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Abstract

Tensor factorization based models have shown great power in knowledge graph
completion (KGC). However, their performance usually suffers from the overfitting
problem seriously. This motivates various regularizers—such as the squared Frobe-
nius norm and tensor nuclear norm regularizers—while the limited applicability
significantly limits their practical usage. To address this challenge, we propose a
novel regularizer—namely, DUality-induced RegulArizer (DURA)—which is not
only effective in improving the performance of existing models but widely applica-
ble to various methods. The major novelty of DURA is based on the observation
that, for an existing tensor factorization based KGC model (primal), there is often
another distance based KGC model (dual) closely associated with it. Experiments
show that DURA yields consistent and significant improvements on benchmarks.

1 Introduction

Knowledge graphs contain quantities of factual triplets, which represent structured human knowledge.
In the past few years, knowledge graphs have made great achievements in many areas, such as natural
language processing [37], question answering [13], recommendation systems [30], and computer
vision [18]. Although commonly used knowledge graphs usually contain billions of triplets, they still
suffer from the incompleteness problem that a lot of factual triplets are missing. Due to the large
scale of knowledge graphs, it is impractical to find all valid triplets manually. Therefore, knowledge
graph completion (KGC)—which aims to predict missing links between entities based on known
links automatically—has attracted much attention recently.

Distance based (DB) models and tensor factorization based (TFB) models are two important categories
of KGC models. DB models use the Minkowski distance to measure the plausibility of a triplet.
Although they can achieve state-of-the-art performance, many of them still have difficulty in modeling
complex relation patterns, such as one-to-many and many-to-one relations [16, 33]. TFB models treat
knowledge graphs as partially observed third-order binary tensors and formulate KGC as a tensor
completion problem. Theoretically, these models are highly expressive and can well handle complex
relations. However, their performance usually suffers from the overfitting problem seriously and
consequently cannot achieve state-of-the-art.

To tackle the overfitting problem of TFB models, researchers propose various regularizers. The
squared Frobenius norm regularizer is a popular one that applies to various models [22, 34, 28].
However, experiments show that it may decrease performance for some models (e.g., RESCAL) [23].
More recently, motivated by the great success of the matrix trace norm in the matrix completion
problem [25, 5], Lacroix et al. [15] propose a tensor nuclear p-norm regularizer. It gains significant
improvements against the squared Frobenius norm regularizer. However, it is only suitable for
canonical polyadic (CP) decomposition [12] based models, such as CP and ComplEx [28], but

∗Corresponding author.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



not appropriate for a more general class of models, such as RESCAL [22]. Therefore, it is still
challenging to find a regularizer that is both widely applicable and effective.

In this paper, we propose a novel regularizer for tensor factorization based KGC models—namely,
DUality-induced RegulArizer (DURA). The major novelty of DURA is based on the observation
called duality—for an existing tensor factorization based KGC model (primal), there is often another
distance based KGC model closely associated with it (dual). The duality can be derived by expanding
the squared score functions of the associated distance based models. Then, the cross-term in the
expansion is exactly a tensor factorization based KGC model, and the squared terms in it give us a
regularizer. Using DURA, we can preserve the expressiveness of tensor factorization based KGC
models and prevent them from the overfitting problem. DURA is widely applicable to various tensor
factorization based models, including CP, ComplEx, and RESCAL. Experiments show that, DURA
yields consistent and significant improvements on datasets for the knowledge graph completion task.
It is worth noting that, when incorporated with DURA, RESCAL [22]—which is one of the first
knowledge graph completion models—performs comparably to state-of-the-art methods and even
beats them on several benchmarks.

2 Preliminaries
In this section, we review the background of this paper in Section 2.1 and introduce the notations
used throughout this paper in Section 2.2.

2.1 Background

Knowledge Graph Given a set E of entities and a set R of relations, a knowledge graph K =
{(ei, rj , ek)} ⊂ E ×R× E is a set of triplets, where ei and rj are the i-th entity and j-th relation,
respectively. Usually, ei and ek are also called the head entity and the tail entity, respectively.

Knowledge Graph Completion (KGC) The goal of KGC is to predict valid but unobserved triplets
based on the known triplets in K. KGC models contain two important categories: distance based
models and tensor factorization based models, both of which are knowledge graph embedding (KGE)
methods. KGE models associate each entity ei ∈ E and relation rj ∈ R with an embedding (may
be real or complex vectors, matrices, and tensors) ei and rj . Generally, they define a score function
s : E×R×E → R to associate a score s(ei, rj , ek) with each potential triplet (ei, rj , ek) ∈ E×R×E .
The scores measure the plausibility of triplets. For a query (ei, rj , ?), KGE models first fill the blank
with each entity in the knowledge graphs and then score the resulted triplets. Valid triplets are
expected to have higher scores than invalid triplets.

Distance Based (DB) KGC Models DB models define the score function s with the Minkowski
distance. That is, the score functions have the formulation of s(ei, rj , ek) = −‖Γ(ei, rj , ek)‖.p,
where Γ is a model-specific function. Equivalently, we can also use a squared score function
s(ei, rj , ek) = −‖Γ(ei, rj , ek)‖2p.

Tensor Factorization Based (TFB) KGC Models TFB models regard a knowledge graph as a
third-order binary tensor X ∈ {0, 1}|E|×|R|×|E|. The (i, j, k) entry Xijk = 1 if (ei, rj , ek) is valid
otherwise Xijk = 0. Suppose that Xj denotes the j-th frontal slice of X , i.e., the adjacency matrix
of the j-th relation. Usually, a TFB KGC model factorizes Xj as Xj ≈ Re (HRjT>), where the
i-th (k-th) row of H (T) is ei (ek), Rj is a matrix representing relation rj , Re (·) and · are the real
part and the conjugate of a complex matrix, respectively. That is, the score functions are defined
as s(ei, rj , ek) = Re (ēiRje>k ). Note that the real part and the conjugate of a real matrix are itself.
Then, the aim of TFB models is to seek matrices H,R1, . . . ,R|R|,T, such that Re (HRjT>) can
approximate Xj . Let X̂j = Re (HRjT>) and X̂ be a tensor of which the j-th frontal slice is X̂j . The
regularized formulation of a tensor factorization based model can be written as

min
X̂1,...,X̂|R|

|R|∑
j=1

L(Xj , X̂j) + λg(X̂ ), (1)

where λ > 0 is a fixed parameter, L(Xj , X̂j) measures the discrepancy between Xj and X̂j , and g is
the regularization function.
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2.2 Other Notations

We use hi ∈ E and tk ∈ E to distinguish head and tail entities. Let ‖ · ‖1, ‖ · ‖2, and ‖ · ‖F denote the
L1 norm, the L2 norm, and the Frobenius norm of matrices or vectors. We use 〈·, ·〉 to represent the
inner products of two real or complex vectors. Specifically, if u, v ∈ C1×n are two row vectors in the
complex space, then the inner product is defined as 〈u, v〉 = ūv>.

3 Related Work

Knowledge graph completion (KGC) models include rule-based methods [9, 35], KGE methods, and
hybrid methods [10]. This work is related to KGE methods [4, 28, 21, 36]. More specifically, it is
related to distance based KGE models and tensor factorization based KGE models.

Distance based models describe relations as relational maps between head and tail entities. Then, they
use the Minkowski distance to measure the plausibility of a given triplet. For example, TransE [4]
and its variants [33, 16] represent relations as translations in vector spaces. They assume that a valid
triplet (hi, rj , tk) satisfies hi,rj + rj ≈ tk,rj , where hi,rj and tk,rj mean that entity embeddings may
be relation-specific. Structured embedding (SE) [3] uses linear maps to represent relations. Its score
function is defined as s(hi, rj , tk) = −‖R1

jhi−R2
j tk‖1. RotatE [26] defines each relation as a rotation

in a complex vector space and the score function is defined as s(hi, rj , tk) = −‖hi ◦rj− tk‖1, where
hi, rj , tk ∈ Ck and |[r]i| = 1. ModE [38] assumes that R1

j is diagonal and R2
j is an identity matrix.

It shares a similar score function s(hi, rj , tk) = −‖hi ◦ rj − tk‖1 with RotatE but hi, rj , tk ∈ Rk.

Tensor factorization based models formulate the KGC task as a third-order binary tensor completion
problem. RESCAL [22] factorizes the j-th frontal slice of X as Xj ≈ ARjA>, in which embeddings
of head and tail entities are from the same space. As the relation specific matrices contain lots of
parameters, RESCAL is prone to be overfitting. DistMult [34] simplifies the matrix Rj in RESCAL to
be diagonal, while it sacrifices the expressiveness of models and can only handle symmetric relations.
In order to model asymmetric relations, ComplEx [28] extends DistMult to complex embeddings.
Both DistMult and ComplEx can be regarded as variants of CP decomposition [12], which are in real
and complex vector spaces, respectively.

Tensor factorization based (TFB) KGC models usually suffer from overfitting problem seriously,
which motivates various regularizers. In the original papers of TFB models, the authors usually
use the squared Frobenius norm (L2 norm) regularizer [22, 34, 28]. This regularizer cannot bring
satisfying improvements. Consequently, TFB models do not gain comparable performance to distance
based models [26, 38]. More recently, Lacroix et al. [15] propose to use the tensor nuclear 3-norm
[8] (N3) as a regularizer, which brings more significant improvements than the squared Frobenius
norm regularizer. However, it is designed for the CP-like models, such as CP and ComplEx, and
not suitable for more general models such as RESCAL. Moreover, some regularization methods
aim to leverage external background knowledge [19, 7, 20]. For example, to model equivalence
and inversion axioms, Minervini et al. [19] impose a set of model-dependent soft constraints on
the predicate embeddings. Ding et al. [7] use non-negativity constraints on entity embeddings and
approximate entailment constraints on relation embeddings to impose prior beliefs upon the structure
of the embeddings space.

4 Methods

In this section, we introduce a novel regularizer—DUality-induced RegulArizer (DURA)—for tensor
factorization based knowledge graph completion. We first introduce basic DURA in Section 4.1 and
explain why it is effective in Section 4.2. Then, we introduce DURA in Section 4.3. Finally, we give
a theoretical analysis for DURA under some special cases in Section 4.4.

4.1 Basic DURA

Consider the knowledge graph completion problem (hi, rj , ?). That is, we are given the head entity
and the relation, aiming to predict the tail entity. Suppose that fj(i, k) measures the plausibility of a
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Figure 1: An illustration of why basic DURA can improve the performance of TFB models when
the embedding dimensions are 2. Suppose that triplets (hi, rj , tk) (k = 1, 2, . . . , n) are valid. (a)
Figure 1a demonstrates that tail entities connected to a head entity through the same relation should
have similar embeddings. (b) Figure 1b shows that TFB models without regularization can get the
same score even though the embeddings of tk are dissimilar. (c) Figure 1c shows that with DURA,
embeddings of tk are encouraged to locate in a small region.

given triplet (hi, rj , tk), i.e., fj(i, k) = s(hi, rj , tk). Then the score function of a TFB model is

fj(i, k) = Re (hiRjt>k ) = Re (〈hiRj , tk〉). (2)

It first maps the entity embeddings hi by a linear transformation Rj , and then uses the real part of an
inner product to measure the similarity between hiRj and tk. Notice that another commonly used
similarity measure—the squared Euclidean distance—can replace the inner product similarity in
Equation (2). We can obtain an associated distance based model formulated as

fEj (i, k) = −‖hiRj − tk‖22. (3)

Therefore, there exists a duality: for an existing tensor factorization based KGC model (primal),
there is often another distance based KGC model (dual) closely associated with it.

Specifically, the relationship between the primal and the dual can be formulated as

fEj (i, k) = −‖hiRj − tk‖22
= −‖hiRj‖22 − ‖tk‖22 + 2Re (〈hiRj , tk〉)
= 2fj(i, k)− ‖hiRj‖22 − ‖tk‖22.

(4)

Usually, we expect fEj (i, k) and fj(i, k) to be higher for all valid triplets (hi, rj , tk) than those for
invalid triplets. Suppose that S is the set that contains all valid triplets. Then, for triplets in S, we
have that

max fEj (i, k) = min−fEj (i, k)

= min−2fj(i, k) + ‖hiRj‖22 + ‖tk‖22. (5)

By noticing that min−2fj(i, k) = max 2fj(i, k) is exactly the aim of a TFB model, the duality
induces a regularizer for tensor factorization based KGC models, i.e.,∑

(hi,rj ,tk)∈S

‖hiRj‖22 + ‖tk‖22, (6)

which is called basic DURA.

4.2 Why Basic DURA Helps

In this section, we demonstrate that basic DURA encourages tail entities connected to a head
entity through the same relation to have similar embeddings, which accounts for its effectiveness in
improving performance of TFB models.

First, we claim that tail entities connected to a head entity through the same relation should have
similar embeddings. Suppose that we know a head entity hi and a relation rj , and our aim is to
predict the tail entity. If rj is a one-to-many relation, i.e., there exist two entities t1 and t2 such
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that both (hi, rj , t1) and (hi, rj , t2) are valid, then we expect that t1 and t2 have similar semantics.
For example, if two triplets (felid, include, tigers) and (felid, include, lions) are valid,
then tigers and lions should have similar semantics. Further, we expect that entities with similar
semantics have similar embeddings. In this way, if we have known that (tigers, is, mammals) is
valid, then we can predict that (lions, is, mammals) is also valid. See Figure 1a for an illustration
of the prediction process.

However, TFB models fail to achieve the above goal. As shown in Figure 1b, suppose that we have
known hiR̄j when the embedding dimension is 2. Then, we can get the same score s(hi, rj , tk) for
k = 1, 2, . . . , n so long as tk lies on the same line perpendicular to hiR̄j . Generally, the entities
t1 and t2 have similar semantics. However, their embeddings t1 and t2 can even be orthogonal,
which means that the two embeddings are dissimilar. Therefore, the performance of TFB models for
knowledge graph completion is usually unsatisfying.

By Equation (5), we know that basic DURA constraints the distance between hiR̄j and tk. When
hi and R̄j are known, tk lies in a small region (see Figure 1c and we verify this claim in Section
5.4). Therefore, tail entities connected to a head entity through the same relation will have similar
embeddings, which is beneficial to the prediction of unknown triplets.

4.3 DURA

Basic DURA encourages tail entities with similar semantics to have similar embeddings. However, it
cannot handle the case that head entities have similar semantics.

Suppose that two triplets (tigers, is, mammals) and (lions, is, mammals) are valid. Similar to the
discussion in Section 4.2, we expect that tigers and lions have similar semantics and thus have
similar embeddings. If we further know that (feild, include, tigers) is valid, we can predict that
(feild, include, lions) is valid. However, basic DURA cannot handle the case. Let h1, h2, t1,
and R1 be the embeddings of tigers, lions, mammals, and is, respectively. Then, Re (h1R1t>1 )
and Re (h2R1t>1 ) can be equal even if h1 and h2 are orthogonal, as long as h1R1 = h2R1.

To tackle the above issue, noticing that Re (hiRjt>k ) = Re (tkR>j h>i ), we define another dual
distance based KGC model

f̃Ej (i, k) = −‖tkR>j − hi‖22,
Then, similar to the derivation in Equation (5), the duality induces a regularizer given by∑

(hi,rj ,tk)∈S

‖tkR>j ‖2 + ‖hi‖2. (7)

When a TFB model are incorporated with regularizer (7), head entities with similar semantics will
have similar embeddings.

Finally, combining the regularizer (6) and (7), DURA has the form of∑
(hi,rj ,tk)∈S

[
‖hiRj‖22 + ‖tk‖22 + ‖tkR>j ‖22 + ‖hi‖22

]
. (8)

4.4 Theoretic Analysis for Diagonal Relation Matrices

If we further relax the summation condition in the regularizer (8) to all possible entities and relations,
we can write DURA as:

|E|
|R|∑
j=1

(‖HRj‖2F + ‖T‖2F + ‖TR>j ‖2F + ‖H‖2F ), (9)

where |E| and |R| are the number of entities and relations, respectively.

In the rest of this section, we use the same definitions of X̂j and X̂ as in the problem (1). When
the relation embedding matrices Rj are diagonal in R or C as in CP or ComplEx, the formulation
(9) gives an upper bound to the tensor nuclear 2-norm of X̂ , which is an extension of trace norm
regularizers in matrix completion. To simplify the notations, we take CP as an example, in which all
involved embeddings are real. The conclusion in complex space can be analogized accordingly.
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Definition 1 (Friedland & Lim [8]). The nuclear 2-norm of a 3D tensor A ∈ Rn1 ⊗ Rn2 ⊗ Rn3 is

‖A‖∗ = min

{
r∑
i=1

‖u1,i‖2‖u2,i‖2‖u3,i‖2 : A =

r∑
i=1

u1,i ⊗ u2,i ⊗ u3,i, r ∈ N

}
,

where uk,i ∈ Rnk for k = 1, ..., 3, i = 1, ..., r, and ⊗ denotes the outer product.

For notation convenience, we define a relation matrix R̃ ∈ R|R|×D, of which the j-th row consists of
the diagonal entries of Rj . That is, R̃(j, d) = Rj(d, d), where R(i, j) represents the entry in the i-th
row and j-th column of the matrix R.

In the knowledge graph completion problem, the tensor nuclear 2-norm of X̂ is

‖X̂ ‖∗ = min

{
D∑
d=1

‖h:d‖2‖r:d‖2‖t:d‖2 : X̂ =

D∑
d=1

h:d ⊗ r:d ⊗ t:d

}
,

where D is the embedding dimension, h:d, r:d, and t:d are the d-th columns of H, R̃, and T.

For DURA in (9), we have the following theorem.

Theorem 1. Suppose that X̂j = HRjT> for j = 1, 2, . . . , |R|, where H,T,Rj are real matrices and
Rj is diagonal. Then, the following equation holds

min
X̂j=HRjT>

1√
|R|

|R|∑
j=1

(‖HRj‖2F + ‖T‖2F + ‖TR>j ‖2F + ‖H‖2F ) = ‖X̂ ‖∗.

The minimization attains if and only if ‖h:d‖2‖r:d‖2 =
√
|R|‖t:d‖2 and ‖t:d‖2‖r:d‖2 =

√
|R|‖h:d‖2,

∀ d ∈ {1, 2, . . . , D}, where h:d, r:d, and t:d are the d-th columns of H, R̃, and T, respectively.

Proof. See the supplementary material.

Therefore, DURA in (9) gives an upper bound to the tensor nuclear 2-norm, which is a tensor analog
to the matrix trace norm.

Remark DURA in (8) is actually a weighted version of the one in (9), in which the regularization
terms corresponding to the sampled valid triplets. As shown in Srebro & Salakhutdinov [24]
and Lacroix et al. [15], the weighted versions of regularizers usually outperform the unweighted
regularizer when entries of the matrix or tensor are sampled non-uniformly. Therefore, in the
experiments, we implement DURA in a weighted way as in (8).

5 Experiments

In this section, we introduce the experimental settings in Section 5.1 and show the effectiveness of
DURA in Section 5.2. We compare DURA to other regularizers in Section 5.3 and visualize the entity
embeddings in Section 5.4. Finally, we analyze the sparsity induced by DURA in Section 5.5. The
code of HAKE is available on GitHub at https://github.com/MIRALab-USTC/KGE-DURA.

5.1 Experimental Settings

Table 1: Statistics of three benchmark datasets.

WN18RR FB15k-237 YAGO3-10

#Entity 40,943 14,541 123,182
#Relation 11 237 37
#Train 86,835 272,115 1,079,040
#Valid 3,034 17,535 5,000
#Test 3,134 20,466 5,000

We consider three public knowledge graph
datasets—WN18RR [27], FB15k-237 [6], and
YAGO3-10 [17] for the knowledge graph com-
pletion task, which have been divided into train-
ing, validation, and testing set in previous works.
The statistics of these datasets are shown in Ta-
ble 1. WN18RR, FB15k-237, and YAGO3-10
are extracted from WN18 [4], FB15k [4], and
YAGO3 [17], respectively. Toutanova & Chen
[27] and Dettmers et al. [6] indicated the test set leakage problem in WN18 and FB15k, where some
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test triplets may appear in the training dataset in the form of reciprocal relations. They created
WN18RR and FB15k-237 to avoid the test set leakage problem, and we use them as the benchmark
datasets. We use MRR and Hits@N (H@N) as evaluation metrics. For more details of training and
evaluation protocols, please refer to the supplementary material.

Moreover, we find it better to assign different weights for the parts involved with relations. That is,
the optimization problem has the form of

min
∑

(ei,rj ,ek)∈S

[`ijk(H,R1, . . . ,RJ ,T)

+λ(λ1(‖hi‖22 + ‖tk‖22) + λ2(‖hiRj‖22 + ‖tkR>j ‖22))],

where λ, λ1, λ2 > 0 are fixed hyperparameters. We search λ in {0.005, 0.01, 0.05, 0.1, 0.5} and
λ1, λ2 in {0.5, 1.0, 1.5, 2.0}.

Table 2: Evaluation results on WN18RR, FB15k-237 and YAGO3-10 datasets. We reimplement
CP, DistMult, ComplEx, and RESCAL using the “reciprocal” setting [15, 14], which leads to better
results than the reported results in the original paper.

WN18RR FB15k-237 YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

RotatE .476 .428 .571 .338 .241 .533 .495 .402 .670
MuRP .481 .440 .566 .335 .243 .518 - - -
HAKE .497 .452 .582 .346 .250 .542 .546 .462 .694
TuckER .470 .443 .526 .358 .266 .544 - - -

CP .438 .414 .485 .333 .247 .508 .567 .494 .698
RESCAL .455 .419 .493 .353 .264 .528 .566 .490 .701
ComplEx .460 .428 .522 .346 .256 .525 .573 .500 .703

CP-DURA .478 .441 .552 .367 .272 .555 .579 .506 .709
RESCAL-DURA .498 .455 .577 .368 .276 .550 .579 .505 .712
ComplEx-DURA .491 .449 .571 .371 .276 .560 .584 .511 .713

5.2 Main Results

In this section, we compare the performance of DURA against several state-of-the-art KGC models,
including CP [12], RESCAL [22], ComplEx [28], TuckER [2] and some DB models: RotatE [26],
MuRP [1], and HAKE [38].

Table 2 shows the effectiveness of DURA. RESCAL-DURA and ComplEx-DURA perform com-
petitively with the SOTA DB models. RESCAL-DURA outperforms all the compared DB models
in terms of MRR and H@1. Note that we reimplement CP, ComplEx, and RESCAL under the
“reciprocal” setting [14, 15], and obtain better results than the reported performance in the original
papers. Overall, TFB models with DURA significantly outperform those without DURA, which
shows its effectiveness in preventing models from overfitting.

Generally, models with more parameters and datasets with smaller sizes imply a larger risk of
overfitting. Among the three datasets, WN18RR has the smallest size of only 11 kinds of relations
and around 80k training samples. Therefore, the improvements brought by DURA on WN18RR
are expected to be larger compared with other datasets, which is consistent with the experiments.
As stated in Wang et al. [31], RESCAL is a more expressive model, but it is prone to overfit on
small- and medium-sized datasets because it represents relations with much more parameters. For
example, on WN18RR dataset, RESCAL gets an H@10 score of 0.493, which is lower than ComplEx
(0.522). The advantage of its expressiveness does not show up at all. However, incorporated with
DURA, RESCAL gets an 8.4% improvement on H@10 and finally attains 0.577, which outperforms
all compared models. On larger datasets such as YAGO3-10, overfitting also exists but may be
non-significant. Nonetheless, DURA still leads to consistent improvement, demonstrating the ability
of DURA to prevent models from overfitting.
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Table 3: Comparison between DURA, the squared Frobenius norm (FRO), and the nuclear 3-norm
(N3) regularizers. Results of * are taken from Lacroix et al. [15]. CP-N3 and ComplEx-N3 are
re-implemented and their performances are better than the reported results in Lacroix et al. [15]. The
best performance on each model are marked in bold.

WN18RR FB15k-237 YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

CP-FRO* .460 - .480 .340 - .510 .540 - .680
CP-N3 .470 .430 .544 .354 .261 .544 .577 .505 .705
CP-DURA .478 .441 .552 .367 .272 .555 .579 .506 .709
ComplEx-FRO* .470 - .540 .350 - .530 .570 - .710
ComplEx-N3 .489 .443 .580 .366 .271 .558 .577 .502 .711
ComplEx-DURA .491 .449 .571 .371 .276 .560 .584 .511 .713
RESCAL-FRO .397 .363 .452 .323 .235 .501 .474 .392 .628
RESCAL-DURA .498 .455 .577 .368 .276 .550 .579 .505 .712

5.3 Comparison to Other Regularizers

In this section, we compare DURA to the popular squared Frobenius norm regularizer and the recent
tensor nuclear 3-norm (N3) regularizer [15]. The squared Frobenius norm regularizer is given by
g(X̂ ) = ‖H‖2F +‖T‖2F +

∑|R|
j=1 ‖Rj‖2F . N3 regularizer is given by g(X̂ ) =

∑D
d=1(‖h:d‖33+‖r:d‖33+

‖t:d‖33), where ‖ · ‖3 denotes L3 norm of vectors.

We implement both the squared Frobenius norm (FRO) and N3 regularizers in the weighted way as
stated in Lacroix et al. [15]. Table 3 shows the performance of the three regularizers on three popular
models: CP, ComplEx, and RESCAL. Note that when the TFB model is RESCAL, we only compare
DURA to the squared Frobenius norm regularization as N3 does not apply to it.

For CP and ComplEx, DURA brings consistent improvements compared to FRO and N3 on all
datasets. Specifically, on FB15k-237, compared to CP-N3, CP-DURA gets an improvement of 0.013
in terms of MRR. Even for the previous state-of-the-art TFB model ComplEx, DURA brings further
improvements against the N3 regularizer. Incorporated with FRO, RESCAL performs worse than the
vanilla model, which is consistent with the results in Ruffinelli et al. [23]. However, RESCAL-DURA
brings significant improvements against RESCAL. All the results demonstrate that DURA is more
widely applicable than N3 and more effective than the squared Frobenius norm regularizer.

5.4 Visualization

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 query 1
query 2
query 3
query 4
query 5
query 6
query 7
query 8
query 9
query 10

(a) CP

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 query 1
query 2
query 3
query 4
query 5
query 6
query 7
query 8
query 9
query 10

(b) CP-DURA

Figure 2: Visualization of the embeddings of
tail entities using T-SNE. A point represents a
tail entity. Points in the same color represent
tail entities that have the same (hr, rj) context.

In this section, we visualize the tail entity embed-
dings using T-SNE [29] to show that DURA en-
courages tail entities with similar semantics to have
similar embeddings.

Suppose that (hi, rj) is a query, where hi and rj are
head entities and relations, respectively. An entity
tk is an answer to a query (hi, rj) if (hi, rj , tk) is
valid. We randomly selected 10 queries in FB15k-
237, each of which has more than 50 answers. 1

Then, we use T-SNE to visualize the answers’ em-
beddings generated by CP and CP-DURA. Figure
2 shows the visualization results. Each entity is rep-
resented by a 2D point and points in the same color
represent tail entities with the same (hi, rj) context (i.e. query). Figure 2 shows that, with DURA,
entities with the same (hi, rj) contexts are indeed being assigned more similar representations, which
verifies the claims in Section 4.2.

1For more details about the 10 queries, please refer to the supplementary material.
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5.5 Sparsity Analysis

As real-world knowledge graphs usually contain billions of entities, the storage of entity embeddings
faces severe challenges. Intuitively, if embeddings are sparse, that is, most of the entries are zero, we
can store them with less storage. Therefore, the sparsity of the generated entity embeddings becomes
crucial for real-world applications. In this part, we analyze the sparsity of embeddings induced by
different regularizers.
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Figure 3: The effect of entity embeddings’ λ-sparsity
on MRR. The used dataset is FB15k-237.

Generally, there are few entries of entity
embeddings that are exactly equal to 0 af-
ter training, which means that it is hard to
obtain sparse entity embeddings directly.
However, when we score triplets using the
trained model, the embedding entries with
values close to 0 will have minor contribu-
tions to the score of a triplet. If we set the
embedding entries close to 0 to be exactly
0, we can transform embeddings into sparse
ones. Thus, there is a trade-off between
sparsity and performance decrement.

We define the following λ-sparsity to indicate the proportion of entries that are close to zero:

sλ =

∑I
i=1

∑D
d=1 1{|x|<λ}(Eid)
I ×D

, (10)

where E ∈ RI×D is the entity embedding matrix, Eid is the entry in the i-th row and d-th column of
E, I is the number of entities, D is the embedding dimension, and 1C(x) is the indicator function
that takes value of 1 if x ∈ C or otherwise the value of 0.

To generate sparse version entity embeddings, following Equation (10), we select all the entries of
entity embeddings—of which the absolute value are less than a threshold λ—and set them to be 0.
Note that for any given sλ, we can always find a proper threshold λ to approximate it, as the formula
is increasing with respect to λ. Then, we evaluate the quality of sparse version entity embeddings on
the knowledge graph completion task. Figure 3 shows the effect of entity embeddings’ λ-sparsity
on MRR. Results in the figure show that DURA causes much gentler performance decrement as the
embedding sparsity increases. In Figure 3a, incorporated with DURA, CP maintains MRR of 0.366
unchanged even when 60% entries are set to 0. More surprisingly, when the sparsity reaches 70%,
CP-DURA can still outperform CP-N3 with zero sparsity. For RESCAL, when setting 80% entries to
be 0, RESCAL-DURA still has the MRR of 0.341, which significantly outperforms vanilla RESCAL,
whose MRR has decreased from 0.352 to 0.286. In a word, incorporating with DURA regularizer, the
performance of CP and RESCAL remains comparable to the state-of-the-art models, even when 70%
of entity embeddings’ entries are set to 0.

Following Han et al. [11], we store the sparse version embedding matrices using compressed sparse
row (CSR) format or compressed sparse column (CSC) format, which requires 2a+ n+ 1 numbers,
where a is the number of non-zero elements and n is the number of rows or columns. Experiments
show that DURA brings about 65% fewer storage costs for entity embeddings when 70% of the
entries are set to 0. Therefore, DURA can significantly reduce the storage usage while maintaining
satisfying performance.

6 Conclusion

We propose a widely applicable and effective regularizer—namely, DURA—for tensor factorization
based knowledge graph completion models. DURA is based on the observation that, for an existing
tensor factorization based KGC model (primal), there is often another distance based KGC model
(dual) closely associated with it. Experiments show that DURA brings consistent and significant
improvements to TFB models on benchmark datasets. Moreover, visualization resultls show that
DURA can encourage entities with similar semantics to have similar embeddings, which is beneficial
to the prediction of unknown triplets. Since the current formulation of DURA is designed for
tensor factorization based models, a direction for future work is to extend DURA to models in other
categories, such as KBAT [21] and GAATs [32].
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Broader Impact

The proposed regularizer DURA can significantly improve the performance of tensor factorization
based knowledge graph completion models. In other words, it can help us to predict missing links in
knowledge graphs automatically. Therefore, using models with DURA, we do not need to complete
knowledge graphs manually. A great amount of manpower can be saved, and work efficiency can
be increased. After the completion process, knowledge graphs can provide volume and valuable
human knowledge in a structured way. They can be applied to many scenarios that require human
knowledge. For example, an E-commerce company can use knowledge graphs for customer service
and personalized recommendation. Medical workers can use them to make a diagnosis.

One ethical concern when using automatic knowledge graph completion methods is the potential for
privacy disclosure. If we use public data on the Internet to construct a knowledge graph and then
complete it using the proposed method, personal information that one does not want to make public
may be unveiled. Therefore, we advise everyone to be cautious about usage scenarios of automatic
knowledge graph completion methods.
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