
Supplementary material for: Active Structure Learning of Causal DAGs via
Directed Clique Trees

A Meek Rules

In this section, we recall the Meek rules (Meek, 1995) for propagating orientations in DAGs. Of the
standard four Meek rules, two of them only apply when the DAG contains v-structures. Since all
DAGs that we need to consider do not have v-structures, we include only the first two rules here.

Proposition 2 (Meek Rules under no v-structures).

1. No colliders: If a→G b−G c and a is not adjacent to c, then b→G c.

2. Acyclicity: If a→G b→G c and a is adjacent to c, then a→G c.

B The running intersection property

A useful and well-known property of clique trees, used throughout proofs in the remainder of the
appendix, is the following:

Prop. (Running intersection property). Let γ = 〈C1, . . . , CK〉 be the path between C1 and CK in
the clique tree TG. Then C1 ∩ CK ⊆ Ck for all Ck ∈ γ.

We refer the interested reader to Maathuis et al. (2018).

C Proof of Proposition 1

This proposition describes the connection between arrow-meets and intersection comparability. In
order to prove this proposition, we begin by establishing the following propositions:

Proposition 3. Suppose C1 and C2 are adjacent in TG. Then for all v1 ∈ C1 \C2, v2 ∈ C2 \C1, v1

and v2 are not adjacent in G.

Proof. We prove the contrapositive. Suppose v1 ∈ C1 \ C2 and v2 ∈ C2 \ C1 are adjacent. Then
C ′3 = (C1 ∩ C2) ∪ {v1, v2} is a clique and belongs to some maximal clique C3. For the induced
subtree property to hold, C3 must lie between C1 and C2, i.e., C1 and C2 are not adjacent.

Proposition 4. Let D be a moral DAG, there are no undirected edges in any of its directed clique
trees TD, and therefore neither in its directed clique graph ΓD.

Proof. (By contradiction). Suppose v1 →D v12 for v1 ∈ C1 \ C2 and v12 ∈ C1 ∩ C2. Suppose
v2 →D v′12 for v2 ∈ C2 \ C1, and v′12 ∈ C1 ∩ C2. By the assumption that D does not have
v-structures and by Prop. 3, v12 6= v′12. Similarly, since v12 →D v2 (otherwise there would be a
v-structure with v1 →D v12) and v′12 →D v1 (otherwise there would be a collider with v2 →D v′12).
However, this induces a cycle v1 →D v12 →D v2 →D v′12 →D v1.

Now we can finally prove the final proposition:

Proposition 1. Suppose C1 ∗→TD
C2 and C2←∗ TD

C3 in TD. Then these edges are intersection
comparable. Equivalently in the contrapositve, if C1 ∗→TD

C2 and C2 ∗−∗ TD
C4 are intersection

incomparable, we can immediately deduce that C2 →TD
C4.

Proof. We prove the contrapositive. If C1 ∩ C2 6⊆ C2 ∩ C3 and C1 ∩ C2 6⊇ C2 ∩ C3, then there
exist nodes v12 ∈ (C1 ∩C2) \C3 and v23 ∈ (C2 ∩C3) \C1. Since v12 and v23 are both in the same
clique C2 they are adjacent in the underlying DAG D, i.e. v12 −D v23. Moreover since C1 ∗→TD

C2

by the definition of a directed clique graph, this edge is oriented as v12 →D v23. Then by Prop. 4,
C2 →TD

C3.

13

{1, 2}

{2, 4, 5}{2, 3, 4} {2, 4, 6}

{1, 2}

{2, 4, 5}{2, 3, 4} {2, 4, 6}1 2

4 5

6

3

Figure 7: A DAG, its DCT with a conflicting source, and its DCG without a conflicting source.

D Proof of Lemma 2

Lemma 2. For any moral DAG D, one can always construct a CDCT with no arrow-meets.

Proof. To construct a CDCT with no arrow-meets, our approach is to first construct the DCT in a
special way, so that after contraction, there are no arrow-meets. In particular, we need a DCT such
that each bidirected component has at most one incoming edge. A DCT in which this does not hold is
said to have conflicting sources, formally:

Definition 11. A directed clique tree TD has two conflicting sources C0 and CK+1, if C0 →TD
C1

and CK ←TD
CK+1, and C1 and CK are part of the same bidirected component B ∈ B(TD), i.e.

C1, CK ∈ B, possibly with C1 = CK .

An example of a clique tree with conflicting sources is given in Fig. 7. The first DCT has conflicting
sources {1, 2} and {2, 3, 4}, while the second DCT does not have conflicting sources.

We will now show that Algorithm 3 constructs a DCT with no conflicting sources. This is sufficient
to prove Lemma 2, since after contraction, the resulting CDCT will have no arrow-meets.

First, Algorithm 3 constructs a weighted clique graph WG, which is a complete graph over vertices
C(G), with the edge C1 −WG

C2 having weight |C1 ∩ C2|. We will show that at each iteration i,
there are no conflicting sources in TD. This is clearly true for i = 0 since TD has no edges to begin.

At a given iteration i, suppose that the candidate edge e = C1 ∗→C2 is a maximum-weight edge that
does not create a cycle, i.e. e ∈ E, but that it will induce conflicting sources. That is, the current
TD already contains C2←∗C3←∗ . . . ←∗CK−1 ← CK , where we choose CK that has no parents.
Note that we can do this by following any directed/bidirected edges upstream (away from C2), which
must terminate since TD is a tree and thus does not have cycles.

By Prop. 1, C1∩C2 Q C2∩C3. In this case, C1∩C2 ⊆ C2∩C3, since C2←∗C3 was already picked
as an edge and thus cannot have less weight (in other words, it cannot have a smaller intersection)
than C1 ∗→C2. Furthermore, since C1 − C2 − C3 is a valid subgraph of the clique tree, we must
have C1 ∩C3 ⊆ C2 by the running intersection property of clique trees (see Appendix B). Combined
with C1 ∩C2 ⊆ C2 ∩C3, we have C1 ∩C3 = C1 ∩C2. This means that C1−C3 is also a valid edge
in the weighted clique graph and it has the same weight (C1 ∩ C3) as the C1 − C2 edge (C1 ∩ C2).
Moreover since C1 ∗→C2 then this edge will also preserve the same orientations C1 ∗→C3. Thus,
C1 ∗→C3 is another candidate maximum-weight edge that does not create a cycle. We may continue
this argument, replacing C2 by Ck, to show that C1 ∗→CK is a maximum weight edge that does not
create a cycle. Since CK has no parents, there are still no conflicting sources after adding C1 ∗→CK .
Since we always pick a maximum-weight edge that does not create a cycle, this algorithm creates
a maximum-weight spanning tree of WG (Koller & Friedman, 2009), which is guaranteed to be a
clique tree of G Koller & Friedman (2009).

E Proof of Theorem 1

We restate the theorem here:

Theorem 1. A single-node intervention set is a VIS for any general DAG D iff it contains VISes for
each residual R ∈ R(T̃G) for all chain components G ∈ CC(E(D)) of its essential graph E(D).

14

Algorithm 3 CONSTRUCT_DCT
1: Input: DAG D
2: let WG be the weighted clique graph of G = skel(D)
3: let TD be the empty graph over V (WG)
4: for i = 1, . . . , |V (WG)| − 1 do
5: let E be the set of maximum-weight edges of WG that do not create a cycle when added to TD
6: select e ∈ E s.t. there are no conflicting sources
7: add e to TD
8: end for
9: Contract the bidirected components of TD and create the CDCT T̃D

10: Return T̃D

{5, 7}

{3, 5, 6}

{6, 8}

{1, 2, 3}

{1, 4}
1

2

3

5

4

7

6

8

1

2

3

5

4

7

6

8

1

2

3

5

4

7

6

8

Figure 8: A DAG, its contracted directed clique tree, its residuals, and its residual essential graph.

In order to prove the following theorem we start by introducing a few useful concepts and results.

E.1 Residual essential graphs

The residuals decompose the DAG into parts which must be separately oriented. Intuitively, after
adding orientations between all pairs of residuals, the inside of one residual is cut off from the insides
of other residuals. The following definition and lemmas formalize this intuition.
Definition 12. The residual essential graph Eres(D) ofD has the same skeleton asD, with v1 →Eres(D)

v2 iff v1 →D v2 and v1 and v2 are in different residuals of T̃D.

The following lemma establishes that after finding the orientations of edges in the DCT, the only
remaining unoriented edges are in the residuals.
Lemma 3. The oriented edges of Eres(D) can be inferred directly from the oriented edges of TD.

Proof. In order to prove this theorem, we first introduce an alternative characterization of the
residual essential graph defined only in terms of the orientations in the contracted DCT and prove its
equivalence to Definition 12. Let E ′res(D) have the same skeleton as D, with i→E′res(D)j if and only if
j ∈ ResT̃D

(B) and i ∈ P , for some B ∈ B(TD) and its unique parent P .

Suppose v1 →D v2 for v1 ∈ R1 and v2 ∈ R2, with R1, R2 ∈ R(T̃D) and R1 6= R2. Let
R1 = ResT̃D

(B1) and R2 = ResT̃D
(B2) for B1, B2 ∈ B(T̃D). There must be at least one clique

C1 ∈ B1 that contains v1, and likewise one clique C2 ∈ B2 that contains v2. Since v1 and v2 are
adjacent, by the induced subtree property there must be some maximal clique on the path between
C1 and C2 which contains v1 and v2. Let C12 be the clique on this path containing v1 and v2 that
is closest to C1. Then, the next closest clique to C1 must not contain v2, so we will call this clique
C1\2. Since v1 →D v2, we know that C1\2 →TD

C12, hence C1\2 and C12 are in different bidirected
components, and thus v1 →Eres(D) v2.

Lemma 4. The Eres(D) is complete under Meek’s rules (Meek, 1995).

Proof. Since Meek rules are sound and complete rules for orienting PDAGs (Meek, 1995), and in our
setting only two of the Meek rules apply (see Prop. 2 in Appendix A), it suffices to show that neither
applies for residual essential graphs.

15

First, suppose i →Eres(D) j and j →Eres(D) k. We must show that if i and k are adjacent, then
i→Eres(D) k, i.e. the acyclicity Meek rule does not need to be invoked.

We use the alternative characterization of Eres(D) from the proof of Lemma 3, which establishes that
i→E j iff. j ∈ ResTD (B) and i ∈ P for some B ∈ B(TD) and its unique parent P .

Since j →Eres(D) k, there must exist some component Bjk ∈ B(TD) containing j and k whose parent
component Bj\k contains j but not k, i.e. Bj\k →T̃D

Bjk. Likewise, there must be a component Bij
containing i and j whose parent component Bi\j contains i but not j, i.e. Bi\j →T̃D

Bij . Moreover,
since there is a clique on {i, j, k}, there must be at least one component Bijk containing i, j and k.

We will prove that Bjk and Bj\k both contain i, which implies i→T̃D
k.

Let γ be the path in T̃D between Bi\j and Bjk. This path must contain the edge Bj\k → Bjk, since
Bi\j is upstream of Bjk, and TD is a tree. By the induced subtree property on k, no component on
the path other than Bjk can contain k. Now consider the path between Bijk and Bi\j . By the induced
subtree property on k, this path must pass through Bjk. Finally, by the induced subtree property on i,
Bjk and Bj\k must both contain i.

Now, we prove that also the first Meek rule is not invoked. Suppose i→Eres(D) j, and j is adjacent to
k. We must show that if i is not adjacent to k, then j →Eres(D) k.

Since {i, j, k} do not form a clique, there must be distinct components containing i→ j and j → k.
Let Bij and Bjk denote the closest such components in T̃D, which are uniquely defined since T̃D is a
tree. Since i is upstream of k, Bij must be upstream of Bjk. Let P := paT̃D

(Bjk), we know j ∈ P
since it is on the path between Bij and Bjk (it is possible that P = Bij). Since we picked Bjk to be
the closest component to Bij containing {j, k}, we must have k 6∈ P , so indeed j →G k.

For an example of the residual essential graph, see Fig. 8. Lemma 4 implies that the residuals must be
oriented separately, since the orientations in one do not impact the orientations in others.

E.2 Proof for a moral DAG

We then prove the result for a moral DAG D:

Lemma 5 (VIS Decomposition). An intervention set is a VIS for a moral DAG D iff it contains VISes
for each residual of T̃D. This implies that finding a VIS for D can be decomposed in several smaller
tasks, in which we find a VIS for each of the residuals inR(T̃D).

Proof.
VISes of residuals are necessary. We first prove that any VIS I of D must contain VISes for each
residual of D. Consider the residual essential graph Eres(D) of D. We show that if we intervene on a
node c1 in the residual R1 = ResT̃D

(B1) of some B1 ∈ B(T̃D), then the only new orientations are
between nodes in R1, or in other words, each residual needs to be oriented independently.

By Definition 12, all edges between nodes in different residuals are already oriented in Eres(D). A
new orientation between nodes in R1 will not have any impact for the nodes in the other residuals,
which we can show by proving that Meek rules described in Prop. 2 would not apply outside of the
residual. In particular, Meek Rule 1 does not apply at all, since b and c must be in the same residual
since the edge is undirected, but then a is adjacent to c since it’s a clique. Likewise, a−Eres(d) c, then
a and b are in the same residual, so Meek Rule 2 only orients edges with both endpoints in the same
residual.

VISes of residuals are sufficient. Now, we show that if I contains VISes for each residual of D,
then it is a VIS for D, i.e. that orienting the residuals will orient the whole graph by applying
recursively Meek rules. We will accomplish this by inductively showing that all edges in each
bidirected component are oriented. Let γ = 〈B1, . . . , Bn〉 be a path from the root of T̃D to a leaf of
T̃D. As our base case, all edges in B1 are oriented, since B1 = ResT̃D

(B1). Now, as our induction
hypothesis, suppose that all edges in Bi−1 are oriented.

The edges between nodes in Bi are partitioned into three categories: edges with both endpoints also
in Bi−1, edges with both endpoints in ResT̃D

(Bi), and edges with one endpoint in Bi−1 and one

16

Algorithm 4 FIND_MVIS_DCT

1: Input: Moral DAG D
2: let T̃D be the contracted directed clique tree of D
3: let S = ∅
4: for component B of TD do
5: let R = ResT̃D

(B)

6: let S′ = FIND_MVIS_ENUMERATION(G[R])
7: let S = S ∪ S′
8: end for
9: Return S

Algorithm 5 FIND_MVIS_ENUMERATION

1: Input: DAG D
2: if D is a clique then
3: Let π be a topological ordering of D
4: Let S include even-indexed element of π
5: Return S
6: end if
7: for s = 1, . . . , |V (D)| do
8: for S ⊆ V (D) with |S| = s do
9: if S fully orients D then

10: Return S
11: end if
12: end for
13: end for

endpoint in ResT̃D
(Bi). The first category of edges are directed by the induction hypothesis, and

the second category of edges are directed by the assumption that I contains VISes for each residual.
It remains to show that all edges in the third category are oriented. Each of these edges has one
endpoint in some Ci−1 ∈ Bi−1 and one endpoint in some Ci in Bi, so we can fix some Ci−1 and Ci
and argue that all edges from Ci−1 ∩ Ci to Ci \ Ci−1 are oriented.

Since Ci−1 →RD
Ci, there exists some ci−1 ∈ Ci−1 \Ci and c′ ∈ Ci ∩Ci−1 such that ci−1 →D c′.

By Prop. 3, ci−1 is not adjacent to any ci ∈ Ci \ Ci−1, so Meek Rule 1 ensures that c′ →D ci is
oriented. For any other node c′′ ∈ Ci−1 ∩ Ci, either c′ →D c′′, in which case Meek Rule 2 ensures
that ci−1 →D c′′ and the same argument applies, or c′′ →D c′, in which case Meek Rule 2 ensures
that c′′ →D ci.

E.3 Proof for a general DAG

We can now easily prove the theorem for any DAG D:

Theorem 1. A single-node intervention set is a VIS for any general DAG D iff it contains VISes for
each residual R ∈ R(T̃G) for all chain components G ∈ CC(E(D)) of its essential graph E(D).

Proof. By the previous result (Lemma 5) and Lemma 1 from (Hauser & Bühlmann, 2014).

F Algorithm for finding an MVIS

An algorithm using the decomposition into residuals to compute a minimal verifying intervention set
(MVIS) is described in Algorithms 4 and 5. Compared to running Algorithm 5 on any moral DAG,
using Algorithm 4 ensures that we only have to enumerate over subsets of the nodes in each residual,
which in general require far fewer interventions. Moreover, the residual of any component containing
a single clique is itself a clique, which have easily characterized MVISes, and Algorithm 5 efficiently
computes.

17

G Proof of Theorem 2

First, we prove the following proposition:

Proposition 5. Let D be a moral DAG, E = E(D) and let T̃D contain a single bidirected component.

Then m(D) ≥
⌊
ω(E)

2

⌋
.

Proof. Let C1 ∈ arg maxC∈C(E) |C|. By the running intersection property (see Appendix B), for
any clique C2, C1 ∩ C2 ⊆ C2 ∩ Cadj for Cadj adjacent to C2 in TD. Since Cadj ↔TD

C2, we have
v12 →D v2\1 for all v12 ∈ C1 ∩ C2 and v2\1 ∈ C2 \ C1, i.e. there is no node in D outside of C1

that points into C1. Thus, since the Meek rules only propagate downward, intervening on any nodes
outside of C1 does not orient any edges within C1. Finally, since C1 is a clique, each consecutive
pair of nodes in the topological order of C1 must have at least one of the nodes intervened in order
to establish the orientation of the edge between them. This requires at least

⌊
|C1|

2

⌋
interventions,

achieved by intervening on the even-numbered nodes in the topological ordering.

Now we can prove the following result for a moral DAG D:

Lemma 6. Let D be a moral DAG and let G = skel(D). Then m(D) ≥
⌊
ω(G)

2

⌋
, where ω(G) is the

size of the largest clique in G.

Consider a path γ from the source of T̃D to the bidirected component containing the largest clique, i.e.,
γ = 〈B1, . . . , BZ〉. For each component, pick C∗i ∈ arg maxC∈Bi

|C|. Also, let Ri = ResT̃D
(Bi).

We will prove by induction that
∑z
i=1m(D[Ri]) ≥ maxzi=1

⌊
|C∗i |

2

⌋
for any z = 1, . . . , Z. As a base

case, it is true for z = 1, since R1 = B1 and by Prop. 5.

Suppose the lower bound holds for z − 1. If C∗z is not the unique maximizer of
⌊
|C∗z |

2

⌋
over

i = 1, . . . , z, the lower bound already holds. Thus, we consider only the case where Bz is the unique
maximizer.

Let Sz = C∗z ∩Bz−1. By the running intersection property (see Appendix B), Sz is contained in the
clique Cadj in Bz−1 which is adjacent to C∗z in TD. Since Cadj is distinct from C∗z , |C∗adj| ≥ |Sz|+ 1,
and by the induction hypothesis we have that

z−1∑
i=1

m(D[Ri]) ≥ max
i=1,...,z−1

⌊
|C∗i |

2

⌋
≥
⌊
|C∗z−1|

2

⌋
≥
⌊
|Cadj|

2

⌋
≥
⌊
|Sz|+ 1

2

⌋
Finally, applying Prop. 5,⌊

|Sz + 1|
2

⌋
+m(D[Rz]) ≥

⌊
|Sz|+ 1

2

⌋
+

⌊
|C∗z ∩Rz|

2

⌋
≥
⌊
|C∗z |

2

⌋
where the last equality holds since |Sz|+ |C∗z ∩Rz| = |C∗z | and by the property of the floor function
that

⌊
a+1

2

⌋
+
⌊
b
2

⌋
≥
⌊
a+b

2

⌋
, which can be easily checked.

Finally we can prove the theorem:

18

Algorithm 6 CLIQUEINTERVENTION

1: Input: Clique C
2: while C −ΓD

C ′ unoriented for some C ′ do
3: if ∃v non-dominated in C then
4: Pick v ∈ C at random among non-dominated nodes.
5: else
6: Pick v ∈ C at random.
7: end if
8: Intervene on v.
9: end while

10: Output: Pup(C)

Algorithm 7 EDGEINTERVENTION

1: Input: Adjacent cliques C, C ′
2: while C −ΓD

C ′ unoriented do
3: Pick v ∈ C ∩ C ′ at random.
4: Intervene on v.
5: end while
6: Output: Pup(C)

Theorem 2. Let D be any DAG. Then m(D) ≥
∑
G∈CC(E(D))

⌊
ω(G)

2

⌋
, where ω(G) is the size of the

largest clique in each of the chain components G of the essential graph E(D).

Proof. By Lemma 6 and Lemma 1 in Hauser & Bühlmann (2014).

H Clique and Edge Interventions

We present the procedures that we use for clique- and edge-interventions in Algorithm 6 and Algo-
rithm 7, respectively.

I Identify-Upstream Algorithm

Given the clique graph, a simple algorithm to identify the upstream branch consists of performing an
edge-intervention on each pair of parents of C to discover which is the most upstream. However, if
the number of parents of C is large, this may consist of many interventions. The following lemma
establishes that the only parents which are candidates for being the most upstream are those whose
intersection with C is the smallest:
Proposition 6. Let Pup(C) ∈ paΓD

(C) be the parent of C which is upstream of all other parents.
Then Pup(C) ∈ PΓD

(C), wherePΓD
(C) is the set of parents ofC in ΓD with the smallest intersection

size, i.e., P ∈ PΓD
(C) if and only if P →ΓD

C and |P ∩ C| ≤ |P ′ ∩ C| for all P ′ ∈ paΓD
(C).

Proof. We begin by citing a useful result on the relationship between clique trees and clique graphs
when the clique contains an intersection-comparable edge:

Lemma 7 (Galinier et al. (1995)). If C1−TG
C2−TG

C3 and C1 ∩C2 ⊆ C2 ∩C3, then C1−ΓG
C3.

Corollary 1. If C1 −TG
C2 −TG

C3 and C1 ∩ C2 ⊆ C2 ∩ C3, then C1 ∩ C3 = C1 ∩ C2.

Proof. By the running intersection property of clique trees (see Appendix B), C1 ∩ C3 ⊆ C2.
Combined with C1 ∩ C2 ⊆ C2 ∩ C3 and simple set logic, the result is obtained.

Every parent of C is adjacent in ΓD to every other parent of C by Prop. 1 and Lemma 7, and since
every edge has at least one arrowhead, there can be at most one parent of C that does not have an
incident arrowhead.

19

Algorithm 8 IDENTIFYUPSTREAM

1: Input: Clique C
2: for P1, P2 ∈ PΓD

(C) do
3: perform an edge-intervention on P1 −ΓD

P2

4: end for
5: Output: Pup(C)

Now we show that this parent must be in PΓD
(C). Corollary 1 implies that for any triangle in ΓG, two

of the edge labels (corresponding to intersections of their endpoints) must be equal. If P ∈ PΓD
(C)

and P ′ ∈ paTD
(C) \ PΓD

(C), then the labels of P →ΓD
C and P ′ →ΓD

C are of different size
and thus cannot match. Therefore, the label of P ∩ P ′ = P ∩ C. Finally, since we already know
P →ΓD

C, it must also be the case that P →ΓD
P ′.

J Proof of Theorem 3

We start by proving bounds for each of the two phases:
Lemma 8. Algorithm 2 uses at most dlog2 |C|e clique-interventions. Moreover, assuming TG is
intersection-incomparable, Algorithm 2 uses no edge-interventions.

Proof. Since TG is intersection-incomparable, after a clique-intervention onC, orientations propagate
in all but at most one branch of TG out of C. By the definition of a central node, the one possible
remaining branch has at most half of the nodes from the previous time step, so the number of edges
in TG reduces by at least half after each clique-intervention. Thus, there can be at most dlog2 |C|e
clique-interventions.

For ease of notation, we will overload the symbol CC for the chain components of a chain graph G to
take a DAG as an argument, and return the subgraphs corresponding to the chain components of its
essential graph. Formally, CC(D) = {D[V (G)] | G ∈ CC(E(D))}.
Lemma 9. The second phase of Algorithm 1 (line 6-8) uses at most

∑
C∈C(D′) |ResT̃D′

(C)| − 1

single-node interventions for the moral DAG D′ ∈ CC(D).

Proof. Eberhardt et al. (2006) show that n − 1 single-node interventions suffice to determine the
orientations of all edges between n nodes. We sum this value over all residuals.

Theorem 3. Assuming ΓG is intersection-incomparable, Algorithm 1 uses at most (3dlog2 Cmaxe+
2)m(D) single-node interventions, where Cmax = maxG∈CC(E(D)) |C(G)|.

Proof. Consider a moral DAG D′ ∈ CC(D). We will show that Algorithm 1 uses at most
(3dlog2 |C(E(D))|e + 2)m(D′) single-node interventions. The result then follows since m(D) =∑

D′∈CC(D)m(D′), the total number of interventions used by Algorithm 1 is the sum over the number
interventions used for each chain component, and Cmax ≥ |C(E(D))| for all D′.

Assume that for each clique-intervention in Algorithm 2, we intervene on every node in the clique.
Then, the number of single-node interventions used by each clique intervention is upper-bounded
by ω(G). By Theorem 2 and the simple algebraic fact that ∀a ∈ N, a ≤ 3ba2 c (which can be
proven simply by noting that if a is even a ≤ 3a2 and if a is odd a ≤ 3a−1

2 ., ω(G) ≤ 3m(D),
Algorithm 2 uses at most 3m(D) single-node interventions. Next, by Lemma 5 and Lemma 9,
and the fact that ∀a ∈ N, a − 1 ≤ 2ba2 c, the second phase of Algorithm 1 uses at most 2m(D)
single-interventions.

K Additional Experimental Results

K.1 Scalability of OptSingle

We use the same graph generation procedure as outlined in Section 5. We compare OptSingle,
Coloring, DCT, and ND-Random on graphs of up to 25 nodes in Fig. 9. We observe that at 25 nodes,

20

(a) Average ic-ratio (b) Average Computation Time

Figure 9: Comparison (over 100 random synthetic DAGs)

(a) Average Computation Time

OptSingle already takes more than 2 orders of magnitude longer than either the Coloring or DCT
policies to select its interventions, while achieving comparable performance in terms of average
competitive ratio.

K.2 Computation time for large tree-like graphs

In this section, we report the results on average computation time associated with Fig. 6c from
Section 5. We find similar scaling for our DCT policy and the Coloring policy, both taking about
5-10 seconds for graphs of up to 500 nodes, as seen in Fig. 10a.

K.3 Comparison on large dense graphs

In this section, we generate dense graphs via the same Erdös-Rényi-based procedure described in
Section 5. We show in Fig. 11 that the DCTpolicy is more scalable to dense graphs than the Coloring
policy, but that our performance becomes slightly worse than even ND-Random. Since the size of the
MVIS is already large for such dense graphs, this suggests that the two-phase nature of the DCTpolicy
may be too restrictive for such a setting. Further analysis of the graphs on which different policies do
well is left to future work.

21

(a) Average ic-ratio (b) Average Computation Time

Figure 11: Comparison (over 100 random synthetic DAGs)

22

