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Abstract

Noisy labels can impair the performance of deep neural networks. To tackle this
problem, in this paper, we propose a new method for filtering label noise. Unlike
most existing methods relying on the posterior probability of a noisy classifier,
we focus on the much richer spatial behavior of data in the latent representational
space. By leveraging the high-order topological information of data, we are able
to collect most of the clean data and train a high-quality model. Theoretically
we prove that this topological approach is guaranteed to collect the clean data
with high probability. Empirical results show that our method outperforms the
state-of-the-arts and is robust to a broad spectrum of noise types and levels.

1 Introduction

Corrupted labels are ubiquitous in real world data, and can severely impair the performance of deep
neural networks with strong memorization ability [30, 12, 51]. Label noise may arise in mistakes of
human annotators or automatic label extraction tools, such as crowd sourcing and web crawling for
images [48, 42]. Improving the robustness of deep neural networks to label corruption is critical in
many applications [29, 45], yet still remains a challenging problem and largely under-studied.

To combat label noise, state-of-the-art methods often segregate the clean data (i.e., samples with
uncorrupted labels) from the noisy ones. These methods collect clean data iteratively and eventually
train a high-quality model. The major challenge is to ensure that the data selection procedure is
(1) careful enough to not accumulate errors; and (2) aggressive enough to collect sufficient clean
data to train a strong model. Existing methods under this category [27, 21, 16, 43, 31] typically
select clean data based on the prediction of the noisy classifier. It is generally assumed that if the
noisy classifiers have strong and consistent confidence on a particular label, this label is likely true.
However, most of these heuristics do not have a theoretical foundation and thus are not guaranteed to
generalize to unseen datasets or noise patterns.

In this paper, we propose to investigate the problem in a novel topological perspective. We stipulate
that while a noisy classifier’s prediction is useful, its latent space representation of the data also
contains rich information and should be exploited. Our method is motivated by the following
observation: given an ideal feature representation, the clean data are clustered together while the
corrupted data are spread out and isolated. This intuition is illustrated in Figure 1(a). We show the
spatial distribution pattern of a corrupted dataset with an ideal representation, i.e., the penultimate
layer activation (the layer before softmax) of a neural net trained on the original uncorrupted dataset.
As is shown in Figure 1(a)(left), the data are well separated into clusters, corresponding to their true
labels. Meanwhile, noisy-labeled data (colorful crumbs sprinkled on each cluster) are surrounded by
uncorrupted data and thus are isolated.

The above observation inspires us to utilize the spatial topological pattern for label noise filtering.
We propose a new method, TopoFilter, that collects clean data by selecting the largest connected
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Figure 1: Different representations of a 40% uniformly corrupted CIFAR-10 dataset (visualized using
t-SNE). (a) The ideal feature representation (trained on a clean dataset). On the left, we show the
whole dataset. Colors correspond to different noisy labels. On the right, we draw all data with label 1.
Green points are clean data. Red points are data with corrupted labels. (b) A skewed representation
of a noisy classifier, namely, one trained using the corrupted dataset. (c) The learned representations
by our algorithm. We show the data of label 1 using the continuously improved representations. The
collected data by our method are highlighted with the blue contour.

component of each class and dropping isolated data. Our method leverages the group behavior of data
in the latent representation, which has been neglected by previous classifier-confidence-dependent
approaches. The challenge is that the ideal representation is unavailable in practice. Training on noisy
data leads to a skewed representation (Fig. 1(b)); and the topological intuition does not seem to hold.

To address this issue, we propose an algorithm that uses the topological intuition even with the
“imperfect” representation. Our algorithm essentially “peels” the outer most layer of the largest
component so that only the core of the component is kept. One particular strength of our method is
that it is theoretically guaranteed to be correct. We prove (1) purity: the collected data have a high
chance to be uncorrupted; and (2) abundancy: the algorithm can collect a majority of the clean data.
These two guarantees ensure the algorithm can collect clean data both carefully and aggressively.
Our proof imposes weak assumptions on the representation: (1) the density of the data has a compact
support, (2) the true conditional distributions of different labels are continuous, and (3) the decision
region of each class of the Bayes optimal classifier is connected. These relative weak assumptions
ensures that the theorem still holds on the skewed representation (from a noisy classifier).

We wrap our data collection algorithm to jointly learn the representation and select clean data. To
learn the representation, we train a deep net classifier only using the collected clean data. As the
classifier continuously improves, it further facilitates the data collection and finally converges to
a strong one, as illustrated in Fig. 1(c). We empirically validate the proposed method on different
datasets such as CIFAR-10, CIFAR-100 and Clothing1M [47]. Our method consistently outperforms
the existing methods under a wide range of noise types and levels.

To summarize, we propose the first theoretically guaranteed algorithm for label noise that exploits a
topological view of the noisy data representation. Our paper offers both the algorithmic intuition and
the theoretical rationale on how spatial pattern and group behavior of data in the latent space can be
informative of the model training. We believe the geometry and topology of data in the latent space
should be further explored for better understanding and regulating of neural networks.

Related works. One representative class of methods for handling label noise aim to improve the
robustness by modeling the noise transition process [38, 33, 15, 18]. However, the estimation of
noise transformation is non-trivial, and these methods generally require additional access to the true
labels or depend on strong assumptions, which could be impractical. In contrast to these works, our
method does not rely on noise modeling, and is thus more generic and flexible.

A number of approaches have sought to develop noise-robust loss to help resist label corruption.
One typical idea is to reduce the influence of noisy samples with carefully designed losses [35, 1,
52, 40, 44, 25, 14, 6] or regularization terms [20, 28, 23]. Closely related to this philosophy, other
approaches focus on adaptively re-weighting the contributions of the noisy samples to the loss. The
re-weighting functions could be pre-specified based on heuristics [5, 43] or learned automatically
[21, 36, 37]. Our method is independent of the loss function, and can be combined with any of them.

Another direction seeks to improve the label quality by correcting the noisy labels to the underlying
true ones [47, 41, 42, 24, 39, 49]. To predict the true labels, these approaches generally require
additional clean labels, complex interventions into the learning process, or an expensive detection
process for noise model estimation. Moreover, these methods are based on heuristics without
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theoretical guarantees, and tend to be sensitive to the hyper-parameters (e.g., learning rate and
loss coef�cients). Zheng et al. [54] showed that assuming the noisy classi�er approximates the
noisy conditional distribution well everywhere, the noisy classi�er can help correct labels with high
probability. Our theorem has a weaker assumption on the noisy classi�er's quality.

Our work can be categorized as a data-selection method. Some methods choose the clean data based
on the prediction agreements among different networks [27, 31]. Others train the networks only
on samples with small losses and exchange the error �ows between networks [16, 10, 50]. These
methods typically train multiple networks, and is thus computationally expensive and hard to tune.
The data-selection process in these methods is generally based on heuristics without guarantees.

A few existing works also seek to handle the label noise by probing the spatial properties of data.
Wanget al. [43] propose to detect noisy data using spatial outlier detection. Gaoet al. [13] use
k-nearest neighbor to correct noisy labels. Both of these methods rely on local spatial information.
They fail to explore global structural information that could reveal critical common patterns, such
as topology. Leeet al. [22] model the spatial distributions with a generative model and train a
robust generative classi�er using all noisy data. For completeness, we also refer to works studying
KNN-induced connectivity [26, 7], which only focus on the unsupervised setting.

2 Method

Our algorithm jointly trains a neural network and collects clean data. At each epoch, clean data are
collected based on the their spatial topology in the latent space of the current network. Meanwhile,
only clean data are used to further train the network. In the beginning, we use an early-stopped
noisy classi�er to learn the representation. It has been observed that an early-stopped model will
learn meaningful feature without over�tting the noise [51, 2]. Such a network, although not powerful
enough, can provide a reasonable initial representation for our data-collection algorithm to start.

Below we present our algorithm. We �rst provide a baseline, calledTopoCC. It collects clean data
only using the largest connected component. However, this is insuf�cient due to the imperfect
representation. Next, we present our main algorithm, calledTopoFilter, that further “peels” the largest
component and only keeps its core.

Our algorithm for data selection is as follows. Letv be the input data andx to be the latent feature
given by network by taking inputv, we probe the spatial data distributions by building ak-nearest
neighbor (KNN) graphG uponx . FromG we further derive the subgraphGi for classi by removing
the vertices belonging to other classes and their associated edges. On eachGi , we �nd the largest
connected componentQi and consider the data belonging toQi as clean. Eventually we have a
collection of potentially clean dataC = [ i Qi . Intuitively, the clean data will be regularly and densely
distributed in the feature space. They will form a salient topological structure (connected component),
which could thus be captured by the algorithm. Plugging this data-collection procedure into our joint
training algorithm gives the baselineTopoCC.

However, simply relying on connected components is insuf�cient; the geometry and thus connectivity
of the data is not fully reliable due to the imperfect representation. In particular, near the outer most
layer of the largest connected component, the data can easily be corrupted. We need to remove these
data in order to improve the purity of the selected data. In particular, for a given samplex belonging
to one of the largest connected componentsSi , with labeley, �nd its k-nearest neighborsKNN (x )
from S (the union of largest components for each class). Then we considerx as clean if at least a
fraction� of its neighbors have the same labeley. As is illustrated in Section 2.1 and Section 3, this
additional �ltering of the largest component, called the� -�ltering, is essential to the success of our
method. We name this methodTopoFilter. Details are in Algorithm 1. In practice, we observe that our
algorithm is insensitive to the choice of� . More empirical study can be found in the supplementary
material. At the end of this section, we will provide details on how to choose� based on the theory.

2.1 Theoretical Guarantee of the Algorithm

Next we provide a detailed analysis of our method. We show that after running our algorithm once,
the collected data arepure, i.e., have high probability to be clean (Theorem 1). Meanwhile, we
prove that the algorithm collectsabundantclean data, i.e., a suf�ciently large amount of clean data
(Theorem 2). Both theorems are critical in ensuring we train a high-quality model despite the label
noise. Note that our theoretical results are one-shot. We leave the convergence result as future work.
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Algorithm 1 TopoFilter

1: Input: Noisy training dataS, milestonem, training epochsN , number of classes� , number of
neighborsk, �ltering parameter�

2: Output: Collected clean dataC
3: Initialize C  ; , bS  S
4: for t = 1 ; � � � ; N do
5: Train network onbS
6: if t � m then
7: Extract feature vectorsx from training dataS
8: Computek-NN graphG overx
9: for i = 1 ; � � � ; � do

10: Construct subgraphGi by selecting feature vectorsx ( i ) from i -th class and
removing all edges associated withx ( j ) for j 6= i

11: Compute the largest connected componentQi overGi
12: C  C [ Qi
13: end for
14: Find outliersO within C based on� -�ltering; updateC  CnO
15: bS  C
16: end if
17: end for

We �rst introduce notations. Next, we present the purity and abundancy theorems respectively. Due
to space constraints, we mainly present the theorems and their intuitions. Details of the proofs can be
found in the supplemental material.

Notations. We focus on binary classi�cation. Assume that the data points and labels lie inX � Y ,
where the feature spaceX � Rd and label spaceY = f 0; 1g. A datumx and its true labely follow
a distributionF � X � Y . Let f (x ) :=

P
i 2f 0;1g F (x ; i ) be the density atx . Denote by~y the

observed (potentially noisy) label. Due to label noise, labely = i is �ipped to ~y = j with probability
� ij and is assumed to be independent ofx .

Let X � X be the �nite set of features in the data sample, and letG(X ; k) be the mutualk-nearest
neighbor graph onX using the Euclidean metric onX , whose edge setE = f (x 1; x 2) 2 X � X j
x 1 2 KNN (x 2) or x 2 2 KNN (x 1)g. Also, 8i 2 f 0; 1g, let Gi (X ; k) be the induced subgraph of
G(X ; k) consisting only of verticesx 2 X with labeley(x ) = i .

Let � i (x ) = P(y = i j x ) ande� i (x ) = P(ey = i j x ) be the conditional probability of the clean
and noisy labels given a featurex , respectively. Since this is binary setting, we have� i (x ) =
1 � � 1� i (x ) ande� i (x ) = 1 � e� 1� i (x ). Sincee� i (x ) = � 1� i;i � i (x ), these probabilities satisfy a
linear relationship.e� i (x ) = (1 � � 01 � � 10)� i (x ) + � 1� i;i , 8i 2 f 0; 1g. De�ne the superlevel set
L (t) = f x j max(� 1(x ); � 0(x )) � tg, and let� (L (t)) be the probability measure ofL (t). Lastly,
the indicator functionI A (x ) = 1 if x 2 A andI A (x ) = 0 otherwise.

Consider an algorithmA that takes as input a random sample of sizen, Sn = f (x i ; ~y(x i ))gn
i =1 .

The set of features of the data isX = f x i gn
i =1 � X . Algorithm A then outputs[ i 2f 0;1gCi , where

Ci � X i := f x : ey(x ) = ig is the claimed “clean” set for labeli .
De�nition 1. (Purity) We de�ne two kinds of purity ofA on Sn . One captures the worst-case
behavior of the algorithm, while the other captures the average-case behavior.

1. Minimum Purity `Sn ;A := min
i 2f 0;1g

min
x 2 C i

P(y = i j ey = i; x ) = min
i 2f 0;1g

min
x 2 C i

� ii
� i (x )
e� i (x ) :

2. Average Puritỳ 0
Sn ;A :=

P

i 2f 0;1g
Ex 2 C i [P(y = i j ey = i; x )] =

P

i 2f 0;1g

1
jC i j

P
x 2 C i

� ii
� i (x )
e� i (x ) :

We de�ne the following three sets, which form a partition ofX :

A+
i =

n
x : e� i (x ) > max( 1

2 ; 1+ � i; 1 � i � � 1 � i;i

2 ))
o

=
n

x : � i (x ) > max( 1
2 ; 1=2� max( � 10 ;� 01 )

2(1 � � 10 � � 01 ) )
o

;

A �
i =

n
x : e� i (x ) < min( 1

2 ; 1+ � i; 1 � i � � 1 � i;i

2 ))
o

=
n

x : � i (x ) < min( 1
2 ; 1=2� max( � 10 ;� 01 )

2(1 � � 10 � � 01 ) )
o

;

Ab = X n (A+
i [ A �

i ):
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