correctly recover the skills of all the normal workers?
Unfortunately, using the strategy of the previous paragraph, any constant fraction β of adversaries
will result in a failure. Indeed, glancing at Eq. (8), if F scales as βpn (pn is the expected degree, and
an expected fraction β of these nodes will be adversarial), then Eq. (8) can never be satisfied.

Although this sounds discouraging, the guarantees of Theorem 1 are still useful, as we explain now.
Glancing at Eq. (8), it is easy to see that the choice of β = 1/[(2+ε) log(log(n))] (and corresponding
F = βpn) leads to that equation being satisfied with the choice of p = Ω((1 + ε−1) log n)/n. In
other words, we can tolerate a fraction of 1/[(2 + ε) log(log(n))] of adversaries.

Fortunately, 1/ log(log(n)) decays to zero quite slowly. Recall that in the crowdsourcing scenario,
n will be the number of users; using an upper bound of 10 billion people for the population of
planet Earth, we see that on any real-world data set, we have 1/[2 log(log(1010))] ≈ 16%, which is a
healthy proportion of adversaries to tolerate.

Sign Determination. In the M-MSR algorithm, we assume the rank-one matrix to recover is positive.
However the rank-one matrix which we aim to recover in crowdsourcing problem is not necessarily
positive. In fact, a worker’s skill level si ∈ [− 1

M−1 , 1] as si = M
M−1pi −

1
M−1 , pi ∈ [0, 1]. To

solve this issue, we can compute the entry-wise absolute value of the rank-one matrix, then apply
M-MSR to get |s|, finally, we apply a post-processing step to identify the sign pattern of s. Details
are available in Supplementary Sec. I.

6 Experiments

In several crowdsourcing experiments, we will compare the average prediction error
( 1
T

∑
t=1,··· ,T {Ŷt 6= gt}) of M-MSR algorithm with the straightforward majority voting (referred

to as MV) and the following methods from the literature: [18](KOS), [11](Ghost-SVD), [5]( EoR),
[41] ( MV-D&S and OPT-D&S), [30](PGD), [28](BP-twocoin, EM-twocoin, and MFA-twocoin),
[42](Entropy(O)), [44] (Minmax) . A detailed description of all of these methods can be found in
Supplementary Sec. A. In all cases we choose the corrupted workers at random, and the reported
results are from an average of 50 runs, with the shaded region denoting the standard deviation.

Synthetic Experiments. Figure 1 shows the results of a number of experiments we have generated.
We want to study the impact of graph types (Figure 1(b), 1(d)), task assignments (Figure 1(c), 1(f))
and skill level of “normal” workers (Figure 1(e)) to the performance of the crowdsourcing methods.
Additionally, we want to study the impact of different adversarial strategies (Figure 1(g), 1(h), 1(i),
1(k), 1(j)). To do this, we applied an adversarial model, by varying the parameters of this model, we
can generate a number of different adversarial strategies (e.g., always return the wrong answer, return
a random answer, return a certain fraction of the correct answer, some of the adversaries return exactly
the same answers, some adversaries return the perfectly colluding answers, assign each adversary
with every task, assign each adversary with every task with a fixed probability). The details about the
adversarial model as well as a definition of these parameters appears in Supplementary Sec. C.

Each graph in Figure 1 shows what happens when we vary one parameter. It can be seen that the
M-MSR algorithm strongly outperforms the baseline methods on various datasets and under almost
all of the adversarial strategies. Besides, the most damaging strategy in terms of reducing prediction
error across the methods we tried seems to return a correct answer a fraction q < 1/2 of the time and
an incorrect answer 1− q of the time, and the adversaries should locate at the central places and be
highly dependent with each other.

Experiments on real data. We implemented similar experiments on 17 publicly available data sets
that are commonly used to evaluate the crowdsourcing algorithms. A detailed discussion of all the
datasets can be found in Supplementary Sec. E, and the details of the how the experiments were
conducted can be found in supplementary Sec. D. As shown in Figure 2 and Figure 6 (Supplementary
Sec. D), the M-MSR algorithm consistently outperforms all the baseline methods. In particular, when
the number of the corrupted workers increases, the prediction error of M-MSR algorithm maintains
the smallest on almost every dataset.
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(b) Graph sparsity
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(c) Number of tasks
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(d) Graph size
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(e) Skill level
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(f) Task-assignment vari-
ance
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(g) Adversary accuracy
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(h) Adversary ob-sparsity
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(i) Number of adversaries
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(j) Adv. dependence level
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(k) Adv. dependence level

Figure 1: Experiments on synthetic data (see Supplementary Section C for a full explanation).
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Figure 2: Experimental results on real datasets (see Supplementary Section D for a full explanation).

The M-MSR algorithm performs especially well on large datasets like RTE, Temp, TREC, Fashion1
and Fashion2. It is the only method which can handle around n

2 (n is the number of the total workers)
corrupted workers on these datasets. Out of 17 real datasets, our algorithm is the best on 16 of them.
The only exception is dataset Surprise ( Figure 6 in Supplementary Sec. D) – the reason is that
the “normal” workers on this dataset do not appear to be reliable. Besides, on some of the original
real datasets, i.e., no adversaries are introduced, M-MSR algorithm is not the best one among all
the baseline methods. This shows that the superiority of the M-MSR algorithm is mainly on large
datasets in adversarial setting.

6.1 Exact Recovery

We compare the M-MSR algorithm with PCA and RPCA algorithms in [9]. We study the recovery
rate of the rank-one matrices with different level of noises. The experiment results are shown in
Figure 3 (the details of this experiment can be found in Supplementary Sec. F). It can be seen that our
algorithm strongly outperforms these methods for robust rank-one matrix completion. We also note
that the M-MSR algorithm is very efficient: when the dimension of the matrices increases from 10 to
1000, the running time of M-MSR increases from 0.01 seconds to 0.42 seconds while RPCA increases

8
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Figure 3: Experimental results of exact recovery experiment. (a) Recovery rate heatmap of subgradient method
for PCA (The intensity of the color is proportional to the recovery rate). (b) Recovery rate heatmap of subgradient
method for RPCA (c) The recovery rate heatmap for M-MSR (d) Running time of the subgradient method for
RPCA and running time for M-MSR (for each dimension, the average running time and the standard deviation
confidence interval over 100 independent trials are shown). Details are provided in Supplementary Section D.

from 0.46 seconds to 80.62 seconds. This is an additional advantage of the M-MSR algorithm when
dealing with large datasets.

7 Discussion and Conclusions

We studied a crowdsourcing model with (i) The presence of users who might choose adversarial
responses (ii) General worker-task assignment sets resulting in arbitrary interaction graphs G(Ω)
among workers. Because approaches based on sparse recovery are not able to handle arbitrary A,
we proposed a new algorithm, M-MSR, for skill determination (and consequently prediction) in this
context. Our algorithm is based on a connection to the robust rank-1 matrix completion.

Our main results are: (i) A necessary and sufficient condition for our algorithm to work on any graph,
and a proof that our algorithm is optimal on random graphs (ii) An empirical evaluation which shows
that our algorithm outperforms existing methods on both synthetic and real data sets.

Future work will analyze M-MSR when the graph is partially random. While some scenarios, like
Amazon’s Mechanical Turk, allow any set A to be specified, other practical scenarios do not; consider,
for example, estimation of item quality from online ratings (e.g., Yelp), where the assignment of
users to items is not random. Adversarial interactions are particularly important in this context, as
business owners might be tempted to skew the ratings by leaving reviews from fake accounts.

Theorem 2 provides a bound to how many adversaries can be tolerated in this setting, and this bound
will be quite good as long as the underlying graph is dense. For a sparse graph, however, this is not
the case: in that case, Theorem 2 could fail to guarantee that even a small number of adversaries
can’t skew the result. One possibility is to strategically add more random edges (by giving users
suggestions of items to rate) to make the resulting graph 2F + 1-robust for a large F . Subsequent
work could consider how well such schemes perform both in theory and in practice.

Broader Impact

In this work, we provide a new robust matrix completion methods which can make recommendation
systems more accurate in the presence of spam. This can benefit users of platforms like Amazon
Mechanical Turk and Yelp.

In terms of negative impact, our work could allow the same platforms to learn more about the
preferences of their users. It is possible that this data could be leaked, resulting in privacy loss.
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