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1 Scaling Attention with Fast Clustering

In this section we present graphical illustrations for the proposed clustered and i-clustered attention
models in § 1.1 and § 1.2 respectively.

1.1 Clustered attention

In figure 1, we present the steps involved in clustered attention computation for an example sequence
with 8 queries and the number of clusters set to 3. We first cluster the queries Q using the K-means
clustering to output S which indicates the membership of queries to different clusters. We use
different colors to represent different clusters. After clustering, the centroids Qc are used to compute
the attention weights Ac and the new values V c for the centroids. Finally, the values are broadcasted
to get the new values V̂ corresponding to each query.
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Figure 1: Flow-chart demonstrating the compuation for clustered attention. We use different colors
to represent the query groups and the computed centroids. The same colors are then used to show the
attention weights Ac, new values for the centroids V̂ c, and the resulting values V̂ after broadcasting.
For more details refer to § 1.1 or § 3.2 in the main paper.
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1.2 Improved clustered attention

In this section, we first describe how we can efficiently compute the i-clustered attention using sparse
dot products with the top-k keys and values. We then present the flow chart demonstrating the same.

As discussed in the § 3.3 of the main paper, the improved attention matrix approximation At
i for the

query, Qi belonging to the cluster j is computed as follows:

At
il =

{
m̂j exp(QiK

T
l )∑N

r=1 Tjr exp(QiKT
r )

if Tjl = 1

Ac
il otherwise

, (1)

where, T ∈ {0, 1}C×N , stores the top-k keys for each cluster. Tji = 1 if the i-th key is among the
top-k keys for the j-th cluster and 0 otherwise.

As described in the main paper, m̂j is the total probability mass on the top-k keys for the j-th cluster
given by:

m̂j =

N∑
r=1

TjrA
c
jr. (2)

Note that we can compute the attention weights At
i on the top-k keys by first taking sparse dot-product

of Qi with the top-k keys followed by the softmax activation and rescaling with total probablity mass
mj . For the rest of the keys, the attention weight is the clustered-attention weight Ac

i .

Similarly, the new values V̂i can be decomposed into the following two terms,

V̂i = V̂ t
i + V̂ b

i , (3)

where V̂ t
i is weighted average of the values corresponding to the top-k keys with weights being

the improved attention on the top-k keys. V̂ b
i is the weighted average of the rest of the values with

weights being the clustered attention Ac
i . The following equations show how we compute V̂ t

i and V̂ b
i ,

V̂ t
i =

N∑
l=1

TjlA
t
ilVl, (4)

V̂ b
i =

N∑
l=1

(1− Tjl)A
c
ilVl, (5)

Note that V̂ t
i is weighted average of k values for each query and thus requires O (NkDv) operations.

V̂ b
i only needs to be computed once per-cluster centroid and thus requires O (NCDv) operations.

In figure 2 we present the i-clustered attention computation for the same example sequence with 8
queries and the number of clusters and top-k keys set to 3. The lower half of the figure shows the new
value V̂ t computed by first taking sparse dot-products with the top 3 keys to get the attention weights.
This is followed by taking the weighted average of the 3 correponding values. The top half of the
figure shows the V̂ b computation. This is same as clustered attention computation but with attention
weights corresponding to top 3 keys set to 0 for Ac. The resulting values V̂ is the sum of V̂ b and V̂ t.

2 Quality of the approximation

Proposition 1. For the i-th query belonging to the j-th cluster, the improved clustered attention At
i

and clustered attention Ac
j relate to the full attention Ai as follows,∥∥At

i −Ai

∥∥
1
≤
∥∥Ac

j −Ai

∥∥
1

(6)

Proof. As discussed before, the improved attention matrix approximation At
i for the query, Qi is

computed as follows:

At
il =

{
m̂j exp(QiK

T
l )∑N

r=1 Tjr exp(QiKT
r )

if Tjl = 1

Ac
il otherwise

, (7)
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Figure 2: Flow-chart demonstrating the compuation for i-clustered attention. The lower half of
the figure shows the new value V̂ t computed by sparse dot-products with the keys K and values
V corresponding to the the top-k keys in T . The top half of the figure shows the computation for
V̂ b which is the weighted average of the rest of the values with weights coming from the clustered
attention Ac. The resulting values V̂ is the sum of V̂ b and V̂ t. For more details refer § 1.2 or to the
§ 3.3 in the main paper.

where, T ∈ {0, 1}C×N , stores the top-k keys for each cluster, Tji = 1 if the i-th key is among the
top-k keys for the j-th cluster and 0 otherwise. m̂j is the total probability mass on the top-k keys for
the j-th cluster, computed as follows:

m̂j =

N∑
r=1

TjrA
c
jr. (8)

Given the full attention Ai, equation 7 can be simplified to

At
il =

{
m̂j

mi
Ail if Tjl = 1

Ac
il otherwise

, (9)

where, mi is the total probability mass on the same top-k keys for the i-th query, computed using the
true attention Ai, as follows:

mi =

∑N
r=1 Tjr exp

(
QiK

T
r

)∑N
r=1 exp (QiKT

r )
(10)

=

N∑
r=1

TjrAir. (11)

Without loss of generality, let us assume, Tjl = 1 ∀ l ∈ {1, . . . , k} and Tjl = 0 ∀ l ∈
{k + 1, . . . , N}.
In this case, equation 9 can be written as:

At
il =

{
m̂j

mi
Ail if l ≤ k

Ac
il if l ≥ k + 1

. (12)
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The total probability masses on the top-k keys, mi and m̂j can now be expressed as:

mi =

k∑
r=1

Air. (13)

m̂j =

k∑
r=1

Ac
jr. (14)

From equation 12 it is clear that the clustered attention, Ac
i , and the improved clustered attention, At

i,
only differ on the keys {1, . . . , k}. Thus, it suffices to show that At

i has lower approximation error on
these keys. The approximation error on the top-k keys {1, . . . , k}, let it be et, between the i-clustered
attention and the full attention is as follows:

et =

k∑
l=1

∣∣Ail −At
il

∣∣ (15)

=
k∑

l=1

∣∣∣∣Ail −Ail
m̂j

mi

∣∣∣∣ (16)

=

k∑
l=1

Ail

∣∣∣∣1− m̂j

mi

∣∣∣∣ (17)

=

∣∣∣∣1− m̂j

mi

∣∣∣∣ k∑
l=1

Ail (18)

= mi

∣∣∣∣1− m̂j

mi

∣∣∣∣ (19)

= |mi − m̂j | (20)

=

∣∣∣∣∣
k∑

l=1

Ail −Ac
jl

∣∣∣∣∣ (21)

≤
k∑

l=1

∣∣Ail −Ac
jl

∣∣ (22)

Therefore, ∥∥Ai −At
i

∥∥
1
=

k∑
l=1

∣∣Ail −At
il

∣∣+ N∑
l=k+1

∣∣Ail −At
il

∣∣ (23)

=

k∑
l=1

∣∣Ail −At
il

∣∣+ N∑
l=k+1

∣∣Ail −Ac
jl

∣∣ (24)

≤
k∑

l=1

∣∣Ail −Ac
jl

∣∣+ N∑
l=k+1

∣∣Ail −Ac
jl

∣∣ (25)

≤ ‖Ai −Ac
i‖1 (26)

3 Experiments

3.1 Time and Memory Benchmark

To measure the computational cost, we compare the memory consumption and computation time on
artificially generated sequences of various lengths. For clustered attention we use 100 clusters, 63
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bits for the LSH, and 10 Lloyd iterations for the K-Means. For the improved clustered attention, we
use the same configuration with k = 32. For Reformer, we evaluate on two variants using 1 and 4
rounds of hashing. All models consist of 1 layer with 6 attention heads, embedding dimension of 64
for each head, and a feed-forward dimension of 1536.

In this experiment, we measure the required memory and GPU time per single sequence element to
perform a forward/backward pass for the various self-attention models. Figure 3 illustrates how these
metrics evolve as the sequence length increases from N = 29 to N = 215. For a fair comparison,
we use the maximum possible batch size for each method and we divide the computational cost and
memory with the number of samples in each batch and the sequence length.

We note that, in contrast to all other methods, vanilla transformer scales quadratically with respect to
the sequence length and does not fit in GPU memory for sequences longer than 213 elements. All
other methods scale linearly. Clustered attention becomes faster than the vanilla transformer for
sequences with 1000 elements or more, while improved clustered attention surpasses it for sequences
with 2000 elements. Note that with respect to per sample memory, both clustered and improved
clustered attention perform better than all other methods. This can be explained by the fact that our
method does not require storing intermediate results to compute the gradients from multiple hashing
rounds as Reformer does. It can be seen, that lsh-1 is faster than the improved clustered clustered
attention, however, as also mentioned by [1] Reformer requires multiple hashing rounds to generalize.

full lsh-1 lsh-4 clustered-100 (ours) i-clustered-100 (ours)
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Figure 3: Per element GPU time and memory consumption for a forward/backward pass. All models,
except full, scale linearly with respect to the sequence length since they have constant time and
memory per element. Detailed analysis can be found in § 3.1.

3.2 Ablation on clusters and sequence length

Following [1], we introduce a synthetic task to analyze the relationship between the number of
clusters and sequence length. In our task, the transformer models need to copy some symbols that are
masked out from either the first or second half of the sequence. In particular, we generate a random
sequence of tokens and we prepend a unique separator token, let it be 0. The sequence is then copied
to get a target of the form 0w0w, where w ∈ {1, . . . , C}L, C is the number of possible symbols
and L is the sequence length. To generate the input, we replace some symbols from the first half of
the sequence and some different symbols from the second half, such that the target sequence can be
reconstructed from the input. An example of an input output pair with L = 4 can be seen in figure 5.
Note that to solve this task, transformers simply need to learn to attend to the corresponding tokens in
the two identical halves of the sequence.

Input 0 4 M 2 2 0 4 5 M 2
Output 0 4 5 2 2 0 4 5 2 2

Figure 5: Example of an input and output pair for the masked copy task. M denotes the masked out
tokens.
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Accuracy with respect to clusters and hashing rounds
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(a) Improved clustered
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Figure 4: The heatmaps depict the achieved accuracy on an artificial copy task (§ 3.2) as the sequence
length, the number of clusters and the number of hashing rounds varies. Improved clustered (4a) is
the only fast transformer variant that can solve the task perfectly for any sequence length and number
of clusters combination.

We set the sequence length L to one of {31, 63, 127, 255} which means the input length varies
between N = 26 and N = 29. For each sequence, we sample tokens uniformly from {1, . . . , 10} and
randomly mask out 20% of the tokens. To analyze the impact of number of clusters on performance,
we train full transformer as well as clustered variants with different number of clusters and Reformer
with different number of hashing rounds.

All transformer variants consist of 4 layers, 6 attention heads, embedding dimension of 32 for each
head, and feed-forward dimension of 768. For both clustered and improved clustered attention, we
set the number of bits for LSH to 63 and the number of Lloyd iterations for the K-Means to 10. Both
clustered and improved clustered attention are trained with 15, 30, 60 and 100 clusters. We also train
Reformer with 1, 4, 8 and 16 hashing rounds. Finally, all models are trained using R-Adam optimizer
[2] with a learning rate of 0.0002, batch size of 32 for 5000 iterations.

In figure 4, we illustrate the results of this experiment as heatmaps depicting the achieved accuracy
for a given combination of number of clusters and sequence length for clustered transformers and
number of hashing rounds and sequence length for Reformer. Note that the vanilla transformer solves
the task perfectly for all sequence lengths. We observe that both clustered (Fig. 4b) and Reformer
(Fig. 4c) require more clusters or more rounds as the sequence length increases. However, improved
clustered achieves the same performance as vanilla transformers, namely perfect accuracy, for every
number of clusters and sequence length combination. This result increases our confidence that the
required number of clusters for our method is not a function of the sequence length but of the task at
hand.

3.3 Automatic Speech Recognition

In this section, we present the details for the ASR experiments such as transformer architecture,
optimizer and learning rate schedule. As mentioned in the main paper, for i-clustered, unless specified,
k is set to 32. Furthermore, all transformers have 6 heads with an embedding dimension of 32 on
each head and feed-forward dimension of 768. Other architectural details specific to experiments are
described later.

3.3.1 Wall Street Journal

Convergence Behaviour:

For this experiment, we train transformer with full, clustered and Reformer attention variants. All
models consist of 9 layers. For Reformer, we train two variants with 1 and 4 rounds of hashing with
chunk size fixed to 32 as suggested. For clustered and improved clustered attention we set the number
of clusters to 100. We also set the number of Lloyd iterations for K-Means to 10 and the bits for LSH
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to 63. All models are trained to convergence using the R-Adam optimizer [2] with a learning rate of
0.0001, max gradient norm set to 10.0 and and weight decay of 0.01. The learning rate is dropped
when the validation loss plateaus. For each model we select the largest batch size that fits the GPU.
The full attention model was trained with a batch size of 2 while the clustered variants: clustered and
i-clustered could fit batch sizes of 14 and 10 respectively. For Reformer variants: lsh-1 and lsh-4,
batch sizes of 8 and 6 were used.
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(a) Wall Street Journal
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Figure 6: We show training/validation loss convergence for different transformer variants. Only
i-clustered has a faster or comparable wall-clock convergence to full attention. Both the clustered
variants are have a significantly better convergence than both lsh-1 and lsh-4. Note that due to a
smaller batch size full makes many more updates than all other transformer variants. More details
can be found in § 3.3.1 and § 3.3.2.

In figure 6a, we show the training loss convergence for different transformer variants. It can be
seen that i-clustered has a much faster convergence than the clustered attention. This shows that the
improved clustered attention indeed approximates the full attention better. More importantly, only
the i-clustered attention has a comparable wall-clock convergence. Given that full has a much smaller
batch size, it makes many more updates per-epoch. We think that a slightly smaller batchsize with
more updates would have been a better choice for the clustered transformers w.r.t. the wall-clock
convergence. This is reflected in the Switchboard experiments where the batchsizes for clustered
variants were smaller due to more layers. Finally, as can be seen from the wall-clock convergence,
the clustered transformers significantly outperform the Reformer variants.

Speed-Accuracy Tradeoff:

As described in the main paper, for this task we additionally train full with 4 and 6 layers. Similary,
we train clustered with 9 layers, and 200 and 300 clusters. We also train an i-clustered model with 9
layer and 200 clusters, and smaller models with 6 layers, and 100 and 200 clusters.

For clustered and i-clustered variants with 9 layers, we finetuned the previously described models
trained with 100 clusters. We finetuned for 15 epochs with a learning rate of 0.00001. We train full
with 4 and 6 layers to convergence in a similar fashion to the full with 9 layers described previously.
Finally, for i-clustered, we first trained model with 6 layers and 100 clusters using the training strategy
used for 9 layers and 100 clusters. We then finetuned this model for 15 epochs using 200 clusters and
a learning rate of 0.00001.

3.3.2 Switchboard

Convergence Behaviour:

For this experiment, we train transformer with full and clustered attention variants. All models consist
of 12 layers. For clustered and improved clustered attention we set the number of clusters to 100. We
also set the number of Lloyd iterations for K-Means to 10 and the bits for LSH to 63.

Following common practice for flat-start lattice-free MMI training, we train over multiple gpus with
weight averaging for synchronization as described in [5]. Specfically, we modify the e2e training
recipe for the Wall Street Journal in Kaldi [4] with the following two key differences: first, the
acoustic model training is done in PyTorch using the PkWrap toolkit [3] and second, we use R-Adam
optimizer instead on natural stochastic gradient descent.
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All models are trained using the R-Adam optimizer with a learning rate of 0.0002, max gradient
norm set to 10.0 and and weight decay of 0.01. The learning rate is dropped when the validation
loss plateaus. We use the word error rate (WER) on the validation set for early stopping and model
selection. The full attention model is trained with a batch size of 2 while the clustered variants:
clustered and i-clustered are trained with a batch size of 6.

In figure 6b, we show the training loss convergence for different transformer variants. It can be seen
that i-clustered has the fastest convergence for this setup. Note that the overall training time for
clustered attention is still less than that of full as it starts to overfit early on the validation set WER.

Speed-Accuracy Tradeoff:

For this task we additionally train full with 6 and 8 layers. Similary, we train clustered with 12 layers,
and 200 and 300 clusters. We also train i-clustered with 12 layer and 200 clusters, and smaller models
with 8 layers, and 100 and 200 clusters.

For clustered and i-clustered variants with 12 layers, we finetuned the previously described models
trained with 100 clusters. We finetuned for 5 epochs with a learning rate of 0.00001. Once again, full
with 6 and 8 layers were trained to convergence similar to full with 12 layers described previously.
Finally, for i-clustered with 8 layers, we first train a model with 100 clusters using the training
strategy used for 12 layers and 100 clusters. We then finetuned this model for 5 epochs using 200
clusters and a learning rate of 0.00001.

3.4 RoBERTa Approximation

In this section we provide a qualitative comparison between the full attention, and the clustered
attention variants clustered and i-clustered used for approximation. As described in main paper,
we use 25 clusters for both attention variants. In Figure 7 we show the attention distribution for
the question tokens for a randomly selected question-context tuple from the SQuAD dataset. For
each token in the question we show the attention distribution over the input sequence formed by
concatenating question and context tokens with CLS and SEP tokens appended. It can be seen
that with only few clusters, improved clustered approximates the full attention very closely even
when the attention distribution has complicated and sparse patterns. In contrast, clustered attention
fails to capture such attention distribution during approximation. Moreover, it can further be seen
that for almost all question tokens, both full and improved clustered have the same tokens with the
highest attention weights. This further strengthens our believe that improved clustered attention can
approximate a wide range of complicated attention patterns.
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Manning finished the year with a career-low 67.9 passer rating, throwing for 2,249 yards and nine
touchdowns, with 17 interceptions. In contrast, Osweiler threw for 1,967 yards, 10 touchdowns and six
interceptions for a rating of 86.4. Veteran receiver Demaryius Thomas led the team with 105 receptions
for 1,304 yards and six touchdowns, while Emmanuel Sanders caught 76 passes for 1,135 yards and six
scores, while adding another 106 yards returning punts. Tight end Owen Daniels was also a big element

of the passing game with 46 receptions for 517 yards. Running back C. J. Anderson was the team’s
leading rusher 863 yards and seven touchdowns, while also catching 25 passes for 183 yards. Running
back Ronnie Hillman also made a big impact with 720 yards, five touchdowns, 24 receptions, and a 4.7
yards per carry average. Overall, the offense ranked 19th in scoring with 355 points and did not have any

Pro Bowl selections.
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Figure 7: Attention matrices for question-context tuples for full attention, and clustered and i-clustered
attention used for approximation. 7a shows the the context for the question with answer higlighted in
red. 7b shows the attention distribtution for full, 7c and 7d show the approximation using i-clustered
and clustered respectively. Note that i-clustered has attention patterns very similar to full while
clustered shows qualitatively different attention patterns. For each question token, we also present the
tokens with highest attention above a threshold on the right axis. For more information refer to § 3.4.
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