
A Theoretical Results

Consider a rewardless MDP 〈S,A, T, γ〉. Reward functions R ∈ RS have corresponding optimal
value functions V ∗R (s).
Proposition 1 (Communicability bounds maximum change in optimal value). If s can reach
s′ with probability 1 in k1 steps and s′ can reach s with probability 1 in k2 steps, then
supR∈[0,1]S

∣∣V ∗R(s)− V ∗R(s′)
∣∣ ≤ 1−γmax(k1,k2)

1−γ < 1
1−γ .

Proof. We first bound the maximum increase.

sup
R∈[0,1]S

V ∗R(s′)− V ∗R(s) ≤ sup
R∈[0,1]S

V ∗R(s′)−

(
0 · 1− γk1

1− γ
+ γk1V ∗R(s′)

)
(2)

≤ 1

1− γ
−

(
0 · 1− γk1

1− γ
+ γk1

1

1− γ

)
(3)

=
1− γk1
1− γ

. (4)

Equation (2) holds because even if we make R equal 0 for as many states as possible, s′ is still
reachable from s. The case for maximum decrease is similar.

B Training Details

In section 5.1, we aggregated performance from 3 curricula with 5 seeds each, and 1 curriculum with
3 seeds.

We detail how we trained the AUP and AUPproj conditions. An algorithm describing the training
process can be seen in algorithm 1.

B.1 Auxiliary reward training

For the first phase of training, our goal is to learn Qaux, allowing us to compute the AUP penalty in the
second phase of training. Due to the size of the full SafeLife state (350× 350× 3), both conditions
downsample the observations with average pooling and convert to intensity values.

Previously, Turner et al. [22] learned Qaux with tabular Q-learning. They used environments small
enough such that reward could be assigned to each state. Because SafeLife environments are too
large for tabular Q-learning, we demonstrated two methods for randomly generating an auxiliary
reward function.

AUP We acquire a low-dimensional state representation by training a continuous Bernoulli
variational autoencoder [12]. To train the CB-VAE, we collect a buffer of observations by
acting randomly for 100,000

Nenv
steps in each of the Nenv environments. This gives us 100K total

observations with an Nenv-environment curriculum. We train the CB-VAE for 100 epochs,
preserving the encoder E for downstream auxiliary reward training.
For each auxiliary reward function, we draw a linear functional uniformly from (0, 1)Z to
serve as our auxiliary reward function, where Z is the dimension of the CB-VAE’s latent
space. The auxiliary reward for an observation is the composition of the linear functional
with an observation’s latent representation.

AUPproj Instead of using a CB-VAE, AUPproj simply downsamples the input observation. At the
beginning of training, we generate a linear functional over the unit hypercube (with respect
to the downsampled observation space). The auxiliary reward for an observation is the
composition of the linear functional with the downsampled observation.

The auxiliary reward function is learned after it is generated. To learn Qaux, we modify the value
function in PPO to a Q-function. Our training algorithm for phase 1 only differs from PPO in how we
calculate reward. We train each auxiliary reward function for 1M steps.

11



B.2 AUP reward training

In phase 2, we train a new PPO agent on RAUP (eq. (1)) for the corresponding SafeLife task. Each step,
the agent selects an action a in state s according to its policy πAUP, and receives reward RAUP(s, a)
from the environment. We compute RAUP(s, a) with respect to the learned Q-values Qaux(s,∅) and
Qaux(s, a).

The penalty term is modulated by the hyperparameter λ, which is linearly scaled from 10−3 to
some final value λ∗ (default 10−1). Because λ controls the relative influence of the penalty, linearly
increasing λ over time will prioritize primary task learning in early training and slowly encourage the
agent to obtain the same reward while avoiding side effects. If λ is too large – if side effects are too
costly – the agent won’t have time to adapt its current policy and will choose inaction (∅) to escape
the penalty. A careful λ schedule helps induce a successful policy that avoids side effects.

Algorithm 1: AUP Training Algorithm
Initialize Exploration buffer S
Initialize CB-VAE F with encoder E, decoder D
Initialize Exploration buffer S
Initialize Auxiliary reward functions φ
Initialize Auxiliary policy ψaux, AUP policy πAUP
Require CB-VAE training epochs T
Require AUP penalty λ
Require Exploration buffer size k
Require Auxiliary model training steps L
Require AUP model training steps N
Require PPO update function PPO-Update
Require CB-VAE update function VAE-Update
for Step k = 1, . . .K do

Sample random action a
s← Act(a)
S = s ∪ S

end
for Epoch t = 1, . . . T do

Update-VAE (F , S)
end
for Step i = 1, . . . L+N do

s← Starting state
for Step l = 1, . . . L do

a = ψaux(s)
s′ = Act(a)
r = φ · E(s)
PPO-Update (ψaux, s, a, r, s

′)
s = s′

end
s← Starting state
for Step n = 1, . . . N do

a = πAUP(s)
s′, r = Act(a)
r = r +RAUP(ψaux, πAUP, s, a, λ) (Equation (1))
PPO-Update (πAUP, s, a, r, s

′)
s = s′

end
end

C Hyperparameter Selection

Table 2 lists the hyperparameters used for all conditions, which generally match the default SafeLife
settings. Common refers to those hyperparameters that are the same for each evaluated condition.
AUX refers to hyperparameters that are used only when training on RAUX, thus, it only pertains to
AUP and AUPproj. The conditions PPO and Naive use the PPO hyperparameters for the duration of

12



their training, while AUP, AUPproj use them when training with respect to RAUP. DQN refers to the
hyperparameters used to train the model for DQN.

Hyperparameter Value

Common
Learning Rate 3 · 10−4

Optimizer Adam
Gamma (γ) 0.97

Lambda (PPO) 0.95
Lambda (AUP) 10−3 → 10−1

Entropy Clip 1.0
Value Coefficient 0.5

Gradient Norm Clip 5.0
Clip Epsilon 0.2

AUX
Entropy Coefficient 0.01

Training Steps 1 · 106

AUPproj
Lambda (AUP) 10−3

PPO
Entropy Coefficient 0.1

DQN
Minibatch Size 64

SGD Update Frequency 16
Target Network Update Frequency 1 · 103

Replay Buffer Capacity 1 · 104

Exploration Steps 4 · 103

Policy
Number of Hidden Layers 3

Output Channels in Hidden Layers (32, 64, 64)
Nonlinearity ReLU

cb-vae
Learning Rate 10−4

Optimizer Adam
Latent Space Dimension (Z) 1

Batch Size 64
Training Epochs 50

Epsilon 10−5

Number of Hidden Layers (encoder) 6
Number of Hidden Layers (decoder) 5

Hidden Layer Width (encoder) (512, 512, 256, 128, 128, 128)
Hidden Layer Width (decoder) (128, 256, 512, 512, output)

Nonlinearity ELU

Table 2: Chosen hyperparameters.

D Compute Environment Condition GPU-hours per trial

PPO 6
DQN 16
AUP 8

AUPproj 7.5
Naive 6

Table 3: Compute time for each condition.

For data collection, we only ran the experiments once.
All experiments were performed on a combination of
NVIDIA GTX 2080TI GPUs, as well as NVIDIA V100
GPUs. No individual experiment required more than
3GB of GPU memory. We did not run a 3-seed DQN
curriculum for the experiments in section 5.1.

13



The auxiliary reward functions were trained on down-sampled rendered game screens, while all
other learning used the internal SafeLife state representation. Incidentally, table 3 shows that AUP’s
preprocessing turned out to be computationally expensive (compared to PPO’s).

E Additional Data

Figure 6 plots episode length and fig. 7 plots auxiliary reward learning. Figure 8 and fig. 9 respectively
plot reward/side effects and episode lengths for each AUP seed. Figure 10 and fig. 11 plot the same,
averaged over each curriculum; these data suggest that AUP’s performance is sensitive to the randomly
generated curriculum of environments.

Figure 6: Smoothed episode length curves with shaded regions representing ±1 standard deviation.
AUP and AUPproj begin training on the RAUP reward signal at steps 1.1M and 1M, respectively.

1 2 3 4 5

Steps, millions

0

200

400

600

800

1000

Ep
is

od
e 

le
ng

th

append still easy
PPO
DQN
AUP
AUPproj
Naive

1 2 3 4 5

Steps, millions

0

200

400

600

800

1000

Ep
is

od
e 

le
ng

th

prune still easy
PPO
DQN
AUP
AUPproj
Naive

1 2 3 4 5 6

Steps, millions

0

200

400

600

800

1000

Ep
is

od
e 

le
ng

th

append still
PPO
DQN
AUP
AUPproj
Naive

1 2 3 4 5

Steps, millions

0

200

400

600

800

1000

Ep
is

od
e 

le
ng

th

append spawn
PPO
DQN
AUP
AUPproj
Naive

14



Figure 7: Reward curves for auxiliary reward functions with a Z-dimensional latent space. Shaded
regions represent ±1 standard deviation. Auxiliary reward is not comparable across trials, so learning
is expressed by the slope of the curves.

0 200 400 600 800 1000
Steps, thousands

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
ux

ili
ar

y 
re

w
ar

d

append still easy

Z = 1 Z = 4 Z = 16 Z = 64

15



Figure 8: Smoothed learning curves for individual AUP seeds. AUP begins training on the RAUP reward
signal at step 1.1M, marked by a dotted vertical line.

1 2 3 4 5

Steps, millions

0

10

20

30

40

R
ew

ar
d

append still easy

1 2 3 4 5

Steps, millions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Si
de

 e
ffe

ct
 s

co
re

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

1 2 3 4 5

Steps, millions

0

2

4

6

8

10

12

14

16

R
ew

ar
d

prune still easy

1 2 3 4 5

Steps, millions

0

2

4

6

8

10

12

14

Si
de

 e
ffe

ct
 s

co
re

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

1 2 3 4 5 6

Steps, millions

0

5

10

15

20

25

R
ew

ar
d

append still

1 2 3 4 5 6

Steps, millions

0

5

10

15

20

Si
de

 e
ffe

ct
 s

co
re

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

1 2 3 4 5

Steps, millions

0

5

10

15

20

25

30

35

40

R
ew

ar
d

append spawn

1 2 3 4 5

Steps, millions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Si
de

 e
ffe

ct
 s

co
re

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

16



Figure 9: Smoothed episode length curves for individual AUP seeds.

1 2 3 4 5

Steps, millions

0

200

400

600

800

1000

Ep
is

od
e 

le
ng

th

append still easy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

1 2 3 4 5

Steps, millions

0

200

400

600

800

1000

Ep
is

od
e 

le
ng

th

prune still easy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

1 2 3 4 5 6

Steps, millions

0

200

400

600

800

1000

Ep
is

od
e 

le
ng

th

append still
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

1 2 3 4 5

Steps, millions

0

200

400

600

800

1000

Ep
is

od
e 

le
ng

th

append spawn
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

17



Figure 10: Smoothed learning curves for AUP on its four curricula. AUP begins training on the RAUP

reward signal at step 1.1M, marked by a dotted vertical line.

1 2 3 4 5

Steps, millions

0

5

10

15

20

25

30

35

40
R

ew
ar

d
append still easy

1 2 3 4 5

Steps, millions

0

2

4

6

8

10

12

14

Si
de

 e
ffe

ct
 s

co
re

 
Batch: 1
Batch: 2
Batch: 3
Batch: 4

1 2 3 4 5

Steps, millions

0

2

4

6

8

10

12

14

R
ew

ar
d

prune still easy

1 2 3 4 5

Steps, millions

0

2

4

6

8

10

Si
de

 e
ffe

ct
 s

co
re

 
Batch: 1
Batch: 2
Batch: 3
Batch: 4

1 2 3 4 5 6

Steps, millions

0

5

10

15

20

25

R
ew

ar
d

append still

1 2 3 4 5 6

Steps, millions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Si
de

 e
ffe

ct
 s

co
re

 
Batch: 1
Batch: 2
Batch: 3
Batch: 4

1 2 3 4 5

Steps, millions

0

5

10

15

20

25

30

35

R
ew

ar
d

append spawn

1 2 3 4 5

Steps, millions

0

2

4

6

8

10

12

14

Si
de

 e
ffe

ct
 s

co
re

 
Batch: 1
Batch: 2
Batch: 3
Batch: 4

18



Figure 11: Smoothed episode length curves for AUP on each of the four curricula.

1 2 3 4 5

Steps, millions

0

200

400

600

800

1000

Ep
is

od
e 

le
ng

th

append still easy
Batch: 1
Batch: 2
Batch: 3
Batch: 4

1 2 3 4 5

Steps, millions

0

200

400

600

800

1000

Ep
is

od
e 

le
ng

th

prune still easy
Batch: 1
Batch: 2
Batch: 3
Batch: 4

1 2 3 4 5 6

Steps, millions

0

200

400

600

800

1000

Ep
is

od
e 

le
ng

th

append still
Batch: 1
Batch: 2
Batch: 3
Batch: 4

1 2 3 4 5

Steps, millions

0

200

400

600

800

1000

Ep
is

od
e 

le
ng

th

append spawn
Batch: 1
Batch: 2
Batch: 3
Batch: 4

19


	Theoretical Results
	Training Details
	Auxiliary reward training
	Aup reward training

	Hyperparameter Selection
	Compute Environment
	Additional Data

