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Appendices
Appendix A Details for the uniformity experiment

The uniformity experiment is based on Wang and Isola [53]. We follow the same definitions of the
losses/metrics as presented in the paper. The alignment loss is given by:

Lalign(f ;α) := − E
(x,y)∼ppos

[‖f(x)− f(y)‖α2 ] , α > 0,

while the uniformity loss is given by:

Luniform(f ; t) := log E
x,y

i.i.d.∼ pdata

[
e−t‖f(x)−f(y)‖

2
2

]
, t > 0,

where α, t are weighting parameters and f is the feature encoder (i.e. minus the MLP head for
MoCo-v2 and MoCHi). We set α = 2 and t = 2. All features were L2-normalized, as the metrics are
defined on the hypersphere. ppos denotes the joint distribution of pairs of positive samples, and pdata
is the distribution of the data. Note that ppos is task-specific; here we use the class oracle, i.e. the
ImageNet-100 labels, to define the positive samples. We use the publicly available implementation
supplied by the authors1; we modify the alignment implementation to reflect the fact that we obtain
the positives based on the class oracle. In the Figure, we report the two metrics (−Luniform and
−Lalign) for models trained on ImageNet-100 using all embeddings of the validation set.

Appendix B Further analysis on hard negative mixing

B.1 Proxy task: Effect of MLP and Stronger Augmentation

Following our discussion in Section 3, we wanted to verify that hardness of the proxy task for
MoCo [19] is directly correlated to the difficulty of the transformations set, i.e. proxy task hardness
can modulated via the positive pair. In Figure 1, we plot the proxy task performance, i.e. the
percentage of queries where the key is ranked over all negatives, across training for MoCo [19],
MoCo-v2 [10] and some variants inbetween. In Figure 1, we track the proxy task performance
when progressively moving from MoCo to MoCo-v2, i.e. a) switching to a cosine learning rate
schedule (gray line–no noticeable change in performance after 200 epochs); b) adding a Multilayer
Perceptron head (cyan line–no noticeable change in performance after 200 epochs); c) adding a more

1https://github.com/SsnL/align_uniform/
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Figure 1: Proxy task performance over 200 epochs of training on ImageNet-100. For all methods we
use the same τ = 0.2.

challenging data augmentation (green line–a drop in proxy task performance). The latter is equivalent
to MoCo-v2. For completeness we further show a MoCHi run with a large number of synthetic
features (red line–large drop in in proxy task performance).

It is worth noting that the temperature τ of the softmax is a hyper-parameter that highly affects the
rate of learning and therefore performance in the proxy task. As mentioned above, all results in
Figure 1 are for the same τ = 0.2.

B.2 Hard negative mixing variants not discussed in the main text

While developing MoCHi, we considered a number of different mixing strategies in feature space.
Many of those resulted in lower performance while others performed on par but were unnecessarily
more complicated. We found the two strategies presented in Sections 4.1 and 4.2 of the main paper to
be both the best performing and also complementary. Here, we briefly mention some other ideas that
didn’t make the cut.

Mixing using keys instead of queries. For MoCHi, the “top” negatives are defined via the negative
logits, i.e. how far each memory negative is to a query. We also experimented when the ranking
comes from a key, i.e. using the key to define the ordering of the set Q̃. We ablated this for both when
mixing pairs of negative as well as when mixing the query with negatives. In the vast majority of the
cases, results were on average about 0.2% lower, across multiple configurations. Note that this would
also involve having to compute the dot products of the key with the memory, something that would
induce further computational overhead.

Mixing keys with negatives. For MoCHi, in Section 4.2 we propose to synthesize s′ synthetic hard
negative features for each query, by mixing its feature with a randomly chosen feature from the hardest
negatives in set Q̃N . We could also create such negatives by mixing the key the same way, i.e. the
synthetic points created this way would be given by h′′k = h̃′′/‖h̃′′k‖2, where h̃′′k = βkk+(1−βk)nj ,
and nj is a randomly chosen negative feature from Q̃N , while βk ∈ (0, 0.5) is a randomly chosen
mixing coefficient for the key. Ablations showed that this yields at best performance as good as
mixing with the query, but on average about 0.1-0.2% lower.

Weighted contributions for the logits of h′. We also tried weighing the contributions of the
MoCHi samples according to the percentage of the query they have. That is, the logits of each hard
negative h′k was scaled by βk to reflect how “negative” this point is. This weighing scheme also
resulted in slightly inferior results.

Sampling negatives non-uniformly. We also experimented when sampling negatives with a prob-
ability defined over a function of the logit values. That is, we defined a probability function by
adding a softmax on top of the top N negatives, with a τ ′ hyper-parameter. Although we would
want to further investigate and thoroughly ablate this approach, early experiments showed that the
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hard negatives created this way are so hard that linear classification performance decreases by a lot
(10-30% for different values of τ ′).

Fixing the percentage of hard negatives in the top-k logits. In an effort to reduce our hyperpa-
rameters, we run preliminary experiments on a variant where instead of s and s′, we synthesize hard
negatives sequentially for each query by alternate between the two mixing methods (i.e. mixing two
negatives and mixing the query with one negative) up until X% of the top-N logits correspond to
synthetic features. Although encouraging, quantitative results on linear classification were inconclu-
sive; we would however want to further investigate this in the future jointly with curriculum strategies
that would decrease this percentage over time.

B.3 Mixing hard negatives vs altering the temperature of the softmax

Another way of making the contrastive loss more or less “peaky” is through the temperature parameter
τ of the softmax function; we see from Eq (2) that the gradients of the loss are scaled by 1/τ . One
would therefore assume that tuning this parameter could effectively tune the hardness and speed of
learning. One can see MoCHi as a way of going beyond one generic temperature parameter; we start
with the best performing, cross-validated τ and generate different negatives adapted to each query,
and therefore have adaptive learning for each query that further evolves at each epoch.

Appendix C More experiments and results

C.1 Experimental protocol

In general and unless otherwise stated, we use the default hyperparameters from the official imple-
mentation2 for MoCo-v2. We follow Chen et al. [10] and use a cosine learning rate schedule during
self-supervised pre-training. For both pretraining datasets the initial learning rate is set to 0.03, while
the batchsize is 128 for ImageNet-100 and 256 for ImageNet-1K. Similar to MoCo-v2 we keep the
embedding space dimension to 128. We train on 4 GPU servers. We further want to note here that,
because of the computational cost of self-supervised pre-training, 100 epoch pretraining results are
computed from the 100th-epoch checkpoints of a 200 epoch run, i.e. the cosine learning rate schedule
still follows a 200 epoch training. Moreover, our longer (800) epoch runs are by restarting training
from the 200 epoch run checkpoint, and switching the total number of epochs to 800, i.e., the learning
rate jumps back up after epoch 200.

C.1.1 Dataset details

Imagenet. The ImageNet-1K data can be downloaded from this link3 while the 100 synsets/classes
of ImageNet-100 are presented below. For ImageNet-1K the training set is 1.2M images from 1000
categories, while the validation set contains 50 images from each class, i.e. 50,000 images in total.

ImageNet-100. ImageNet-100 is a subset of ImageNet-1K that consists of the 100 classes presented
right below. It was first used in Tian et al. [46] and recently also used in Shen et al. [40]. The synsets
of ImageNet-100 are:

n02869837 n01749939 n02488291 n02107142 n13037406 n02091831 n04517823 n04589890
n03062245 n01773797 n01735189 n07831146 n07753275 n03085013 n04485082 n02105505
n01983481 n02788148 n03530642 n04435653 n02086910 n02859443 n13040303 n03594734
n02085620 n02099849 n01558993 n04493381 n02109047 n04111531 n02877765 n04429376
n02009229 n01978455 n02106550 n01820546 n01692333 n07714571 n02974003 n02114855
n03785016 n03764736 n03775546 n02087046 n07836838 n04099969 n04592741 n03891251
n02701002 n03379051 n02259212 n07715103 n03947888 n04026417 n02326432 n03637318
n01980166 n02113799 n02086240 n03903868 n02483362 n04127249 n02089973 n03017168
n02093428 n02804414 n02396427 n04418357 n02172182 n01729322 n02113978 n03787032
n02089867 n02119022 n03777754 n04238763 n02231487 n03032252 n02138441 n02104029
n03837869 n03494278 n04136333 n03794056 n03492542 n02018207 n04067472 n03930630

2https://github.com/facebookresearch/moco/
3http://image-net.org/challenges/LSVRC/2011/
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n03584829 n02123045 n04229816 n02100583 n03642806 n04336792 n03259280 n02116738
n02108089 n03424325 n01855672 n02090622

PASCAL VOC. For the experiments on PASCAL VOC we use the setup and config files described
in MoCo’s detectron2 code4. The PASCAL VOC dataset can be downloaded from this link5. As
mentioned in the main text, we fine-tune a Faster R-CNN [39], R50-C4 on trainval07+12 and test
on test2007. Details on the splits can be found here6 for the 2007 part and here7 for the 2012 part.

COCO. We similar to PASCAL VOC, we build on top of MoCo’s detectron2 code. We fine-tune
all layers end-to-end on the train2017 set (118k images) and evaluate on val2017. The image
scale is in [640, 800] pixels during training and is 800 at inference.

C.2 More ablations and results on ImageNet-100

Table 1 presents a superset of the ablations presented in the main text. Please note that most of the
results here are for a single run. Only results that explicitly present standard deviation were averaged
over multiple runs. Some further observations from the extended ablations table:

• From the 100 epoch run results, we see that the gains over MoCo-v2 get larger with longer
training. When training longer (see line for 800 epoch pre-training), we see that MoCHi
keeps getting a lot stronger, and actually seems to really close the gap even to the supervised
case.

• Looking at the smaller queue ablation, we see that MoCHi can achieve with K=4k perfor-
mance equal to MoCo-v2 with K=16k.

• From the runs using “class oracle” (bottom section), i.e. when simply discarding false
negatives from the queue, we see that MoCHi comes really close to the supervised case,
showing the power of contrastive learning with hard negatives also when labels are present.

C.3 Results for ImageNet-1K

In Table 2 we present a superset of the results presented in the main text, for linear classification
on ImageNet-1K and PASCAL VOC. We see that, for 200 epoch training performance still remains
strong even when N = 64, while the same stands for N = 128 when training for 100 epochs. We
also added a couple of recent and concurrent methods in the table, e.g. PCL [28], or the clustering
approach of [7]. Both unfortunately use a different setup for PASCAL VOC and their VOC results are
not directly comparable. We see however that our performance for linear classification on ImageNet-
1K is higher, despite the fact that both methods take into account the class label-based clusters that
do exist in ImageNet-1K.

Oracle run for MoCHi. We also present here a (single) run for MoCHi with a class oracle, when
training on ImageNet-1K for 1000 epochs. From this very preliminary result we verify that discarding
false negatives leads to significantly higher linear classification performance for ImageNet-1K, the
training dataset, while at the same time state-of-the-art transfer learning performance on PASCAL
VOC is preserved.

Appendix D An extended related and concurrent works section

Although self-supervised learning has been gaining traction for a few years, 2020 is undoubtedly the
year when the number of self-supervised learning papers and pre-prints practically exploded. Due
to space constraints, it is hard to properly reference all recent related works in the area in Section 2
of the main text. What is more, a large number of concurrent works on contrastive self-supervised
learning came out after the first submission of this paper. We therefore present here an extended

4https://github.com/facebookresearch/moco/tree/master/detection
5http://host.robots.ox.ac.uk/pascal/VOC/
6http://host.robots.ox.ac.uk/pascal/VOC/voc2007/dbstats.html
7http://host.robots.ox.ac.uk/pascal/VOC/voc2012/dbstats.html
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related work section that complements that Section (works mentioned and discussed there are not
copied also here), a section that further catalogues a large number of concurrent works.

Following the success of contrastive self-supervised learning, a number of more theoretical studies
have very recently emerged, trying to understand the underlying mechanism that make it work so
well [50, 53, 41, 27, 48], while Mutual Information theory has been the basis and inspiration for a
number such studies and self-supervised learning algorithms during the last years, e.g. [21, 51, 56, 4,
13, 20]. Building on top of SimCLR [9], the Relational Reasoning approach [35] adds a reasoning
module after forming positive and negative pairs; the features for each pair are concatenated and
passed through an MLP that predicts a relation score. In RoCL [23], the authors question the need
for class labels for adversarially robust training, and present a self-supervised contrastive learning
framework that significantly improved robustness. Building on ideas from [30] where objectives are
optimized locally, in LoCo [59] the authors propose to locally train overlapping blocks, effectively
closing the performance gap between local learning and end-to-end contrastive learning algorithms.

Self-supervised learning based on sequential and multimodal visual data. A number of earlier
works that learn representations from videos utilized the sequential nature of the temporal dimension,
e.g. future frame prediction and reconstruction [42], shuffling and then predicting or verifying the
order of frames or clips [33, 26, 60], predicting the ”arrow of time” [55], pace [52] or predicting the
“odd” element [14] from a set of clips. Recently, contrastive, memory-based self-supervised learning
methods were extended to video representation learning [18, 20, 45, 49]. In an interesting recent
study, Purushwalkam and Gupta [37] study the robustness of contrastive self-supervised learning
methods like MoCo [19] and PIRL [32] and saw that despite the fact that they learn occlusion-
invariant representations, they fail to capture viewpoint and category instance invariance. To remedy
that, they present an approach that leverages unstructured videos and leads to higher viewpoint
invariance and higher performance for downstream tasks. Another noteworthy paper that learns
visual representations in a self-supervised way from video is the work of Emin Orhan et al. [34],
that utilized an egocentric video dataset recorded from the perspective of several young children and
demonstrated the emergence of high-level semantic information.

A number of works exploit the audio-visual nature of video [25, 1, 36, 11, 2] to learn visual represen-
tation, e.g. via learning intra-modality synchronization. Apart from audio, other methods have used
use automatic extracted text, e.g. from speech transcripts [44, 43, 31] or surrounding text [16].

Clustering losses. A number of recent works explore representation learning together with clus-
tering losses imposed on the unlabeled dataset they learn on. Although some care about the actual
clustering performance on the training dataset [15, 38, 66], others further use the clustering losses as
means for learning representations that generalize [6–8, 63, 62, 3]. Following the recent success of
contrastive learning approaches, very recently a number of methods try to get the best of both worlds
by combining contrastive and clustering losses. Methods like local aggregation [67], Prototypical
Contrastive learning [28], Deep Robust Clustering [66], or SwAV [8] are able to not only create
transferable representations, but also are able to reach linear classification accuracy on the training
set that is not very far from the supervised case. In a very recent work, Wei et al. [54] introduce a
consistency regularization method on top of instance discrimination, where they encourage the the
similarities of the query and the negatives to match those of the key and the negatives, i.e. treating
them as a soft distribution over pseudo-labels.

Focusing on the positive pair. Works like SimCLR [9], MoCo-v2 [10] and Tian et al. [47] make
it clear that for contrastive self-supervised learning, selecting a challenging and diverse set of image
transformations can highly boost the quality of representations. Recently, papers like SwAV [8, 61]
demonstrated that even higher gains can be achieved by using multiple augmentations. In a very
interesting concurrent work, Cai et al. [5] propose a framework where key generation is probabilistic
and enables learning with infinite positive pairs in theory, while showing strong quantitative gains.

Very recently the BYOL [17] showed that one can learn transferable visual representations via
bootstrapping representations and without negative pairs. Reproducibility studies8 as well as very
recent manuscripts [48] have shown that batch normalization might play an important role when
learning without negatives, preventing mode collapse and helping spread the resulting features in the

8https://untitled-ai.github.io/understanding-self-supervised-contrastive-learning.
html
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embedding space. BYOL makes a number of modifications over SimCLR [9], e.g. the addition of a
target network whose parameter update is lagging similar to MoCo [19] and a predictor MLP. They
further use a different optimizer (LARS) and overall report transfer learning results after 1000 epochs
with a batchsize of 4096, a setup that is almost impossible to reproduce (the authors claim training
takes about 8 hours on 512 Cloud TPU v3 cores). It is hard to directly compare MoCHi to BYOL, as
BYOL does not report transfer learning results for the commonly used setup, i.e. after 200 epochs
of pre-training. We argue that by employing hard negatives, MoCHi can learn strong transferable
representations faster than BYOL.

Synthesizing for supervised metric learning. Recently, synthesizing negatives was explored in
metric learning literature [12, 65, 24]. Works like [12, 65] use generators to synthesize negatives in
a supervised scenario over common metric learning losses. Apart from not requiring labels, in our
case we focus on a specific contrastive loss and exploit its memory component. What is more, and
unlike [12, 65], we do not require a generator, i.e. have no extra parameters or loss terms that need
to be optimized. We discuss the relations and differences between MoCHi and the closely related
Embedding Expansion [24] method in the related works Section of the main paper.

The MoCHi oracle and supervised contrastive learning. A number of recent approaches have ex-
plored the connections between supervised and contrastive learning [22, 64, 29]. Very recently, Khosla
et al. [22] show that training a contrastive loss in a supervised way can lead to improvements even
over the ubiquitous cross-entropy loss. Although definitely not the focus and merely a byproduct of
the class oracle analysis of this paper, we also show here that MoCo and MoCHi can successfully
perform supervised learning for classification, by simply discarding same-class negatives. This is
something that is further utilized in [64]. For MoCHi, we can further ensure that all hard negatives
come from other classes. In the bottom section of Table 1 we see that for ImageNet-100, the gap
between the cross-entropy and contrastive losses closes more and more with longer contrastive
training with harder negatives. An oracle run is also shown in Table 2 for ImageNet-1K after 1000
epochs of training. We see that MoCHi decreases the performance gap to the supervised for linear
classification on ImageNet-1K, and performs much better than the supervised pre-training model for
object detection on PASCAL. We want to note here that MoCHi oracle experiments on ImageNet-1K
are very preliminary, and we leave further explorations on supervised contrastive learning with
MoCHi as future work.
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Method Top1 % (±σ) diff (%)

100 epoch training
MoCo-v2 [10]* 73.0

+ MoCHi (1024, 1024, 128) 73.6 0.6
+ MoCHi (1024, 128, 256) 73.7 0.7

200 epoch training
MoCo [19] 73.4
MoCo + iMix [40] 74.2‡ 0.8
CMC [46] 75.7
CMC + iMix [40] 75.9‡ 0.2
MoCo [19]* (t = 0.07) 74.0
MoCo [19]* (t = 0.2) 75.9
MoCo-v2 [10]* 78.0 (±0.2)

+ MoCHi (16384, 1024, 0) 78.1 0.1
+ MoCHi (16384, 0, 1024) 78.5 0.4
+ MoCHi (16384, 0, 256) 78.7 0.7
+ MoCHi (2048, 1024, 0) 78.2 0.2
+ MoCHi (2048, 512, 0) 78.5 0.5
+ MoCHi (2048, 512, 256) 78.4 0.4
+ MoCHi (1024, 1024, 0) 78.8 0.8
+ MoCHi (1024, 1024, 128) 79.0 (±0.4) 1.0
+ MoCHi (1024, 512, 0) 78.9 0.9
+ MoCHi (1024, 0, 512) 79.0 1.0
+ MoCHi (1024, 256, 512) 79.0 (±0.4) 1.0
+ MoCHi (1024, 128, 256) 78.9 (±0.5) 0.9
+ MoCHi (1024, 128, 0) 78.8 0.8
+ MoCHi (1024, 0, 128) 78.7 0.7
+ MoCHi (1024, 0, 256) 78.9 0.9
+ MoCHi (1024, 0, 512) 79.0 1.0
+ MoCHi (512, 128, 0) 78.4 0.4
+ MoCHi (512, 512, 0) 78.2 0.2
+ MoCHi (512, 128, 128) 78.6 0.6
+ MoCHi (256, 256, 0) 78.1 0.1
+ MoCHi (256, 512, 0) 77.7 0.3
+ MoCHi (128, 128, 0) 77.7 0.3
+ MoCHi (64, 6 4, 0) 77.5 0.5

K = 4096

MoCo-v2 [10]* 77.5
+ MoCHi (1024, 1024, 128) 78.0 0.5

K = 1024

MoCo-v2 [10]* 76.0
+ MoCHi (1024, 1024, 128) 77.0 1.0
+ MoCHi (1024, 1024, 128) (all queue) 73.4 2.6

800 epoch training
MoCo-v2 [10]* 84.1
MoCo-v2 [10] + MoCHi (1024, 1024, 128) 84.5

Using Class Oracle
MoCo-v2* (200 epochs) 81.8

+ MoCHi (1024, 1024, 128) (200 epochs) 82.5
+ MoCHi (1024, 1024, 128) (400 epochs) 84.2
+ MoCHi (1024, 1024, 128) (800 epochs) 85.2

Cross-entropy classification (supervised) 86.2

Table 1: More MoCHi ablations on ImageNet-100. Rows without a citation denote reproduced results.
‡ denote results from Figure 4 in [40]. Unless standard deviation is explicitly reported, results in this
table are for a single run.
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Method IN-1k VOC 2007
Top1 AP50 AP AP75

100 epoch training
MoCo-v2 [10]* 63.6 80.8 (±0.2) 53.7 (±0.2) 59.1 (±0.3)

+ MoCHi (512, 1024, 512) 63.7 81.3 (±0.1) (0.6) 54.7 (±0.4) (1.1) 60.6 (±0.5) (1.6)
+ MoCHi (256, 512, 0) 63.9 81.1 (±0.1) (0.4) 54.3 (±0.3) (0.7) 60.2 (±0.1) (1.2)
+ MoCHi (256, 512, 256) 63.7 81.3 (±0.1) (0.6) 54.6 (±0.3) (1.0) 60.7 (±0.8) (1.7)
+ MoCHi (128, 1024, 512) 63.4 81.1 (±0.1) (0.4) 54.7 (±0.3) (1.1) 60.9 (±0.1) (1.9)

200 epoch training
SimCLR [9] (8k batch size, from [10]) 66.6
DeeperCluster [7] (‡‡train only on VOC 2007) 48.4 71.9‡‡
MoCo + Image Mixture [40] 60.8 76.4
InstDis [57]† 59.5 80.9 55.2 61.2
MoCo [19] 60.6 81.5 55.9 62.6
SeLa [3] 61.5
PIRL [32]† 61.7 81.0 55.5 61.3
InterCLR [58] 65.5
PCL [28] (‡frozen body) 65.9 78.5‡
PCL v2 [28] 67.6
MoCo-v2 [10] 67.7 82.4 57.0 63.6
MoCo-v2 + CO2 [54] 68.0 82.7 57.2 64.1
InfoMin Aug. [47] 70.1 82.7 57.6 64.6
MoCo-v2 [10]* 67.9 82.5 (±0.2) 56.8 (±0.1) 63.3 (±0.4)

+ MoCHi (1024, 256, 128) 68.0 82.3 (±0.2) (0.2) 56.8 (±0.1) ( 0.0) 63.8 (±0.4) (0.5)
+ MoCHi (1024, 512, 256) 68.0 82.3 (±0.2) (0.2) 56.7 (±0.2) (0.1) 63.8 (±0.2) (0.5)
+ MoCHi (1024, 0, 512) 67.8 82.7 (±0.1) (0.2) 57.0 (±0.1) (0.2) 64.0 (±0.2) (0.7)
+ MoCHi (512, 1024, 512) 67.6 82.7 (±0.1) (0.2) 57.1 (±0.1) (0.3) 64.1 (±0.3) (0.8)
+ MoCHi (256, 512, 0) 67.7 82.8 (±0.2) (0.3) 57.3 (±0.2) (0.5) 64.1 (±0.1) (0.8)
+ MoCHi (256, 512, 256) 67.6 82.6 (±0.2) (0.1) 57.2 (±0.3) (0.4) 64.2 (±0.5) (0.9)
+ MoCHi (256, 2048, 2048) 67.0 82.5 (±0.1) ( 0.0) 57.1 (±0.2) (0.3) 64.4 (±0.2) (1.1)
+ MoCHi (128, 1024, 512) 66.9 82.7 (±0.2) (0.2) 57.5 (±0.3) (0.7) 64.4 (±0.4) (1.1)
+ MoCHi (64, 1024, 512) 66.3 82.6 (±0.1) (0.1) 57.3 (±0.1) (0.5) 64.4 (±0.5) (1.1)

800 epoch training
SvAV [8] 75.3 82.6 56.1 62.7
MoCo-v2 [10] 71.1 82.5 57.4 64.0
MoCo-v2[10]* 69.0 82.7 (±0.1) 56.8 (±0.2) 63.9 (±0.7)

+ MoCHi (128, 1024, 512) 68.7 83.3 (±0.1) (0.6) 57.3 (±0.2) (0.5) 64.2 (±0.4) (0.3)

Using Class Oracle
Cross-entropy classification (supervised) 76.1 81.3 53.5 58.8
MoCo-v2 [10] + MoCHi (512, 1024, 512) 72.6 83.3 57.7 64.6

Table 2: Results on ImageNet-1K and PASCAL VOC. Rows that do not report standard deviation
correspond to single runs. Wherever standard deviation is reported for the VOC fine-tuning, results
are averaged over three runs. For MoCHi runs we also report difference to MoCo-v2 in parenthesis. *
denotes reproduced results. † results are copied from [19].
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