
——SUPPLEMENTARY MATERIAL——
AOT: Appearance Optimal Transport Based Identity

Swapping for Forgery Detection

Hao Zhu 1,2∗, Chaoyou Fu 1,3,∗, Qianyi Wu 4, Wayne Wu 4, Chen Qian 4, Ran He 1,3†
1 NLPR & CEBSIT & CRIPAC, CASIA 2 Anhui University

3 University of Chinese Academy of Sciences 4 SenseTime Research
haozhu96@gmail.com {chaoyou.fu,rhe}@nlpr.ia.ac.cn

{wuqianyi,wuwenyan,qianchen}@sensetime.com

Appendix

A Implementation Details

A.1 Data Preparation

The training data only consists of the target faces and the reenacted faces. The target faces are directly
extracted from the original FF++ [9] (900 videos) and DPF-1.0 [4] (10 identities). Then, we leverage
DFL [8] and FSGAN [6] to produce the reenact faces using identities that are not existed in the target
faces. Our quantitative experiments are conducted on the remaining videos in FF++ and DPF-1.0.

Then, we first detect 106 facial landmarks of each video. Then, we crop the face area and resize them
into 256*256 resolution. To obtain the PNCC and normals, we use 3DDFA [15] to estimate the 3D
mesh of each face, and render the mesh and corresponding PNCC and normals codes to images via a
neural renderer [5].

A.2 Training Strategies

We use PyTorch [7] to implement our model. In the training phase, our model is trained with 200K
iterations on two NVIDIA1080Ti GPUs, where the batch size = 16. We use Adam optimizer for
relighting generator with β1 = 0.5, β2 = 0.999, weight decay = 0.0002, and RMSprop optimizer for
Mix-and-Segment Discriminator (MSD), Ω, Ψ with beta = 0.9. The learning rates of both the Adam
and the RMSprop optimizers are set to 0.0002. In Ltotal, we set λ1=120, λ2=1, λ3=90, and λ4=1.
The full training algorithm is summarized here 1.

A.3 Network Architectures

The full architecture as shown in Fig. S1.

∗Equal contribution
†Corresponding author

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Algorithm 1 Training algorithm.
Require: {Xr}N , {Xt}N ;
Require: Initialize Ωi, Ψi, PerceptualEncoder, Decoder, and MSD with θi, ωi, α, β, γ respec-

tively.
1: while not converged do
2: Sample mini-batch {xr}
3: Sample mini-batch {xt}
4:
5: // Forward: Encoder
6: F 1

Xr
, F 2

Xr
, F 3

Xr
, F 4

Xr
← PERCEPTUALENCODER({xr})

7: F 1
Xt
, F 2

Xt
, F 3

Xt
, F 4

Xt
← PERCEPTUALENCODER({xt})

8:
9: // Update: NOTPE

10: for i = 1, 2, 3 do
11: for j = 1, ..., ni do
12: Sample vjr ← F iXr

13: Sample vjt ← F iXt

14: gωi
← ∇ωi

[1mΨi(Ωi(v
j
r |Xr, Xt))− 1

mΨi(v
j
t)]

15: ωi ← ωi + α·RMSProp(ωi,x)
16: ωi ← CLIP(ωi,−c, c)
17: end for
18: end for
19: for i = 1, 2, 3 do
20: for j = 1, ..., ni do
21: Sample vjr ← F sXr

22: gθi ← −∇θi 1
mΨi(Ωi(v

j
r |Xr, Xt))

23: θi ← θi + α·RMSProp(θi,x)
24: end for
25: end for
26:
27: // Forward: NOTPE
28: for i = 1, 2, 3 do
29: F iY ← Ωi(F iXr

,Xr,Xt)
30: end for
31:
32: // Forward: Decoder
33: Yt,t← DECODER(F 1

Xr
, F 2

Xr
, F 3

Xr
, F 4

Xr
)

34: Yr,t ← DECODER(F 1
Y , F

2
Y , F

3
Y , F

4
Xr

)
35:
36: // Update: MSD
37: Mr ← Random Mask Generator().
38: Ymix ← MIX(Yt,t, Yr,t,Mr)
39: gγ ← ∇γ [1m][Mr ∗MSD(Ymix)]− 1

m [(1−Mr) ∗MSD(Ymix)]
40: γ ← γ + α ·ADAM(γ)
41:
42: // Update: Perceptual Encoder, Decoder
43: gβ ← ∇β [1m]Loss(Yt,t, Yr,t, Xt) . Total Loss
44: β ← β + α ·ADAM(β)
45: end while

2

Weight Norm

ReLU

DeConv/512/512/3/1/

Pixel Shuffle

Weight Norm

ReLU

DeConv/1024/512/3/1

Pixel Shuffle

Weight Norm

ReLu

DeConv/1024/256/3/1

Pixel Shuffle

Weight Norm

ReLu

DeConv/512/128/3/1

Pixel Shuffle

Weight Norm

ReLu

DeConv/256/64/3/1/1

Pixel Shuffle

Weight Norm

ReLu

DeConv/128/3/3/1/1

Pixel Shuffle

+

+

+

N
O

T
F

E

B
lo

ck

N
O

T
F

E

B
lo

ck

N
O

T
F

E

B
lo

ck

Conv/3/64/4/2/1

Instance Norm

Conv/64/128/4/2/1

Instance Norm

LeakyReLu(0.2)

Conv/256/512/4/2/1

Instance Norm

LeakyReLu(0.2)

Conv/128/256/4/2/1

Instance Norm

LeakyReLu(0.2)

Conv/512/512/4/2/1

Instance Norm

LeakyReLu(0.2)

Conv/512/512/4/2/1

Instance Norm

LeakyReLu(0.2)

Perceptual Encoder
Face Decoder

L
in

ea
r/

k
+

2
5

6
/1

0
2
4

L
in

ea
r/

1
0

2
4

/5
1

2

L
in

ea
r/

1
0

2
4

/
k

NOTFE

Block

For

each

pixel

L
in

ea
r/

1
0

2
4

/2
5

6

C
o

n
v
/3

/6
4

/4
/2

/1

In
st

an
ce

 N
o

rm

C
o

n
v
/6

4
/1

2
8

/4
/2

/1

In
st

an
ce

 N
o

rm

L
ea

k
y
R

eL
U

(0
.2

)

C
o

n
v
/1

2
8

/2
5

6
/4

/2
/1

In
st

an
ce

 N
o

rm

L
ea

k
y
R

eL
U

(0
.2

)

…
K-channel

…
K-channel

Relighting Generator

L
in

ea
r/

k
/1

0
2

4

L
in

ea
r/

1
0

2
4

/2
5

6

L
in

ea
r/

2
5

6
/1

Weight Norm

ReLU

DeConv/512/512/3/1/

Pixel Shuffle

Weight Norm

ReLU

DeConv/1024/512/3/1

Pixel Shuffle

Weight Norm

ReLu

DeConv/1024/256/3/1

Pixel Shuffle

Weight Norm

ReLu

DeConv/512/128/3/1

Pixel Shuffle

Weight Norm

ReLu

DeConv/256/64/3/1/1

Pixel Shuffle

Weight Norm

ReLu

DeConv/128/3/3/1/1

Pixel Shuffle

+

+

+

Conv/3/64/4/2/1

Instance Norm

Conv/64/128/4/2/1

Instance Norm

LeakyReLu(0.2)

Conv/256/512/4/2/1

Instance Norm

LeakyReLu(0.2)

Conv/128/256/4/2/1

Instance Norm

LeakyReLu(0.2)

Conv/512/512/4/2/1

Instance Norm

LeakyReLu(0.2)

Conv/512/512/4/2/1

Instance Norm

LeakyReLu(0.2)

Mix-and-Segment Discriminator

(MSD)

Input/(1,3,256,256)

3DDFA

PNCC/Normals

Mesh

+

+

+

sc
al

e
sc

al
e

sc
al

e

Input/(1,3,256,256)

Figure S1: The detailed pipeline of our proposed model.

B Compared Baseline

B.1 Face Swapping Methods

DeepfaceLab. DeepfaceLab (DFL) [8] requires to retrain the model for different source identities.
It means we need to train the DFL model different videos respectively. It should be clear that, DFL
provides lots of options to tune the results. In practice, we use the options reported in Table S1.

FSGAN. FSGAN [6] is a landmark-guided subject agnostic method. We leverage the latest models
provided by authors.

B.2 Appearance Transfer Methods

Poisson Blending. Poisson Blending is a classical image harmonization method. We use the
OpenCV implemented version, and set the flag=cv2.NORMAL_CLONE.

Deep Image Harmonization (DIH) [13]. 3 DIH is a deep learning based image harmonization
method and it can capture both the context and semantic patterns of the images rather than hand-craft
features.

3DIH: https://github.com/wasidennis/DeepHarmonization

3

Table S1: Options of DeepFaceLab.

Training Options Merging Options
name choice name choice name choice
resolution 224 gan_power 0.0 mask_mode learned
face_type f true_face_power 0.0 erode_mask_modifier 5
models_opt_on_gpu True face_style_power 0.0 blur_mask_modifier 5
archi dfhd bg_style_power 0.0 motion_blur_power 0
ae_dims 256 ct_mode None output_face_scale 1
e_dims 64 clipgrad False color_transfer_mode rct
d_dims 64 pretrain False sharpen_mode none
d_mask_dims 22 autobackup_hour 0 blursharpen_amount 0
masked_training True write_preview_history True super_resolution_power 1
eyes_prio False target_iter 0 image_denoise_power 0
lr_dropout False random_flip True bicubic_degrade_power 0
random_warp True batch_size 4 color_degrade_power 0

Style Transfer for Headshot Portraits (STHP) [10]. 4 STHP allows users to easily produce style
transferred results. It transfers multi-scale local statistics of an reference portrait into another.

WCT2. 5 WCT2 is a state-one-the-art photorealistic style transfer method. We use the option
unpool = ’cat5’ version, and the pretrained models.

C Additional Experiments

C.1 Noise Analysis

Furthermore, we verified our results with photo forgery methods: noise analysis, error level analysis,
level sweep, luminance gradient 6. As shown in Fig. S2, ours framework reduces the noises (Fig. S2
(a, b)) and preserves the appearance with target images (Fig. S2 (c, d)).

T
ar

g
et

D
F

L
O

u
rs

(a) Noise Analysis (b) Error Level Analysis (c) Level Sweep (d) Luminance Gradient

Figure S2: Noise analysis with photo forensics algorithms. Our method can not only reduce the
noises (a,b), but also better preserve appearances. (c,d).

4STHP: https://people.csail.mit.edu/yichangshih/portrait_web/
5WCT2: https://github.com/clovaai/WCT2
6https://29a.ch/photo-forensics/

4

T
a
rg

et
S

w
a
p

p
ed

M
ix

ed

M
ix

M
a
sk

P
re

d
ic

t

M
a
sk

Figure S3: The mixed results.

C.2 Results of Mix-and-Segment Discriminator

We provide more results of the mixed results. As shown in Fig. S3, we mix the target faces and the
swapped faces using the mix mask. It is difficult to find the real patch and the fake patch.

C.3 Feature Visualization

To give intuitive results, we visualize the features at different scales by using PCA to reduce the
dimensions of them to 3-dimensional vectors.

In the latent space the pixel distributions are more balance under different lighting conditions, as
shown in Fig. S4.

Image 𝐹1 𝐹2 𝐹3 Image 𝐹1 𝐹2 𝐹3 Image 𝐹1 𝐹2 𝐹3

Figure S4: Visualization of the features at different scales.

5

Table S2: Inference speed comparison

Methods FPS
Poisson 3.891
DIH 1.247
STHP 1.686
WCT 2.817
AOT (ours) 12.821

C.4 Speed Comparison

Furthermore, as reported in Table S2, our framework achieves the highest FPS compared with other
related methods, which means our method introduces the minimum computational burdens. All
experiments conducted on Ubuntu16.04 with an Intel i7-7700K CPU and a Nvidia 1060 GPU.

C.5 Forgery Detection

Binary detection accuracy of two video classification baselines: I3D [1] and TSN [14] on the hidden
set provided by DeeperForensics-1.0 [4].

We trained the baselines on four manipulated datasets of FF++ [9] [9] produced by DeepFakes [2],
Face2Face [11], FaceSwap [3], and NeuralTextures [12]. (Green bars). Then, we add 100 manipulated
videos produced by our method to the training set. All detection accuracies are improved with the
addition of our data. (Blue bars).

Figure S5: Forgery Detection Results.

6

OursTarget

+Poisson

BlendingDFL +DIH +STHP +𝐖𝐂𝐓𝟐

Figure S6: Comparison results with DFL.

7

Target

+Poisson

BlendingFSGAN +DIH +STHP +𝐖𝐂𝐓𝟐 Ours

Figure S7: Comparison results with FSGAN.8

References
[1] João Carreira and Andrew Zisserman. Quo vadis, action recognition? A new model and the kinetics dataset.

In Conference on Computer Vision and Pattern Recognition, pages 4724–4733, 2017.

[2] Deepfakes. https://github.com/deepfakes/faceswap, Accessed: 2020.4.

[3] FaceSwap. https://github.com/ondyari/FaceForensics/tree/master/dataset/
FaceSwapKowalski, Accessed: 2020.4.

[4] Liming Jiang, Wayne Wu, Ren Li, Chen Qian, and Chen Change Loy. Deeperforensics-1.0: A large-scale
dataset for real-world face forgery detection. arXiv preprint arXiv:2001.03024, 2020.

[5] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. In Conference on
Computer Vision and Pattern Recognition, 2018.

[6] Yuval Nirkin, Yosi Keller, and Tal Hassner. Fsgan: Subject agnostic face swapping and reenactment. In
International Conference on Computer Vision, pages 7184–7193, 2019.

[7] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, pages 8024–8035, 2019.

[8] Ivan Perov, Daiheng Gao, Nikolay Chervoniy, Kunlin Liu, Sugasa Marangonda, Chris Umé, Mr. Dpfks,
Carl Shift Facenheim, Luis RP, Jian Jiang, Sheng Zhang, Pingyu Wu, Bo Zhou, and Weiming Zhang.
Deepfacelab: A simple, flexible and extensible face swapping framework. arXiv preprint arXiv:2005.05535,
2020.

[9] Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias Nießner.
Faceforensics++: Learning to detect manipulated facial images. In International Conference on Computer
Vision, pages 1–11, 2019.

[10] YiChang Shih, Sylvain Paris, Connelly Barnes, William T Freeman, and Frédo Durand. Style transfer for
headshot portraits. ACM Transactions on Graphics, 33(4):148, 2014.

[11] Justus Thies, Michael Zollhöfer, Marc Stamminger, Christian Theobalt, and Matthias Nießner. Face2face:
Real-time face capture and reenactment of RGB videos. In Conference on Computer Vision and Pattern
Recognition, pages 2387–2395, 2016.

[12] Justus Thies, Michael Zollhöfer, and Matthias Nießner. Deferred neural rendering: Image synthesis using
neural textures. CoRR, abs/1904.12356, 2019.

[13] Yi-Hsuan Tsai, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli, Xin Lu, and Ming-Hsuan Yang. Deep image
harmonization. In Conference on Computer Vision and Pattern Recognition, pages 3789–3797, 2017.

[14] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool. Temporal
segment networks: Towards good practices for deep action recognition. In Bastian Leibe, Jiri Matas, Nicu
Sebe, and Max Welling, editors, European Conference on Computer Vision, pages 20–36, 2016.

[15] Xiangyu Zhu, Xiaoming Liu, Zhen Lei, and Stan Z Li. Face alignment in full pose range: A 3d total
solution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(1):78–92, 2017.

9

https://github.com/deepfakes/faceswap
https://github.com/ondyari/FaceForensics/tree/master/dataset/FaceSwapKowalski
https://github.com/ondyari/FaceForensics/tree/master/dataset/FaceSwapKowalski

	Implementation Details
	Data Preparation
	Training Strategies
	Network Architectures

	Compared Baseline
	Face Swapping Methods
	Appearance Transfer Methods

	Additional Experiments
	Noise Analysis
	Results of Mix-and-Segment Discriminator
	Feature Visualization
	Speed Comparison
	Forgery Detection

