
The Appendix is organized as follows: Section A introduces notation and states some useful facts.
Section B recounts basic tools from VC theory used to derive the results. Section C derives a
framework for robust distribution estimation in F-distance and proves Theorem 1. Building on this
framework it then develops computationally efficient algorithms for learning in Fk distance and
proves Theorem 2. Section D gives the proof of the filtration properties and other results used in
Section C. Section E gives the other remaining proofs of the main paper.

A Preliminaries

We introduce terminology that helps describe the approach and results. Some of the work builds on
results in [JO19], and we keep the notation consistent.

Recall that B, BG, and BA are the collections of all-, good-, and adversarial-batches. Let B′ ⊆ B,
B′G ⊆ BG, and B′A ⊆ BA, denote sub-collections of all-, good-, and bad-batches. We also let S
denote a subset in the Borel σ-field Σ on domain Ω.

LetXb
1, X

b
2, ..., X

b
n denote the n samples in a batch b, and let 1S denote the indicator random variable

for a subset S ∈ Σ. Every batch b ∈ B induces an empirical measure µ̄b over the domain Ω, where
for each S ∈ Σ,

µ̄b(S) :=
1

n

∑
i∈[n]

1S(Xb
i ).

Similarly, any sub-collection B′ ⊆ B of batches induces an empirical measure p̄B′ defined by

p̄B′(S) :=
1

|B′|n
∑
b∈B′

∑
i∈[n]

1S(Xb
i ) =

1

|B′|
∑
b∈B′

µ̄b(S).

We use two different symbols to denote empirical distribution defined by single batch and a sub-
collection of batches to make them easily distinguishable. Note that p̄B′ is the mean of the empirical
measures µ̄b defined by the batches b ∈ B′.

Recall that n is the batch size. For r ∈ [0, 1], let V(r) := r(1−r)
n , the variance of a Binomial(r, n)

random variable. Observe that

∀ r, s ∈ [0, 1], V(r) ≤ 1

4n
and |V(r)− V(s)| ≤ |r − s|

n
, (3)

where the second property follows as |r(1− r)− s(1− s)| = |r − s| · |1− (r + s)| ≤ |r − s|.

For b ∈ BG, the random variables 1S(Xb
i ) for i ∈ [n] are distributed i.i.d. Bernoulli(p(S)), and

since µ̄b(S) is their average,

E[ µ̄b(S) ] = p(S) and Var[ µ̄b(S) ] = E[(µ̄b(S)− p(S))2] = V(p(S)).

For batch collection B′ ⊆ B and subset S ∈ Σ, the empirical probability µ̄b(S) of S will vary with
the batch b ∈ B′. The empirical variance of these empirical probabilities is

VB′(S) :=
1

|B′|
∑
b∈B′

(µ̄b(S)− p̄B′(S))2.

B Vapnik-Chervonenkis (VC) theory

We recall some basic concepts and results in VC theory, and derive some of their simple consequences
that we use later in deriving our main results.

The VC shatter coefficient of F is

SF (t) := sup
x1,x2,..,xt∈Ω

|{{x1, x2, .., xt} ∩ S : S ∈ F}|,

the largest number of subsets of t elements in Ω obtained by intersections with subsets in F . The VC
dimension of F is

VF := sup{t : SF (t) = 2t},
the largest number of Ω elements that are "fully shattered" by F . The following Lemma [DL01]
bounds the Shatter coefficient for a VC family of subsets.
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Lemma 10 ([DL01]). For all t ≥ VF , SF (t) ≤
(
t e
VF

)VF
.

Next we state the VC-inequality for relative deviation [VC74, AST93].
Theorem 11. Let p be a distribution over (Ω,Σ), and F be a VC-family of subsets of Ω and p̄t
denote the empirical distribution from t i.i.d samples from p. Then for any ε > 0, with probability
≥ 1− 8SF (2t)e−tε

2/4,

sup
S∈F

max
{ p̄t(S)− p(S)√

p̄t(S)
,
p(S)− p̄t(S)√

p(S)

}
≤ ε.

Another important ingredient commonly used in VC Theory is the concept of covering number that
reflects the smallest number of subsets that approximate each subset in the collection.

Let p be any probability measure over (Ω,Σ) and let F ⊆ Σ be a family of subsets. A collection
C ⊆ Σ of subsets is an ε-cover of F under distribution p if for any S ∈ F , there exists a S′ ∈ C with
p(S4S′) ≤ ε. The ε-covering number of F is

N(F , p, ε) := inf{|C| : C is an ε-cover of F}.

If C ⊆ F is an ε-cover of F , then C is an ε-self cover of F . The ε-self-covering number of F is

Ns(F , p, ε) := inf{|C| : C is an ε-self-cover of F}.

Clearly, Ns(F , p, ε) ≥ N(F , p, ε), and we establish the reverse relation.
Lemma 12. For any ε ≥ 0, Ns(F , p, ε) ≤ N(F , p, ε/2).

Proof. If N(F , p, ε/2) = ∞, the lemma clearly holds. Otherwise, let C be an ε/2-cover of size
N(F , p, ε/2). We construct an ε-self-cover of equal or smaller size.

For every subset SC ∈ C, there is a subset S = f(SC) ∈ F with p(SC4 f(SC)) ≤ ε/2. Otherwise,
SC could be removed from C to obtain a strictly smaller ε/2 cover, which is impossible.

The collection {f(SC) : SC ∈ C} ⊆ F has size ≤ |C|, and it is an ε-self-cover of F because for any
S ∈ F , there is an SC ∈ C with p(S4SC) ≤ ε/2, and by the triangle inequality, p

(
S4 f(SC)

)
≤

ε. �

Let NF,ε := suppN(F , p, ε) and Ns
F,ε := suppN

s(F , p, ε) be the largest covering numbers under
any distribution.

The next theorem bounds the covering number of F in terms of its VC-dimension.
Theorem 13 ([VW96]). There exists a universal constant c such that for any ε > 0, and any family
F with VC dimension VF ,

NF,ε ≤ cVF
(4e

ε

)VF
.

Combining the theorem and Lemma 12, we obtain the following corollary.
Corollary 14. There exists a universal constant c such that for any ε > 0, and any family F with VC
dimension VF ,

Ns
F,ε ≤ cVF

(8e

ε

)VF
.

The above corollary implies that for any distribution p, a VC class F has an ε self cover, under

distribution p, of size O
(
VF

(
8e
ε

)VF)
.

C A framework for distribution estimation from corrupted sample batches

We develop a general framework for learning distributions in F distance, leading to Theorem 1.
Building on this framework, we derive a computationally efficient algorithm for learning in Fk
distance, yielding Theorem 2.
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Recall that the F distance between two distributions p and q is
||p− q||F = sup

S∈F
|p(S)− q(S)|.

Our goal is to estimate p to F-distance O(∆), where ∆ = O
(
β
√

ln(1/β)
n

)
is essentially the lower

bound.

At a high level, the filtering algorithm removes the adversarial, or "outlier" batches, and returns a
sub-collection B′ ⊆ B of batches whose empirical distribution p̄B′ is close to p in F distance. The
uniform deviation inequality in VC theory states that the sub-collection BG of good batches has
empirical distribution p̄BG that approximates p in F distance, thereby ensuring the existence of such
a sub-collection when the number of batches m is sufficiently large.

[JO19] developed a filtering algorithm for learning in TV-distance for a finite domain Ω = [k]. The
main drawback of this approach is that applying filtering algorithm directly for Σ-distance requires a
number of samples linear in domain size, which is prohibitive for non-finite domains. Here we focus
on general domains Ω and any collection of its subsets that has a finite VC-dimension.

Subsection C.1 describes certain filtration properties for a subset of Ω and using the subset that has
these filtration properties as a filter. This can be viewed as a reinterpretation of the similar properties
used in the filtering algorithm of [JO19]. Subsection C.2 uses these properties to develop a filtering
algorithm for any finite collection of subsets. Subsection C.3 proves a Robust covering theorem
to extends the filtering algorithm to VC family of subsets and proves Theorem 1. Subsection C.4
gives a computationally efficient filtering algorithm for the collection of subsets generated by a finite
partition of the domain. Building on this, the next subsection C.5 gives an efficient algorithm for
learning in Fk distance and proves Theorem 2.

C.1 Using subsets as filters

We discuss how a subset S ∈ Σ can be used as a filter. For this section, we fix a subset S ∈ Σ.

We show that if empirical estimates µ̄b(S) that batches b ∈ B assigns to this subset S satisfy certain
properties then we can accurately learn its probability and use this subset as a filter. The following
discussion develops some notation and intuitions that lead to these properties.

We start with the following observation. For every good batch b ∈ BG, the empirical estimate
n · µ̄b(S) has a binomial distribution Bin(p(S), n), which implies that µ̄b(S) has a sub-gaussian
distribution subG(p(S), 1

4n ) with variance V(p(S)). Hence, the empirical mean and variance of
µ̄b(S) over b ∈ BG converges to the expected values p(S) and V(p(S)), respectively. Moreover,
sub-gaussian property of the distribution of µ̄b(S) implies that, most of the good batches b ∈ BG
assign the empirical probability µ̄b(S) ∈ p(S)± Õ(1/

√
n).

In addition to the good batches, the collection B of batches also includes an adversarial sub-collection
BA of batches that constitute up to a β−fraction of B. If the difference between p(S) and the average
of µ̄b(S) over all adversarial batches b ∈ BA is ≤ Õ( 1√

n
), namely comparable to the standard

deviation of µ̄b(S) for the good batches b ∈ BG, then the adversarial batches can change the overall
mean of empirical probabilities µ̄b(S) by at most Õ( β√

n
), which is within our tolerance. Hence,

the mean of µ̄b(S) will deviate significantly from p(S) only in the presence of a large number of
adversarial batches b ∈ BA whose empirical probability µ̄b(S) differs from p(S) by� Ω̃( 1√

n
).

To quantify this effect, for a subset S ∈ Σ, let
med(µ̄(S)) := median{µ̄b(S) : b ∈ B}

be the median empirical probability of S over all batches. Property 1 (defined later) shows that w.h.p.,
the absolute difference between med(µ̄(S)) and p(S) is ≤ O(1/

√
n). The corruption score of batch

b for S is

ψb(S) :=

{
0 if |µ̄b(S)−med(µ̄(S))| ≤ O

(√
ln(1/β)
n

)
,

(µ̄b(S)−med(µ̄(S)))2 otherwise.
The preceding discussion shows that the corruption score of most good batches for the subset S
is zero and that adversarial batches that may significantly change the overall mean of empirical
probabilities have high corruption score.
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The corruption score of a sub-collection B′ ⊆ B for a subset S is the sum of the corruption score of
its batches,

ψB′(S) :=
∑
b∈B′

ψb(S).

A high corruption score ofB′ for a subset S indicates thatB′ has many batches b with large difference
|µ̄b(S)−med(µ̄(S))|.
Next, we describe some essential properties that allows to a use subset S as a filter. We later show
that regardless of the samples in adversarial batches, with high probability, the empirical estimates
µ̄b(S) for b ∈ B satisfies the following four filtration properties.

1. The median of the estimates {µ̄b(S) : b ∈ B} is close to p(S),

|med(µ̄(S))− p(S)| ≤ O(1/
√
n).

2. For every sub-collection B′G ⊆ BG containing a large portion of the good batches, |B′G| ≥
(1− β/6)|BG|, the empirical mean of µ̄b(S) estimate p(S) well,

|p̄B′G(S)− p(S)| ≤ O
(
β

√
ln(1/β)

n

)
= O(∆),

3. The corruption score of the collection BG of good batches for subset S is small,

ψB′(S) ≤ κG := O
(βm ln(1/β)

n

)
.

4. For every sub-collection B′G ⊆ BG s.t. |B′G| ≥ (1− β/6)|BG|, the empirical variance of µ̄b(S)
estimate V(p(S)) well,∣∣∣ 1

|B′G|
∑
b∈B′G

(µ̄b(S)− p(S))2 − V(p(S))
∣∣∣ ≤ O(β ln(1/β)

n

)
.

If any of the four filtration properties holds for subset S, we say that S has that particular property.

Next we show how a subset S with the first three of the filtration properties, can be used as a filter.
The last filtration property will be used later for deriving computationally efficient algorithms.

For subset S that has filtration properties and for every sub-collection B′ ⊆ B that contain most
good batches, the next lemma upper bounds the absolute difference between p(S) and the empirical
estimate p̄B′(S) of the batches in B′ in terms of the corruption score of B′.

Lemma 15. If subset S has filtration properties 1- 3, then for any B′ such that |B′ ∩ BG| ≥
(1− β

6 )|BG| such that ψB′(S) ≤ t · κG, for some t ≥ 0, then

|p̄B′(S)− p(S)| ≤ O
(

(
√
t+ 1)∆

)
.

The lemma is related to Lemma 4 in [JO19], hence we provide only a high-level argument. For any
sub-collection B′ retaining a major portion of good batches, from filtration property 2, the mean of
µ̄b(S) of the good batches B′ ∩BG approximates p(S). Showing that a small corruption score of B′
implies that the adversarial batches B′ ∩BA have limited effect on p̄B′(S) proves the lemma.

Next, we describe the Batch-Deletion algorithm of [JO19] and its performance guarantees.

Given a subset S with filtration property 3 and any sub-collection B′, the algorithm successively
removes batches from B′, ensuring that each batch removed is adversarial with high probability. The
algorithm stops deleting batches when the corruption score of the remaining sub-collection for S is
small.
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Algorithm 1 Batch-Deletion

1: Input: Sub-Collection B′ of Batches, subset S, med=med(µ̄(S)), and κG
2: Output: A smaller sub-collection B′ of batches
3: Comment: The terms κG, ψb(S), and ψB′(S) used below are defined earlier in this section, and

computing ψb(S) and ψB′(S) require med(µ̄(S)) as input (that depends on all batches B).
4: while ψB′(S) ≥ 20κG do
5: Select a single batch b ∈ B′ where batch b is selected with probability ψb(S)

ψB′ (S) ;
6: B′ ← {B′ \ b};
7: end while
8: return (B′);

The next lemma, characterizes the performance of the Batch-Deletion algorithm.

Lemma 16. Let B′ ⊆ B and subset S be the input of the Batch-Deletion algorithm. If subset S has
filtration property 3, then:

1. Each batch that gets removed from B′ by Batch-Deletion algorithm is an adversarial batch with
probability ≥ 0.95.

2. Batch-Deletion returns updated sub-collection B′ such that ψB′(S) < 20κG.

Proof. The first statement in the lemma follows as

Pr[Deleting a batch from BG ∩B′] =
∑

b∈B′∩BG

ψb(S)

ψB′(S)
≤
∑
b∈BG ψb(S)

ψB′(S)
≤ κG

20κG
≤ 0.05,

here we used filtration property 3. The second statement in the Lemma follows from step 4 of
Batch-Deletion algorithm. �

Lemma 15 implies that if a sub-collection B′ has most of the good batches and has a small corruption
score for subset S, then µ̄b(S) is close to p(S).

Lemma 16 implies that if sub-collection B′ has large corruption for subset S, then there is a
probabilistic method that removes more adversarial batches from B′ then good batches and lowers
the corruption.

The next subsection builds on these two Lemma and gives a simple filtering algorithm for any finite
collection of subsets C ⊆ Σ whose subsets S ∈ C has filtration properties 1-3.

C.2 Filtering algorithms for finite collection of subsets

Given any finite collection of subsets C ⊆ F ′, algorithm 2, described next, uses the Batch-Deletion
algorithm to successively update B and decrease the corruption score for each subset S ∈ C.

Algorithm 2 Filtering Algorithm

1: Input: Collection B of Batches, finite subset family C ⊆ Σ, adversarial batches fraction β
2: Output: A sub-collection B∗ of batches.
3: Comment: The terms κG, ψB′(S), and med(µ̄(S)) used below are defined earlier in this section
4: B′ = B;
5: for S ∈ C do
6: if ψB′(S) ≥ 20κG then
7: med← med(µ̄(S));
8: B′ ←Batch-Deletion(B′, S,med);
9: end if

10: end for
11: B∗ ← B′

12: return (B∗);

16



The next lemma characterizes the algorithm’s performance.
Lemma 17. Let C ⊆ Σ be a finite collection of subsets. If all subsets in C have filtration proper-
ties 1, 2 and 3, then algorithm 2 returns a sub-collection of batches B∗ such that with probability
≥ 1− e−O(βm), |B∗ ∩BG| ≥ (1− β

6 )|BG| and

||p− pB∗ ||C = max
S∈C
|p(S)− pB∗(S)| ≤ O(∆).

The proof of the lemma is immediate from Lemmas 15 and 16.

We note that |B∗| ≥ (1 − β
6 )|BG| ≥ (1 − β

6 )(1 − β)m > m/2, as β ∈ (0, 0.4]. Therefore, w.h.p.
B∗ retains at least half of the overall batches.

C.3 Robust covering theorem for learning in F distance and Proof of Theorem 1

A subset family F , with finite VC dimension, can have potentially uncountable subsets, hence, even
if all subsets in F have filtration properties 1-3, we may not be able to use filtering algorithm directly
for subset family F . The Robust covering theorem proved here overcomes this challenge.

Recall that the collection B includes adversarial batches that can cause the empirical distribution of
all batches p̄B to be at an F-distance O(β) from p.

Yet for any ε > 0, any sub-collection B′ ⊆ B consisting of at least half of the batches, and for any
ε-cover C of F under the empirical distribution p̄B of all batches B, the next theorem upper bounds,
||p̄B′ − p||F , the F-distance between p and the empirical distribution induced by B′ in terms of
||p̄B′ − p||C , the C-distance between them.

Let G be a VC-class of subsets such that F ⊆ G. The theorem allows the ε-cover C of F to include
subsets from a larger class of subsets G. Although, one can always choose a cover of F from within
the class, as we will see in later subsections, for computationally efficient algorithms some additional
structure in the cover may be desired. And to choose such a cover, we will choose its elements
(subsets) from a larger class of subsets than F .
Theorem 18 (Robust covering). For any ε > 0, any subset family G ⊇ F with VC dimension VG , and
m ·n ≥ O(VG log(1/ε)+log(1/δ)

ε2 ), let C ⊆ G be an ε-cover of family F under the empirical distribution
p̄B . With probability ≥ 1− δ, for every sub-collection of batches B′ ⊆ B of size |B′| ≥ m/2,

||p̄B′ − p||F ≤ ||p̄B′ − p||C + 5ε.

Proof. Consider any batch sub-collection B′ ⊆ B. For every S, S′ ∈ Σ, by the triangle inequality,

|p̄B′(S)− p(S)| =
∣∣∣(p̄B′(S′) + p̄B′(S \ S′)− p̄B′(S′ \ S)

)
−
(
p(S′) + p(S \ S′)− p(S′ \ S)

)∣∣∣
≤ |p̄B′(S′)− p(S′)|+ p̄B′(S \ S′) + p̄B′(S

′ \ S) + p(S \ S′) + p(S′ \ S)

= |p̄B′(S′)− p(S′)|+ p̄B′(S4S′) + p(S4S′). (4)

Since C is an ε-cover under p̄B , for every S ∈ F there is an S′ ∈ C such that p̄B(S4S′) ≤ ε. For
such pairs, we bound the second term on the right in the above equation.

p̄B′(S4S′) =
1

|B′|n
∑
b∈B′

∑
i∈[n]

1S4S′(X
b
i )

≤ 1

|B′|n
∑
b∈B

∑
i∈[n]

1S4S′(X
b
i )

=
|B|
|B′|
· 1

|B|n
∑
b∈B

∑
i∈[n]

1S4S′(X
b
i )

=
m

|B′|
p̄B(S4S′) ≤ mε

|B′|
. (5)

Choosing B′ = BG in the above equation and using BG = (1− β)m ≥ m/2 gives,

p̄BG(S4S′) < 2ε. (6)
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Then
p(S4S′) ≤ |p(S4S′)− p̄BG(S4S′)|+ p̄BG(S4S′)

(a)
≤ sup
S, S′∈G

|p(S4S′)− p̄BG(S4S′)|+ 2ε

(b)
≤ ε+ 2ε,

with probability ≥ 1− δ, here (a) used the fact that C,F ⊆ G and equation (6) and (b) follows from
Lemma 24. Combining equations (4), (5) and the above equation completes the proof. �

In contrast to the class F , which could be infinite, we can always choose a cover C of finite size
and therefore run filtering algorithm 2 for C = C to learn in C distance. Robust covering theorem
implies that if C is ε-cover of family F , under distribution p̄B , where ε = O(∆), then for learning in
C distance suffices to learn in F distance.

The only step that remains is to find a cover whose subsets have filtration properties. The next lemma
establishes that every subsets in a given VC-subset family G has filtration properties.
Lemma 19. For any given subset family G with finite VC dimension and the number of batches
m ≥ O(VG log(n/β)+log(1/δ)

β2 ). With probability ≥ 1− δ, all subsets in G has filtration properties 1- 4.

The proof of the lemma appears in section D.

Note that the number of samples required in the lemma increase with the VC-complexity of G.
Therefore, to obtain sample optimal algorithm, we choose G = F , and C to be any finite ε-self-cover
of F under distribution p̄B , where ε ≤ O(∆). The existence of such a self-cover is guaranteed by
Corollary 14.

The above lemma implies that w.h.p. all subsets in C has filtration property. Therefore, we run
algorithm 2 for C = C. Then combining Lemma 17 and robust covering theorem 18 implies learning
in F distance and gives Theorem 1.
Theorem 20 (Theorem 1 restated). For any β ≤ 0.4, δ > 0, F , and m · n ≥
O
(
VF log(1/∆)+log 1/δ

∆2 · log( 1
β )
)

, there is a non-constructive algorithm that with probability ≥ 1− δ
returns a sub-collection of batches B∗ such that |B∗ ∩BG| ≥ (1− β

6 )|BG| and
||p− p̄B∗ ||F ≤ O(∆).

C.4 Computationally efficient algorithm for subsets generated by a partition

For estimating p in F-distance, in the previous subsection, we chose C to be a cover of F and
estimated p in C distance. Then to estimate p in C distance, algorithm 2 iterates through all subsets
in C one by one, and therefore, has run-time at least linear in the size of the subset family C. But
the size of the cover of F may grow exponentially with the VC-dimension of family F . This makes
the algorithm 2 computationally prohibitive even for subset family F with moderate VC-dimension.
Here we show that if subset collection C has a certain structure then this time complexity can be
reduced significantly.

For any ` > 0, we consider C which is the collection of all subsets generated by an `-partition of the
domain Ω. Here we give a filtering algorithm that has run time only polynomial in `, whereas the size
of subset collection C is 2`.

For any integer ` > 0, let ξ : Ω → [`] be any function. This function ξ partitions the domain Ω
into ` disjoint parts. For j ∈ [`], let ξj := ξ−1(j) denote the jth partition element in the partition
created by ξ. Clearly the partition elements ξj’s are disjoint and their union is Ω. We refer to ξ
as partition function. Note that a partition function ξ is uniquely determined by the corresponding
partition elements ξj’s.

For a subset D ⊆ [`], let
SξD := ∪j∈Dξj ,

be the union of the partition elements ξj’s corresponding to the elements of D. Define the collection
of subsets

Cξ := {SξD : D ∈ 2[`]}
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to be the family of all possible unions of ξj’s. Clearly, |Cξ| = 2`.

We show that if all subsets S ∈ Cξ have filtration properties 1- 4, then p can be estimated to a small
Cξ-distance in time polynomial in ` rather than exponential.

For finite domain Ω′ = [`], [JO19] derived a method that for any batch sub-collection B′, containing
a majority of good batches, can find a subset in 2[`] for which the corruption score of B′ is within a
constant times the maximum in time only polynomial in the domain size `, when all subsets in 2[`]

have filtration properties 1- 4. Then instead of iterating over all 2` subsets, as in algorithm 2, they
find the subsets with high corruption score efficiently and use the Batch Deletion procedure for these
subsets. This leads to a computationally efficient algorithm for learning discrete distributions p.

To obtain a computationally efficient algorithm for learning in Cξ distance, we first reduce this
problem to that of robustly learning distributions over finite domains in total variation distance and
then use the algorithm in [JO19].
Theorem 21. Let ξ : Ω→ [`] be any partition function and let Cξ be the collection of all possible
unions of the partition elements ξj’s. If all subsets in Cξ have filtration properties 1- 4, then there
is an algorithm that runs in time polynomial in all parameters `, m, and n, and with probability
≥ 1− e−O(βm) returns a sub-collection of batches B∗ ⊆ B such that |B∗ ∩BG| ≥ (1− β/6)|BG|
and

||p− p̄B∗ ||Cξ ≤ O(∆).

Proof. First note that ξ transforms any distribution q over Ω to the discrete distribution qξ over
Ω′ = [`], where qξ(j) := q(ξj) for each j ∈ [`]. Recall that any subset D ⊆ [`], corresponds one to
one with a subset SξD = ∪j∈Dξj in Cξ. It follows that for any distribution q over Ω, and D ⊆ [`],

q(SξD) = qξ(D).

Recall that p̄B′ denotes the empirical distribution induced by a sub-collection B′, therefore p̄ξB′
denotes the empirical distribution induced by a sub-collection B′ over the transformed domain [`].

From the one-to-one correspondence between subsets in Cξ and subsets in 2[`] it follows that
all subsets in Cξ have filtration properties iff all subsets in 2[`] have filtration properties for the
transformed distributions pξ and transformed empirical distribution of the sample batches.

Theorem 9 in [JO19] implies that, if all subsets in 2[`] have filtration properties 1- 4 then algorithm 2
therein runs in time polynomial in the domain size `, the number of batches m, and the batch-size
n, and with probability ≥ 1 − e−O(βm) returns a sub-collection of batches B∗ ⊆ B such that
|B∗ ∩BG| ≥ (1− β/6)|BG| and

||pξ − p̄ξB∗ ||TV ≤ O(∆).

Next, for any pair of distributions q1 and q2 over the domain Ω, we show that Cξ-distance between
them is the same as the total variation distance between qξ1 and qξ2. For every distribution pair q1, q2

over Ω,

||q1 − q2||Cξ = max
S∈Cξ

|q1(S)− q2(S)|

= max
SξD∈Cξ

|q1(SξD)− q2(SξD)|

= max
D∈2[`]

|qξ1(D)− qξ2(D)|

= ||qξ1 − q
ξ
2||TV .

Therefore,
||p− p̄B∗ ||Cξ = ||pξ − p̄ξB∗ ||TV ≤ O(∆). �

C.5 Computationally efficient algorithm for learning in Fk distance and proof of Theorem 2

Recall that Fk is the collection of all unions of at most k intervals over R.
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In the previous subsection we showed that for a partition function ξ, we can learn in Cξ-distance
efficiently. To obtain a computationally efficient algorithm for learning in Fk distance, we give a
partition function ξ∗ : R → [`], for an appropriate ` to be chosen later, such that the collection of
subsets Cξ

∗
forms an ε-cover of Fk under the empirical distribution p̄B .

Recall that B is a collection of m batches and each batch has n samples. Let s = n ·m and let
xs = x1, x2, . . . ,xs ∈ R be the samples of B arranged in non-decreasing order. And recall that the
points xs induce an empirical measure p̄B over R, where for S ⊆ R,

p̄B(S) = |{i : xi ∈ S}|/s.

Let t := s
` , and for simplicity assume that it is an integer. Recall that a partition function ξ is uniquely

determined by the corresponding partition elements ξj’s. Let ξ∗ : R→ [`] be the partition function
with partition elements {ξ∗1 , . . . ,ξ∗` } of R, where

ξ∗j :=


(−∞, xt] j = 1,

(x(j−1)t, xjt] 2 ≤ j < `,

(xs−t,∞) j = `.

Note that all elements of the partition {ξ∗1 , . . . ,ξ∗` } are intervals of R. Recall that Cξ
∗

is is formed by
all possible unions of these ` intervals. Clearly Cξ

∗ ⊆ F`, as F` contains all unions of ` intervals
over R.

We show that Cξ
∗

is an 2k/`−cover of Fk under the empirical distribution p̄B of points xs1.

Lemma 22. For any k, and `, Cξ
∗

is a 2k
` -cover of Fk under p̄B .

Proof. Any set S ∈ Fk is a union of k real intervals I1 ∪ I2 ∪ . . . ∪ Ik. Let S∗ ⊆ R be the union
of all ξ∗j -partition elements (intervals) that are fully contained in one of the intervals I1, . . . ,Ik. By
definition, S∗ ∈ Cξ, and we show that p̄B(S4S∗) ≤ 2k/`. By construction, S∗ ⊆ S, hence,

p̄B(S4S∗) = p̄B(S \ S∗) =

k∑
j=1

p̄B(Ij \ S∗) =

k∑
j=1

|{xi ∈ Ij \ S∗}|
s

≤
k∑
j=1

2 · t
s

=
2k

`
,

where the inequality follows as each Ij \ S∗ contains at most t points and the left and right. �

Next choose ` = 2k
ε then the lemma implies that the corresponding Cξ

∗
is an ε-cover of Fk under

p̄B . As discussed earlier Cξ
∗ ⊆ F`. Then choosing G = F` in Lemma 19 implies that w.h.p. all

subsets in Cξ
∗

has filtering properties. Then combining Theorem 21 and robust covering theorem 18,
and choosing ε = O(∆), we get the following theorem that implies learning in Fk distance.

We note that this computationally efficient algorithm uses O(1/∆) times more sample than infor-
mation theoretic algorithm in section C.3, because here we chose the cover of Fk from the class
G = Fk/∆. And Fk/∆ has VC dimension O(k/∆), which is O(1/∆) times the VC-dimension of
the class Fk.
Theorem 23 (Theorem 2 restated). For any given β ≤ 0.4, δ > 0, k > 0, and m · n ≥
O
(
k log(1/∆)+log 1/δ

∆3 · log( 1
β )
)

, there is an algorithm that runs in time polynomial in all parameters,

and with probability≥ 1−δ returns a sub-collection of batchesB∗ such that |B∗∩BG| ≥ (1−β6 )|BG|
and

||p̄B∗ − p||Fk ≤ O(∆).

D Properties of the Collection of Good Batches

Lemma 24. Let G be a VC family of subsets of Ω. Then for any δ > 0 and |BG| · n ≥
O(VG log(1/ε)+log(1/δ)

ε2 ), with probability ≥ 1− δ,

sup
S,S′∈G

max
{ p̄BG(S4S′)− p(S4S′)√

p̄BG(S4S′)
,
p(S4S′)− p̄BG(S4S′)√

p(S4S′)

}
≤ ε.
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Proof. Consider the collection of symmetric differences of subsets in G,

G4 := {S4S′ : S, S′ ∈ G}.

The next auxiliary lemma bounds the shatter coefficient of G4.

Lemma 25. For t ≥ VG , SG4(t) ≤
(
t e
VG

)2VG .

Proof. For t ≥ VG and x1, x2, .., xt ∈ Ω, let

G(xt1) = {{x1, x2, .., xt} ∩ S : S ∈ G}.

Note that SG(t) = maxx1,...,xt |G(xt1)|.
From the definition of shatter coefficient |G(xt1)| ≤ SG(t). Then

|G4(xt1)| = |{{x1, . . . ,xt}4{x′1, . . . ,x′t} : S, S′ ∈ G(xt1)}| ≤ (SG(t))2 ≤
( t e
VG

)2VG
. �

Applying Theorem 11 for family of subsets G4, and using Lemma 25, for |BG| · n ≥
O(VG log(1/ε)+log(1/δ)

ε2 ), with probability ≥ 1− δ,

sup
S∈G4

max
{ p̄BG(S)− p(S)√

p̄BG(S)
, sup
S∈G

p(S)− p̄BG(S)√
p(S)

}
≤ ε. �

D.1 Proof of Lemma 19

First we list some auxiliary properties for a subset S, each of which is either one of the filtration
property or helps in deriving one of the filtration property.

(i) For every B′G ⊆ BG, such that |B′G| ≥ (1− β/6)|BG|

|p̄B′G(S)− p(S)| ≤ O

(
β

√
ln(1/β)

n

)
.

(ii) For every B′G ⊆ BG, such that |B′G| ≥ (1− β/6)|BG|∣∣∣ 1

|B′G|
∑
b∈B′G

(µ̄b(S)− p(S))2 − V(p(S′))
∣∣∣ ≤ O(β ln( 1

β )

n

)
.

(iii)

∣∣{b ∈ BG : |µ̄b(S)− p(S)| ≥ O

(√
ln(1/β)

n

)}∣∣ ≤ O(β) · |BG|.

(iv) ∣∣{b ∈ BG : |µ̄b(S)− p(S)| ≥ O
(

1√
n

)}∣∣ ≤ O(1) · |BG|.

(v) For every B′G ⊆ BG, such that |B′G| ≤ O(β) · |BG|∑
b∈B′G

(µ̄b(S)− p(S))2 < O
(
β|BG|

ln(1/β)

n

)
,

The next lemma shows that these properties hold for a fix subset S.

Lemma 26. For any given subset S ∈ Σ and for |BG| ≥ O( log 1/δ
β2 ln(1/β) ). With probability ≥ 1− δ,

subset S has all auxiliary properties (i)–(v). Further, if these auxiliary properties hold for subset S
then subset S has filtration properties 1- 4.
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The above Lemma, though not stated explicitly, is implied by Section A.1 and Section A.2 in [JO19].
In particular, the auxiliary properties (i) and (ii) are implied by Lemma 11, (iii) and (iv) are implied
by Lemma 10, and (v) is implied by Lemma 12, and section A.2 therein showed that these auxiliary
properties imply filtration properties 1- 4. Hence, we use the lemma without proving it again here.

Therefore, to prove Lemma 19, it suffices to show these auxiliary properties for subsets in G.

The next Lemma extends the auxiliary properties to all subsets in given a VC class G.
Lemma 27. For any given subset family G with finite VC dimension and |BG| ≥
O(VG log(n/β)+log 1/δ

β2 ). With probability ≥ 1− δ, all subsets in G has all auxiliary properties (i)–(v).

Proof. From Corollary 14, there exist a self ε-cover C∗ of G under the distribution p of size
O
(
VG( 8e

ε )VG
)
. For this section, fix ε = O(β

2

n ).

For any S ∈ C∗, for |BG| ≥ O
(
log

2|C∗|
δ

β2 ln(1/β)

)
= O(VG log(n/β)+log 1/δ

β2 ln(1/β) ), Lemma 26 implies that the

auxiliary properties (i)–(v) with probability ≥ 1− δ
2|C∗| .

Therefore, taking the union bound over the complement, the auxiliary properties (i)–(v) hold for all
subsets in C∗ with probability ≥ 1− δ

2 .

Next, we extend these properties for all subsets in G.

For subset S ∈ G choose S′ ∈ C∗ such that p(S4S′) ≤ ε. Existence of such a subset S′ ∈ C∗ is
guaranteed for all S ∈ G as C∗ is an ε−cover under p. The properties for S′ holds, since it is a part of
the cover C′. To extend the auxiliary properties to all subsets in G, we show that if the properties hold
for S′, then they also hold for subset S.

Note that for any subset S, S′ ∈ G with p(S4S′) ≤ O(β
2

n ) = O(ε).

For |BG| · n ≥ O(VG log(n/β)+log 1/δ
β2 · n), Lemma 24 implies that with probability ≥ 1− δ/2

p̄BG(S4S′) ≤ O(
β2

n
) = O(ε). (7)

For any batch b ∈ B

µ̄b(S)− p(S) =
(
µ̄b(S

′) + µ̄b(S \ S′)− µ̄b(S′ \ S)
)
−
(
p(S′) + p(S \ S′)− p(S′ \ S)

)
=
(
µ̄b(S

′)− p(S′)
)

+
(
µ̄b(S \ S′)− µ̄b(S′ \ S)

)
−
(
p(S \ S′)− p(S′ \ S)

)
.

From the above equation, we get∣∣∣(µ̄b(S)− p(S)
)
−
(
µ̄b(S

′)− p(S′)
)∣∣∣ ≤ µ̄b(S \ S′) + µ̄b(S

′ \ S) + p(S \ S′) + p(S′ \ S)

= µ̄b(S4S′) + p(S4S′)
≤ µ̄b(S4S′) +O(ε). (8)

Next, we extend property (i) to subset S.

|p̄B′G(S)− p(S)| =
∣∣∣ 1

|B′G|
∑
b∈B′G

µ̄b(S)− p(S)
∣∣∣ =

∣∣∣ 1

|B′G|
∑
b∈B′G

(
µ̄b(S)− p(S)

)∣∣∣
(a)
≤
∣∣∣ 1

|B′G|
∑
b∈B′G

(
µ̄b(S

′)− p(S′)
)∣∣∣+

∣∣∣ 1

|B′G|
∑
b∈B′G

(
µ̄b(S4S′) +O(ε)

)∣∣∣
≤
∣∣∣ 1

|B′G|
∑
b∈B′G

µ̄b(S
′)− p(S′)

∣∣∣+
∣∣∣ 1

|B′G|
∑
b∈BG

µ̄b(S4S′)
∣∣∣+O(ε)

≤ |p̄B′G(S′)− p(S′)|+ |BG|
|B′G|

p̄BG(S4S′) +O(ε)

(b)
≤ O

(
β

√
ln(1/β)

n

)
+

1

(1− β/6)
· O(ε) +O(ε)
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≤ O

(
β

√
ln(1/β)

n

)
,

here (a) uses (8) and (b) uses that the property (i) holds for S′.

Next, we extend property (i) to subset S. From equation (8) we get

(µ̄b(S)− p(S))2 ≤
(
|µ̄b(S′)− p(S′)|+ (µ̄b(S4S′) +O(ε))

)2

= (µ̄b(S
′)− p(S′))2 + 2|µ̄b(S′)− p(S′)|(µ̄b(S4S′) +O(ε)) + (µ̄b(S4S′) +O(ε))2.

Therefore,∑
b∈B′G

(µ̄b(S)− p(S))2 −
∑
b∈B′G

(µ̄b(S
′)− p(S′))2

≤
∑
b∈B′G

2|µ̄b(S′)− p(S′)|(µ̄b(S4S′) +O(ε)) +
∑
b∈B′G

(µ̄b(S4S′) +O(ε))2

≤ 2

√∑
b∈B′G

(µ̄b(S′)− p(S′))2

√∑
b∈B′G

(µ̄b(S4S′) +O(ε))2 +
∑
b∈B′G

(µ̄b(S4S′) +O(ε))2,

here the last inequality follows from Cauchy-Schwarz inequality. Next, we bound the last terms in
the above expression.∑

b∈B′G

(µ̄b(S4S′) +O(ε))2 ≤
∑
b∈B′G

(µ̄b(S4S′) +O(ε))(1 +O(ε))

≤ 2 ·
∑
b∈B′G

(µ̄b(S4S′) +O(ε))

≤ 2 ·

(
|B′G|O(ε) +

∑
b∈BG

(µ̄b(S4S′)

)

≤ 2|B′G|
(
O(ε) +

|BG|
|B′G|

p̄BG(S4S′)
)

≤ |B′G|O(ε).

Also, from the property (ii) for S′ implies∑
b∈B′G

(µ̄b(S
′)− p(S′))2 ≤ |B′G|V(p(S′)) + |B′G|O

(
β ln( 1

β )

n

)

≤ |B′G|O
(

1

n

)
,

here we used equation (3), that implies V (·) ≤ 1/4n, and β ln(1/β) = O(1). Combining the above
three equations we get∑

b∈B′G

(µ̄b(S)− p(S))2 −
∑
b∈B′G

(µ̄b(S
′)− p(S′))2

≤ 2

√
|B′G|O

(
1

n

)√
|B′G|O(ε) + |B′G|O(ε) < |B′G|O

(√
ε

n

)
.

Similarly, one can prove the other direction∑
b∈B′G

(µ̄b(S
′)− p(S′))2 −

∑
b∈B′G

(µ̄b(S)− p(S))2 < |B′G|O
(√

ε

n

)
.

Combining the two equations gives∣∣∣ ∑
b∈B′G

(µ̄b(S)− p(S))2 −
∑
b∈B′G

(µ̄b(S
′)− p(S′))2

∣∣∣ < |B′G|O(√ ε

n

)
.
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And from equation (3) we get

|V(p(S))− V(p(S′))| ≤ |p(S)− p(S′)|
n

≤ |p(S4S
′)|

n
≤ O

( ε
n

)
.

Combining the above two equations we get∣∣∣ 1

|B′G|
∑
b∈B′G

(µ̄b(S)− p(S))2 − V(p(S))
∣∣∣

≤
∣∣∣ 1

|B′G|
∑
b∈B′G

(µ̄b(S
′)− p(S′))2 − V(p(S′))

∣∣∣+O
(√

ε

n

)
+O

( ε
n

)
(a)
≤ O

(
β ln( 1

β )

n

)
+O

(√
ε

n

)
+O

( ε
n

)
(b)
≤ O

(
β ln( 1

β )

n

)
, (9)

here inequality (a) uses that the property (ii) holds for S′, (b) uses ε = O
(
β2

n

)
.

This completes the proof of the extension of property (ii) to subset S and in a similar fashion
property (v) can be extended.

Next, we extend property (iii) to subset S.

Note that∣∣{b ∈ BG : |µ̄b(S)− p(S)| ≥ t
}∣∣

(a)
≤
∣∣{b ∈ BG : |µ̄b(S′)− p(S′)|+ µ̄b(S4S′) +O(ε) ≥ t

}∣∣
≤
∣∣{b ∈ BG : |µ̄b(S′)− p(S′)| ≥

2

3
· t
}∣∣+

∣∣{b ∈ BG : µ̄b(S4S′) ≥
t

3
−O(ε)

}∣∣
≤
∣∣{b ∈ BG : |µ̄b(S′)− p(S′)| ≥

2

3
· t
}∣∣+

∑
b∈BG µ̄b(S4S

′)
t
3 −O(ε)

≤
∣∣{b ∈ BG : |µ̄b(S′)− p(S′)| ≥

2

3
· t
}∣∣+ |BG|

p̄BG(S4S′)
t
3 −O(ε)

≤
∣∣{b ∈ BG : |µ̄b(S′)− p(S′)| ≥

2

3
· t
}∣∣+ |BG|

O(ε)
t
3 −O(ε)

.

here inequality (a) uses (8).

Choosing t = O
(√

ln(1/β)
n

)
in the above equation and putting ε = O(β2/n) gives

∣∣{b ∈ BG : |µ̄b(S)− p(S)| ≥ O

(√
ln(1/β)

n

)}∣∣
≤
∣∣{b ∈ BG : |µ̄b(S′)− p(S′)| ≥ O

(√
ln(1/β)

n

)}∣∣+ |BG|
O(β2/n)

O
(√

ln(1/β)/n
)
−O(β2/n)

≤ O(β)|BG|. (10)

here the last step uses property (ii) for S′. This extends property (iii) to subset S. Property (iv) can
be extended similarly. �

Proof of Lemma 19. The previous lemma showed that the auxiliary properties hold for all subsets in
G. Lemma 26 showed that these auxiliary properties implies the filtration properties. Combining the
two Lemmas completes the proof of Lemma 19.
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E Remaining proofs

E.1 Proof of Theorem 5

To prove the above theorem we use the following result.

Theorem 28 ([ADLS17]). There is an algorithm which, given any t samples x1, x2, ..., xs ∈ R,
returns an t-piecewise degree-d polynomial p′ which minimizes ||p′ − p̄s||F2td

distance between p′
and the empirical distribution p̄s, to within additive error γ in time poly(s, t, d, 1/γ).

We note that the t-piecewise degree-d polynomial p′ returned in the above theorem may not always
integrate to 1 and is only an approximate Yatracos minimizer, and hence we can not directly use
equation (1).

But there is a simple generalization of this equation in [DL01], which applies even when p′ returned
in the above theorem doesn’t integrate to 1 and is only an approximate Yatracos minimizer.

Recall that Y(P) is Yatracos class of P . Let p′ ∈ P be such that ||p′ − p̄||Y(P) = minq∈P ||q −
p̄||Y(P) + γ Then [DL01] (exercise 6.2) implies that

||p− p′||TV ≤ 5 · optP(p) + 4||p− p̄||Y(P) + 5γ.

Recall that Yatracos class of t-piecewise degree d polynomials, (including those that don’t integrate
to 1), is F2td.

Theorem 2 provides a polynomial time algorithm that returns a sub-collection B∗ ⊆ B of batches
whose empirical distribution p̄B∗ is close to p in F2td-distance. Then running the algorithm in
Theorem 28 for samples in p̄B∗ returns a t-piecewise degree-d polynomial p∗. Then the above
equation implies that p∗ approximates p in TV distance, to complete the proof of the theorem.

E.2 Proof of Lemma 6

Proof. For two distributions p and q over Ω× {0, 1}, the largest difference between the loss of any
classifier h ∈ H is related to their FH-distance,

sup
h∈H
|rp(h)− rq(h)| = sup

h∈H
|Pr(X,Y )∼p[h(X) 6= Y ]− Pr(X,Y )∼q[h(X) 6= Y ]|

≤ sup
h∈H

∑
y∈{0,1}

|Pr(X,Y )∼p(h(X) = ȳ, Y = y)− Pr(X,Y )∼q(h(X) = ȳ, Y = y)|

≤ 2||p− q||FH . (11)

Then,

rp(h
opt(q))− ropt

p (H)

= rp(h
opt(q))− rp(hopt(p))

= rp(h
opt(q))− rq(hopt(q)) + rq(h

opt(q))− rq(hopt(p)) + rq(h
opt(p))− rp(hopt(p))

≤ rq(hopt(q))− rq(hopt(p)) + 2 sup
h∈H
|rq(h)− rp(h)|

≤ 2 sup
h∈H
|rq(h)− rp(h)|

≤ 4||p− q||FH ,

here the last inequality uses (11). �

E.3 Proof of Theorem 8

Proof. LetH : Ω→ {0, 1} of Boolean functions with VC dimension VH ≥ 1. And let (X,Y ) ∼ p,
where X ∈ Ω and Y ∈ {0, 1}.
Since VH ≥ 1, then there is at-least one ω∗ ∈ Ω and h1, h2 ∈ H, s.t. h1(ω∗) 6= h2(ω∗), w.l.o.g., let
h1(ω∗) = 1 and h2(ω∗) = 0.
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Next, we define two distributions p1 and p2. Let γ = c β√
n

, for some small enough constant c > 0 to
be chosen later. Let p1(ω∗, 1) = p2(ω∗, 0) = 1

2 + γ, and p1(ω∗, 0) = p2(ω∗, 1) = 1
2 − γ. Both p1

and p2 assigns zero probability to all other points in Ω× {0, 1}.
It is easy to see that, for distribution p1, hypothesis h1 achieves the optimal loss 1

2 − γ and similarly
for distribution p2, hypothesis h2 achieves the optimal loss 1

2 − γ.

Next, note that for distribution p1 the loss of any classifier f : Ω→ {0, 1} is

Pr
(X,Y )∼p1

(f(ω∗) 6= Y ) = Pr(f(ω∗) = 1)× (
1

2
− γ) + Pr(f(ω∗) = 0)× (

1

2
+ γ).

Similarly its loss for distribution p2 is

Pr
(X,Y )∼p2

(f(ω∗) 6= Y ) = Pr(f(ω∗) = 1)× (
1

2
+ γ) + Pr(f(ω∗) = 0)× (

1

2
− γ).

Adding the two losses we get

Pr
(X,Y )∼p1

(f(ω∗) 6= Y ) + Pr
(X,Y )∼p2

(f(ω∗) 6= Y ) = 1

Therefore, every classifier incurs a loss of ≥ 1/2 for at least one of the two distributions. Since the
optimal loss for both distributions is 1/2− γ, any classifier incurs an excess loss of γ for at least one
of the distributions among p1 and p2.

The distribution p of the data (X,Y ), is chosen to be one of the two distributions p1 and p2 each
with probability 1/2. Then we show that depending on which distribution is chosen as p, the
adversary can choose its batches such that, even with infinitely many batches, the two distributions
are indistinguishable. Therefore, any classifier incurs an excess loss of γ with probability ≥ 1/2.

Note that for every batch, the number of Y = 1’s is a sufficient statistic for determining weather p is
p1 or p2, and it is distributed either B(n, 1

2 + γ) or B(n, 1
2 − γ). From equation 2.15 in [AJ06], for

any c < 1/12 and γ = cβ/
√
n, the total variation distance between B(n, 1

2 + γ) or B(n, 1
2 − γ) is

≤ 2β.

Therefore, the adversary can choose distributions q1 and q2, over the number of Y = 1’s in the
adversarial batches, such that

(1− β)B(n,
1

2
+ γ) + βq1 = (1− β)B(n,

1

2
− γ) + βq2.

Hence, if the good batches are distributed as B(n, 1
2 + γ) then adversary chooses q1 as distribution

of the adversarial batches and if good batches are distributed as B(n, 1
2 − γ) then adversary chooses

q2 and in both the cases the resultant joint distribution of all the batches is same. Hence the two cases
are indistinguishable. �

The theorem implies that even with access to infinitely many batches, even for the simplest of the
hypothesis class, no algorithm can avoid an excess loss Ω(β/

√
n) with probability 1/2.

E.4 Proof of Theorem 9

Proof. To prove the theorem, we show how to use algorithm in Theorem 2 that gives "cleaner"
batches for Fk-distance, to get "cleaner" batches for FHk -distance.

Recall that
FHk = {({x ∈ R : h(x) = y}, ȳ) : h ∈ Hk, y ∈ {0, 1}}.

First divide the collection of sets FHk into two parts: F0
Hk := {({x ∈ R : h(x) = 0}, 1) : h ∈ Hk}

and F1
Hk := {({x ∈ R : h(x) = 1}, 0) : h ∈ Hk}. Note that FHk = F0

Hk ∪ F
1
Hk . Then, from the

definition of F distance, it follows

||p− q||FHk = max{||p− q||F0
Hk
, ||p− q||F1

Hk
}

Hence, it suffices to estimate p in both F0
Hk and F1

Hk distances.
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Since decision regions for each hypothesis h ∈ Hk, consists of at most k-intervals, these collections
can be rewritten as F0

Hk := {(S, 0) : S ∈ Fk} and F1
Hk := {(S, 1) : S ∈ Fk}.

To learn in F0
Hk distance, w.l.o.g., we can remap all points of the form (x, 1) to (∞, 0). Then this

problem is identical to learning in Fk distance as y = 0 is the same for all samples after remapping.
Similarly to learn in F1

Hk distance we remap all points of the form (x, 0) to (∞, 1).

Then use the algorithm in Theorem 2 to first remove the adversarial batches for F0
Hk distance, and

then for the remaining batches again use the same algorithm to remove adversarial batches for F1
Hk

distance. The empirical distribution p̄B∗ of the batches B∗ ⊆ B remaining in the end, approximates
p in both F0

Hk and F1
Hk distances to an accuracy O(∆). Therefore, it estimates p in FHk distance to

the same accuracy.

Then use the polynomial-time algorithm [Maa94] to find the empirical risk minimizer h ∈ Hk
for empirical distribution p̄B∗ . Then Lemma 6 implies that the optimal classifier hopt(p̄B∗) for the
empirical distribution p̄B∗ , of the cleaner batch collection B∗, will have a small-excess-classification-
loss O(∆) for p. This completes the proof of the theorem. �
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