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This supplementary document contains the technical proofs of convergence results
and some additional numerical results of the work entitled “Towards Theoretically
Understanding Why SGD Generalizes Better Than ADAM in Deep Learning”. It
is structured as follows. In Appendix A, we provides more construction details
of the SDE for ADAM and also conduct experiments which show very similar
convergence behaviors of ADAM (SGD) and its SDE. Appendix B compares our
work with the related work [1, 2] in more details. Appendix C summarizes the
notations throughout this document and also provides the auxiliary theories and
lemmas for subsequent analysis whose proofs are deferred to Appendix E. Then
Appendix D gives the proofs of the main results in Sec. 4, including Theorem 1
which analyzes the escaping time analysis of Lévy-driven SDEs and Theorem 2
which proves the processes with and without Lévy motion are close to each other.
Finally, in Appendix E we presents the proofs of auxiliary theories and lemmas in
Appendix C, including Theorems 3 ∼ 4 and Lemmas 1 ∼ 3.

A More Discussion of SDE in ADAM

Here we provide more discussion and construction details for the SDE in ADAM. We first investigate
the second order moment of the gradient noise in ADAM. Then we introduce the two types of
randomness in the SDE of ADAM. Finally, we run experiments to investigate the validity of the
constructed SDEs of ADAM and SGD.

A.1 SαS-distributed Gradient Noise in ADAM

In the manuscript, we have shown the gradient noise itself to be SαS-distributed. Here we further
investigate the second-order moment of the gradient noise. From the bottom row of Figure 4,
one can observe that (1) both the second-order moment of the gradient noise also reveals heavy
tails; (2) compared with Gaussian distribution, SαS distribution can better characterize this kind
of second-order moment of the gradient noise. All these results demonstrate that the gradient noise
in both ADAM and SGD actually satisfies the SαS distribution. So the heavy-tailed gradient noise
assumptions in our manuscript is very reasonable.

A.2 Randomness in SDE of ADAM

The SDE of ADAM approximates gradient noise mt via the combination of full gradient and
Lévy motion but does not approximate vt. This SDE should be more accurate than the one which
approximates bothmt and the coefficients vt. So the randomness in the SDE of ADAM comes from
the Lévy motion and also vt caused by sampling a minibatch. But these two types of randomness
actually do not depend on each other. Note that as shown in many literatures, e.g. [3, 4], SDE
allows randomness in coefficients and also enjoys many good properties, such as stability and unique
solution. This type of SDE is usually called “SDE with random coefficients", and usually appears in
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(a) Gradient noise in ADAM (b) Gradient noise in SGD
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(c) Second-order moment of gradient noise in ADAM (d) Second-order moment of gradient noise in SGD

Figure 4: Illustration of gradient noise in ADAM and SGD. The left figures in (a) and (b) are the real
gradient noise computed with AlexNet on CIFAR10. Similarly, the left figures in (c) and (d) are the
second-order moment of gradient noise computed with AlexNet on CIFAR10. The middle and right
figures in (a) ∼ (d) are respectively the fitted Gaussian and systemic α-stable noise. By comparison,
α-stable noise can better characterize real gradient noise in deep learning.
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Figure 5: Illustration of convergence trajectories of ADAM, SGD and their SDEs. One can observe
that for ADAM, it convergence trajectories are very similar to its SDE, which shows the validity of
the SDE construction. Similarly, we can observe the same observations on SGD and its SDE.

stochastic jump systems [5], economics and finance [6, 7], biology [8, 9], mechanics and physics [10],
etc. See more details of SDE with random coefficients in [3, 4].

A.3 Convergence Behavior Comparison between Algorithm and Its SDE

Here we conduct experiments on 784-10-10-sized networks and report the convergence behvariors
of ADAM (SGD) and its SDE in Fig. 5. Note SDE actually equals to injecting heavy tailed noise
into SGD and ADAM that use full gradients. We use a relatively small network since simulating
high-dimensional gradient noise ut and computing the huge covariance matrix Σt at each iteration
are too computationally expensive to compute. From the convergence trajectories of both ADAM and
its SDE in Fig. 5 (a), one can observe that they have very similar convergence behaviors. Similarly,
in Fig. 5 (b) we can observe the same observations on SGD and its SDE. So injecting heavy tailed
noise into SGD and ADAM that use full gradients leads to similar convergence behaviors to SGD and
ADAM that use stochastic gradients. These results well demonstrate the validity of current SDE
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construction. Note that here we do not observe jump behaviors, since the networks are very small
and may have not very sharp minima. But these results as aforementioned can testify the validity of
current SDE construction.

B Comparison to Related Works

Dinh et al. [1] showed flat minimum can become sharp by scaling two layers at the same time. But
with this scaling, sharp minimum cannot be arbitrarily flat, as if the eigenvalues of two parameters in
the same layer has large ratio, this scaling cannot change this ratio. So flat and sharp minimum are not
totally equivalent. Combining the observation in many works that flat minima could achieve better
generalization performance than sharper ones, one could conclude that flat minima can generalize
well in most case, while sharp minima that can become flat one by linearly scaling two layers also
can generalize but other sharp minima cannot. So analyzing the flat and sharp properties is still
meaningful. Besides, the flatness in this work is defined on general non-zero Radon measure. If one
finds an invariant measure to the scaling in [1], the flatness is also invariant, providing more insights
to generalization. So it is promising to explore this invariant measure in the future.

C Notations and Auxiliary Lemmas

C.1 Notations

For analyzing the uniform Lévy-driven SDEs in Eqn. (4) and (5), we first decompose the Lévyprocess
Lt into two components ξt and ζt, namely

Lt = ξt + ζt (7)

whose characteristic functions are respectively defined as

E[ei〈λ,ξt〉] =e
t
∫
Rd\{0}

ζI{‖y‖≤ 1

εδ
}ν(dy)

,

E[ei〈λ,ζt〉] =e
t
∫
Rd\{0}

ζI{‖y‖≥ 1

εδ
}ν(dy)

,

where ζ = ei〈λ,y〉 − 1− i〈λ,y〉I {‖y‖ ≤ 1}, ε (in Eqn. (4) and (5)) and δ are two small constants
satisfying ε−δ < 1 and will be specified later. Define the Lévy measures ν as ν(dy) = 1

‖y‖1+α dy.
Accordingly, the Lévy measures ν of the stochastic processes ξ and ζ are

νξ = ν
(
A ∩ {0 < ‖y‖ ≤ 1

εδ
}
)
, νζ = ν

(
A ∩ {‖y‖ ≥ 1

εδ
}
)
,

where A ∈ B(Rd). In this way, the stochastic process ξ has infinite Lévy measure with support
{y | 0 < ‖y‖ ≤ ε−δ} and thus makes infinitely many jumps on any time interval. But the jump size
does not exceed ε−δ and thus is small which actually does not help escape the current local basin. In
contrast, the Lévy measure νζ(·) of ζ is finite and is computed as

Θ(ε−δ) =

∫
‖y‖≥ε−δ

ν(dy) =

∫
‖y‖≥ε−δ

dy
‖y‖1+α

=
2

α
εαδ.

So the process ζ is a compound Poisson process with intensity Θ(ε−δ) and jumps distributed
according to the law of 1/Θ(ε−δ). Specifically, let 0 = t1 < t2 · · · < tk < · · · denote the times
of successive jumps of ζ and Jk denote the jump size at the k-th jump. Then the inner-jump times
σk = tk−tk−1 are i.i.d. exponentially distributed random variables with mean value E(σk) = 1

Θ(ε−δ)

and the probability distribution function P (σk ≤ x) = 1− exp(−xΘ(ε−δ)). The probability law of
Jk is also known explicitly in terms of the Lévy measure ν:

P (Jk∈A)=
1

Θ(ε−δ)
ν
(
A∩{y |‖y‖ ≥ ε−δ}

)
, A∈B(Rd).

So the main force for escaping the local basin comes from the big jumps in the process ζ which will
be rigorous analyzed in the following sections.
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Besides, for analysis, we usually need to consider affects of the Lévy motion (noise) Lt to the
Lévy-driven SDEs of SGD and ADAM given in Eqn. (4) and (5). So here we define two Lévy-free
SDEs which respectively correspond to Eqn. (4) and (5):

dθ̂t = ∇F (θ̂t), (8)

and 
dθ̂t = −µtQ̂−1

t m̂t,

dm̂t = β1(∇F (θ̂t)− m̂t)

dv̂t = β2(∇fSt(θ̂t)2 − v̂t).
(9)

where Q̂t = diag
(√
v̂t + ε

)
. Then by analyzing the distance ‖θ̂t − θt‖ between the processes θ̂t

without Lévy motion and θt with Lévy motion, we can well know the effects of the Lévy motion to
the escaping behaviors.

C.2 Auxiliary Theories and Lemmas

Theorem 3. Suppose Assumptions 1 and 2 holds. Then for Lévy-driven SGD SDE (8) with Q̂t = I

and β2 = 0, the Lyapunov function L(t) = F (θ̂t)− F (θ∗) obeys

L(t) ≤ ∆ exp (−2µt)

where ∆ = F (θ̂0)−F (θ∗) with the optimum solution θ∗ in the current local basin Ω. The sequence
{θ̂t} produced by Eqn. (8) obeys

‖θ̂t − θ∗‖22 ≤
2∆

µ
exp (−2µt) .

See its proof in Appendix E.1.

Theorem 4. Suppose Assumptions 1 and 2 holds. Assume the sequence {(θ̂t, m̂t, v̂t)} are produced
by Eqn. (9). Let ŝt = ht

µt

(√
ωtv̂t + ε

)
with ht = β1, µt = (1− e−β1t)−1 and ωt = (1− e−β2t)−1.

We define ‖x‖2y =
∑
i yix

2
i . Then for Lévy-driven ADAM SDEs in Eqn. (9), its Lyapunov function

L(t) = F (θ̂t) − F (θ∗) + 1
2‖m̂t‖ŝ−1

t
with the optimum solution θ∗ in the current local basin Ω

obeys

L(t) ≤ ∆ exp

(
− 2µτ

β1 (vmax + ε) + µτ

(
β1 −

β2

4

)
t

)
where ∆ = F (θ̂0)− F (θ∗) due to m̂0 = 0. The sequence {θ̂t} produced by Eqn. (9) obeys

‖θ̂t − θ∗‖22 ≤
2∆

µ
exp

(
− 2µτ

β1 (vmax + ε) + µτ

(
β1 −

β2

4

)
t

)
.

See its proof in Appendix E.2.

Lemma 1. (1) The process ξ in Eqn. (7) can be decomposed into two processes ξ̂ and linear drift,
namely,

ξt = ξ̂t + µεt, (10)

where ξ̂ is a zero mean Lévymartingale with bounded jumps.
(2) Let δ ∈ (0, 1), µε = E[ξ1] and Tε = ε−θ for some θ > 0, ρ0 = ρ0(δ) = 1−δ

4 > 0 and
θ0 = θ0(δ) = 1−δ

3 > 0. Suppose ε is sufficient small such that such that Θ(1) ≤ ε−
1−δ

6 and

ε−ρ − 2(C + Θ(1))ε
7
6 (1−δ)+ ρ

2 ≥ 1 with a constant C =
∣∣∣∫0<u≤1

u2dΘ(u)
∣∣∣ ∈ (0,+∞). Then for

all δ ∈ (0, δ0), θ ∈ (0, θ0) there are p0 = p0(δ) = δ
2 and ε0 = ε0(δ, ρ) such that the estimates

‖εξTε‖ = ε‖µε‖Tε < ε2ρ and P
(
[εξ]dTε ≥ ε

ρ
)
≤ exp(−ε−p)

hold for all p ∈ (0, p0] and ε ∈ (0, ε0].
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See its proof in Appendix E.3.

Lemma 2. Let δ ∈ (0, 1) and gtt≥0 be a bounded adapted cȧdlȧg stochastic process with values
in Rd, Tε = ε−θ, θ > 0. Suppose supt≥0 ‖gt‖ is well bounded. Assume ρ0 = ρ0(δ) = 1−δ

16 > 0,
θ0 = θ0(δ) = 1−δ

3 > 0, p0 = ρ
2 . For ξ̂t in Eqn. (10), there is δ0 = δ0(δ) > 0 such that for all

ρ ∈ (0, ρ0) and θ ∈ (0, θ0), it holds

P

(
sup

0≤t≤Tε
ε

∣∣∣∣∣
d∑
i=1

∫ t

0

gis−dξ̂is

∣∣∣∣∣ ≥ ερ
)
≤ 2 exp

(
−ε−p

)
for all p ∈ (0, p0] and 0 < ε ≤ ε0 with ε0 = ε0(ρ), where ξ̂is denotes the i-th entry in ξ̂s.

See its proof of Appendix E.4.

Lemma 3. Suppose Assumptions 1 and 2 holds. Assume δ ∈ (0, 1), ρ0 = ρ0(δ) = 1−δ
16(1+c1κ1) > 0,

θ0 = θ0(δ) = 1−δ
3 > 0, p0 = min( ρ̄(1+c1κ1)

2 , p), 1
c2

ln
(

2∆
µερ̄

)
≤ ε−θ0 where κ1 = ` and c2 = 2µ in

SGD, κ1 = c2`
(vmin+ε)|τm−1| and c3 = 2µτ

β1(vmax+ε)+µτ

(
β1 − β2

4

)
in ADAM. Here c1 ∼ c3 are positive

constants. For all ρ̄ ∈ (0, ρ0), p ∈ (0, p0], 0 < ε ≤ ε0 with ε0 = ε0(ρ̄), and θ0 = θ̂0, we have

sup
θ0∈Ω

P
(

sup
0≤t<σ1

‖θt − θ̂t‖ ≥ 2ερ̄
)
≤ 2 exp(−ε−p/2), (11)

where the sequences θt and θ̂t are respectively produced by Eqn. (5) and (9) in Adam or Eqn. (4)
and (8) in RMSPROP and SGD.

See its proof in Appendix E.5.

D Proof of Results in Sec. 4

D.1 Proof of Theorem 1

Proof. Here we first briefly introduce our proof idea. As we proved in Lemma 3, for any δ ∈ (0, 1),
there exist ρ0, p0 and ε0 such that for all ρ̄ ∈ (0, ρ0), p ∈ (0, p0] and 0 < ε ≤ ε0, we have

sup
θ0∈Ω

P
(

sup
0≤t<σ1

‖θt − θ̂t‖ ≥ 2ερ̄
)
≤ 2 exp(−ε−p/2), (12)

where the sequences θt and θ̂t share the same initialization θ0 = θ̂0. Such a result holds for both
SGD and Adam. Besides, from Theorems 3 and 4, we know that the sequence {θ̂t} produced by
Eqn. (8) or (9) (namely, the dynamic systems of SGD and Adam) exponentially converges to the
minimum θ∗ of the current local basin Ω. To escape the local basin Ω, there are two possible
choices, the small jumps in the process ξ and the big jumps Jk in the process ζ. As the small jumps
in the process ξ is well bounded, it is not very likely that these small jumps can help escape the
local basin Ω which is verified by Eqn. (12). We well prove this more rigorously latter. For the
big jumps J, since the expectation jump time E(σ1) is 1/Θ(ε−δ), such as E(σ1) = 2

αε
αδ in the

α-stable (SαS) distribution, E(σ1) is usually much larger than the necessary time t = O(ln(1/ε)) to
achieve ‖θ̂t−θ∗‖ ≤ εδ . This means that before the jump time σ1 the sequence θ̂t is very close to the
optimum of Ω and thus θt is very close to the minimum θ∗. In this way, the escaping time Γ of the
sequence {θt} most likely occurs at the time σ1 if the big jump εJ1 in the process ζ is large. If the
jump εJ1 is small and θσ1 does not escape Ω, then θt will converge to the minimum θ∗ exponentially
and stay in the small neighborhood of θ∗. Accordingly, before the second jump time t2 = t1 + σ2,
θt2 will jump. This process will continue during the time interval [0, t]. Since for each jump time
tk−, θtk− is very close to the optimum θ∗, the big jump size εQ−1

tk
ΣtkJtk ≈ εQ

−1
θ∗Σθ∗Jtk . So we

can use εQ−1
t ΣtJtk ≈ εQ

−1
θ∗Σθ∗Jtk /∈ Ω to judge whether at time tk, θtk escapes the local basin

Ω. The events {εJ1 /∈W} = {εQ−1
θ∗Σθ∗Jtk /∈ Ω}, · · · , {εJk−1 /∈W} = {εQ−1

θ∗Σθ∗Jtk− /∈ Ω},
{εJk /∈W} = {εQ−1

θ∗Σθ∗Jtk /∈ Ω} are independent.
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Now we prove the desired results from two aspects, namely establishing upper bound and lower bound
of E

[
exp

(
−um(W)Θ(ε−1)Γ

)]
for any u > −1. Before that, we first establish basic inequalities

for lower and upper bounds.

Basic inequalities for lower and upper bounds. Since σ1 is exponentially distributed with the
parameter Θ(ε−δ), we compute the Laplace transform of m(W)Θ(ε−1)σ1 as follows:

E
[
e−um(W)Θ(ε−1)σ1

]
= E

[∫ +∞

0

e−um(W)Θ(ε−1)σ1 ·Θ(ε−δ)e−Θ(ε−δ)σ1dσ1

]
=

Θ(ε−δ)

Θ(ε−δ) + um(W)Θ(ε−1)
=

1

1 + uaε
,

where aε = m(W) Θ(ε−1)
Θ(−εδ) and Θ(ε−δ) = Θ(−εδ). Besides, for the probability law of the big jump

we have

P
(
Q−1
θ∗Σθ∗εJ1 /∈ Ω

)
= P (εJ1 ∈W) =

ν(W/ε)

Θ(ε−δ)
.

Since for the Lévy measure, we have m(W) = limu→+∞
ν(uW)
Θ(u) according to [11]. So for any δ′,

there always exists ε such that it holds

aε(1− δ′) ≤
ν(W/ε)

Θ(ε−δ)
=
ν(W/ε)

Θ(ε−1)

Θ(ε−1)

Θ(ε−δ)

¬
≈ m(W)

Θ(ε−1)

Θ(ε−δ)
= m(W)

Θ(ε−1)

Θ(ε−δ)
≤ aε(1 + δ′).

(13)
where ¬ holds since ε is enough small. Then with the help of the continuity of the function
(θ, z)→ Q−1

θ Σθz both in θ and z. Indeed, for any δ′ we can choose R > 0 enough large such that
for small ε we have

P (‖εJ1‖ > R) ≤ δ′

4

Θ(ε−1)

Θ(ε−δ)
.

Further, the function (θ, z) → Q−1
θ Σθz is uniformly continuous in z in the ball ‖z‖ ≤ R and is

continuous in θ at the optimum θ∗. Following [11], by using the scaling property of the jump measure
ν and the fact that the limiting measure m has no atoms we show that uniformly over ‖θ− θ∗‖ ≤ εγ :{∣∣P (Q−1

θ ΣθεJk /∈ Ω±ε
γ

, ‖εJk‖ ≤ R
)
− P

(
Q−1
θ∗Σθ∗εJk /∈ Ω, ‖εJk‖ ≤ R

)∣∣ ≤ δ′

4
Θ(ε−1)
Θ(ε−δ)

,∣∣P (Q−1
θ ΣθεJk /∈ Ω, ‖εJk‖ ≤ R

)
− P

(
Q−1
θ∗Σθ∗εJk /∈ Ω, ‖εJk‖ ≤ R

)∣∣ ≤ δ′

4
Θ(ε−1)
Θ(ε−δ)

,

(14)
At the same time, we also can establish

P
(
Q−1
θ∗Σθ∗εJk /∈ Ω

)
− P

(
Q−1
θ∗Σθ∗εJk /∈ Ω, ‖εJk‖ ≤ R

)
=P
(
Q−1
θ∗Σθ∗εJk /∈ Ω

)
− P

(
‖εJk‖ ≤ R |Q−1

θ∗Σθ∗εJk /∈ Ω
)
P
(
Q−1
θ∗Σθ∗εJk /∈ Ω

)
=P
(
Q−1
θ∗Σθ∗εJk /∈ Ω

)
(1− P

(
‖εJk‖ ≤ R |Q−1

θ∗Σθ∗εJk /∈ Ω
)
)

=P
(
Q−1
θ∗Σθ∗εJk /∈ Ω

)
P
(
‖εJk‖ > R |Q−1

θ∗Σθ∗εJk /∈ Ω
)
≤ P (‖εJk‖ > R) ≤ δ′

4

Θ(ε−1)

Θ(ε−δ)
.

(15)

Upper bound of E
[
exp

(
−um(W)Θ(ε−1)Γ

)]
. In this part, we consider both the big jumps in the

process ζ and the small jumps in the process ξ which may escape the local minimum θ∗. Instead
of estimate the escaping time Γ from Ω, we first estimate the escaping time Ξ̃ from Ω−ρ̄. Here we
define the inner part of Ω as Ω−ρ̄ = {y ∈ Ω | dis(∂Ω,y) ≥ ρ} and the outer ρ-neighborhood of
Ω as Ω+ρ̄ = {y | dis(∂Ω,y) ≥ ρ̄}. Then by setting ρ̄ ↓ 0, we can use Ξ̃ to estimate Γ well. Let
ρ̄ = εγ where γ is a constant such that the results of Lemmas 1∼ 3 holds. Here we suppose the initial
point θ0 ∈ Ω−2εγ .

Step 1. In this step we give the formulation of the upper bound of E
[
e−um(W)Θ(ε−1)Γ

]
. For any

u > −1, we can compute the formula of the total probability as follows

E
[
e−um(W)Θ(ε−1)Ξ̃

]
≤

+∞∑
k=1

E
[
e−um(W)Θ(ε−1)tkI

{
Ξ̃ = tk

}
+ Resk

]
,
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where

Resk ≤

E
[
e−um(W)Θ(ε−1)tkI

{
Ξ̃ ∈ (tk−1, tk)

}]
, if u ∈ (−1, 0]

E
[
e−um(W)Θ(ε−1)tk−1I

{
Ξ̃ ∈ (tk−1, tk)

}]
, if u ∈ (0,+∞).

Step 2. In this step we specifically upper bounds the first term∑+∞
k=1 E

[
e−um(W)Θ(ε−1)tkI

{
Ξ̃ = tk

}]
. For k ≥ 1, we can use the strong Markov prop-

erty and obtain

E
[
e−um(W)Θ(ε−1)tkI

{
Ξ̃ = tk

}]
= E

[
e−um(W)Θ(ε−1)tkI

{
θt ∈ Ω−ε

γ

, t ∈ [0, tk),θtk /∈ Ω−ε
γ
}]

=E
[
e−um(W)Θ(ε−1)σkI

{
θt+tk−1

∈ Ω−ε
γ

, t ∈ [0, σk)
}
I
{
θtk /∈ Ω−ε

γ
}

·
k−1∏
i=1

e−um(W)Θ(ε−1)σiI
{
θt+ti−1 ∈ Ω−ε

γ

, t ∈ [0, σk]
}]

≤ sup
θ0∈Ω−2εγ

E
[
e−um(W)Θ(ε−1)σ1I

{
θt∈Ω−ε

γ

, t∈ [0, σ1)
}
I
{
θσ1 /∈ Ω−ε

γ
}]

· sup
θ0∈Ω−2εγ

E
[
e−um(W)Θ(ε−1)σ1I

{
θt∈Ω−ε

γ

, t ∈ [0, σ1]
}]k−1

.

Recall ρ̄ = εγ where γ is a constant such that the results of Lemmas 1∼ 3 holds. The escaping
from the basin Ω−ε

γ

with a big jump εJ1 occurs when Q−1
σ1−Σσ1−εJ1 ∈ Ω−ε

γ

. Furthermore,
sup0≤t<σ1

‖θt − θ̂t‖ ≤ 1
2ε
γ with probability exponentially close to 1 (verified by Lemma 3).

Meanwhile σ1 = 2
αε

αδ in the α-stable (SαS) distribution is much larger than vε = O(ln(1/ε))

with sufficient small ε, θ̂t reaches a 1
2ε
γ-neighborhood of the optimum θ∗ which only requires

time vε. So this actually means sup0≤t<σ1
‖θt − θ∗‖ ≤ εγ . In this way, to obtain the final

upper bound results, we only need to estimate the escaping probability P
(
Q−1
θ ΣθεJ1 ∈ Ω−ε

γ)
and P

(
Q−1
θ ΣθεJ1 /∈ Ω−ε

γ)
uniformly over ‖θ − θ∗‖ ≤ εγ . Then we first give two important

inequalities which will used to bound each component later:

sup
‖θ−θ∗‖≤εγ

P
(
Q−1
θ ΣθεJk /∈ Ω−ε

γ
)

= sup
‖θ−θ∗‖≤εγ

P
(
Q−1
θ ΣθεJk /∈ Ω−ε

γ

, ‖εJk‖≤R
)

+P
(
Q−1
θ ΣθεJk /∈Ω−ε

γ

, ‖εJk‖>R
)

¬
≥P
(
Q−1
θ∗Σθ∗εJk /∈ Ω, ‖εJk‖≤R

)
− δ
′

4

Θ(ε−1)

Θ(ε−δ)
+P

(
Q−1
θ ΣθεJk /∈ Ω−ε

γ

, ‖εJk‖>R
)

≥P
(
Q−1
θ∗Σθ∗εJk /∈ Ω, ‖εJk‖ ≤ R

)
− δ′

4

Θ(ε−1)

Θ(ε−δ)

­
≥P
(
Q−1
θ∗Σθ∗εJk /∈ Ω

)
− δ′

2

Θ(ε−1)

Θ(ε−δ)

®
≥m(W)

(
1− δ′ − δ′

2m(W)

)
Θ(ε−1)

Θ(ε−δ)

¯
≥ m(W)(1− ρ)

Θ(ε−1)

Θ(ε−δ)
,

where ¬ uses the result in Eqn. (14), ­ uses Eqn. (15), ® uses Eqn. (13), and in ¯ we set δ′ enough
small such that ρ ≥ δ′ + δ′

2m(W) . So in this way, for any ρ we choose δ′ > 0 small enough to lower
bound sup‖θ−θ∗‖≤ε−γ P

(
Q−1
θ ΣθεJk ∈ Ω−ε

γ)
as follows:

sup
‖θ−θ∗‖≤εγ

P
(
Q−1
θ ΣθεJk ∈ Ω−ε

γ
)

= 1− sup
‖θ−θ∗‖≤εγ

P
(
Q−1
θ ΣθεJk /∈ Ω−ε

γ
)
≥ 1− aε(1− ρ).
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Similarly, we only need to upper bound the remaining term sup‖θ−θ∗‖≤εγ P
(
Q−1
θ ΣθεJk /∈ Ω

)
as

follows:

sup
‖θ−θ∗‖≤εγ

P
(
Q−1
θ ΣθεJk /∈ Ω−ε

γ
)

= sup
‖θ−θ∗‖≤εγ

P
(
Q−1
θ ΣθεJk /∈ Ω−ε

γ

, ‖εJk‖≤R
)

+P
(
Q−1
θ ΣθεJk /∈Ω−ε

γ

, ‖εJk‖>R
)

¬
≤ sup
‖θ−θ∗‖≤εγ

P
(
Q−1
θ ΣθεJk /∈ Ω−ε

γ

, ‖εJk‖≤R
)

+
δ′

4

Θ(ε−1)

Θ(ε−δ)

­
≤ sup
‖θ−θ∗‖≤εγ

P
(
Q−1
θ∗Σθ∗εJk /∈ Ω, ‖εJk‖ ≤ R

)
+
δ′

2

Θ(ε−1)

Θ(ε−δ)

≤ sup
‖θ−θ∗‖≤εγ

P
(
Q−1
θ∗Σθ∗εJk /∈ Ω

)
+
δ′

2

Θ(ε−1)

Θ(ε−δ)

®
≤m(W)

(
1 + δ′ +

δ′

2m(W)

)
Θ(ε−1)

Θ(ε−δ)
≤ m(W)(1 + ρ/3)

Θ(ε−1)

ε−δ
= aε(1 + ρ/3),

where ¬ uses P
(
Q−1
θ ΣθεJk /∈Ω−ε

γ

, ‖εJk‖>R
)
≤ P (‖εJk‖>R) ≤ δ′

4
Θ(ε−1)
Θ(ε−δ)

, ­ uses the result
in Eqn. (14), ­ uses Eqn. (15), and ® uses Eqn. (13).

Next, for any ρ > 0 and ε we can obtain the Laplace transforms for any u > −1 as follows:

sup
θ0∈Ω−2εγ

E
[
e−um(W)Θ(ε−1)σ1I

{
θt∈Ω−ε

γ

, t∈ [0, σ1]
}]

≤[1− aε(1 + ρ)]E
[∫ +∞

0

e−um(W)Θ(ε−1)σ1 ·Θ(ε−δ)e−Θ(ε−δ)σ1dσ1

]
=

1− aε(1− ρ)

1 + uaε
.

(16)

and

sup
θ0∈Ω−2εγ

E
[
e−um(W)Θ(ε−1)σ1I

{
θt ∈ Ω−ε

γ

, t ∈ [0, σ1)
}
I
{
θσ1 /∈ Ω−ε

γ
}]

≤ aε
(

1 +
ρ

3

)
E
[∫ +∞

0

e−um(W)Θ(ε−1)σ1 ·Θ(ε−δ)e−Θ(ε−δ)σ1dσ1

]
=
aε(1− ρ/3)

1 + uaε
.

Here we summarize the above results such that we can upper bound the first term∑+∞
k=1 E

[
e−um(W)Θ(ε−1)tkI {Γ = tk}

]
:

R1 =

+∞∑
k=1

E
[
e−um(W)Θ(ε−1)tkI {Γ = tk}

]
≤aε(1 + ρ/3)

1 + uaε

+∞∑
k=1

(
1− aε(1− ρ)

1 + uaε

)k−1

≤aε(1 + ρ/3)

1 + uaε

+∞∑
k=0

(
1− aε(1− ρ)

1 + uaε

)k−1

=
1 + ρ/3

1 + u− ρ
.

Step 3. In this step we specifically upper bounds the second term
∑+∞
k=1 E [Resk]. Specifically, we

establish upper bound for each E [Resk] as follows. We first consider the case where k = 1:

Res1 ≤

{
E
[
e−um(W)Θ(ε−1))t1I {Γ ∈ (0, t1)}

]
, if u ∈ (−1, 0]

E [I {Γ ∈ (0, t1)}] , if u ∈ (0,+∞).

=

{
E
[
e−um(W)Θ(ε−1))σ1I

{
∃t ∈ (0, σ1) : θt /∈ Ω−ε

γ}]
, if u ∈ (−1, 0]

E
[
I
{
∃t ∈ (0, σ1) : θt /∈ Ω−ε

γ}]
, if u ∈ (0,+∞).

≤

{
E
[
e−um(W)Θ(ε−1))σ1 supθ0∈Ω−2εγ I

{
∃t ∈ (0, σ1) : θt /∈ Ω−ε

γ}]
, if u ∈ (−1, 0]

E
[
supθ0∈Ω−2εγ I

{
∃t ∈ (0, σ1) : θt /∈ Ω−ε

γ}]
, if u ∈ (0,+∞).
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For k ≥ 2, it needs more efforts to be upper bounded:

Resk

≤

E
[
e−um(W)Θ(ε−1))tkI {Γ ∈ (tk−1, tk)}

]
, if u ∈ (−1, 0]

E
[
e−um(W)Θ(ε−1))tk−1I {Γ ∈ (tk−1, tk)}

]
, if u ∈ (0,+∞).

=

E
[
e−um(W)Θ(ε−1))tkI

{
t ∈ [0, tk−1] : θt ∈ Ω−ε

γ} I{∃t ∈ (tk−1, tk) : θt /∈ Ω−ε
γ}]

, if u ∈ (−1, 0]

E
[
e−um(W)Θ(ε−1))tk−1I

{
t ∈ [0, tk−1] : θt ∈ Ω−ε

γ} I{∃t ∈ (tk−1, tk) : θt /∈ Ω−ε
γ}]

, if u ∈ (0,+∞).

In this case, for all u > 0 we can upper bound Resk as

Resk ≤

[
E

[
x sup
θ0∈Ω−2εγ

I
{
t∈ [0, σ1] : θt∈Ω−ε

γ
}]]k−2

E

[
x sup
θ0∈Ω−2εγ

I
{
t∈ [0, σ1] : θt∈Ω−ε

γ
}
I
{
∃t ∈ (0, σ1) : θt /∈Ω−ε

γ
}]

.

where x = e−um(W)Θ(ε−1))σ1 . Let the event E = {sup0≤t<σ1
‖θt − θ̂t‖ ≤ εγ}. Now we bound

each term in the above inequalities:

E

[
e−um(W)Θ(ε−1))σ1 sup

θ0∈Ω−2εγ
I
{
∃t∈(0, σ1) : θt /∈Ω−ε

γ
}]

=E

[
e−um(W)Θ(ε−1))σ1 sup

θ0∈Ω−2εγ
I
{
∃t ∈ (0, σ1) : θt /∈ Ω−ε

γ
}

(I {E}+ I {Ec})

]

≤E

[
e−um(W)Θ(ε−1))σ1 sup

θ0∈Ω−2εγ
I
{
∃t ∈ (0, σ1) : θt /∈ Ω−ε

γ
}
I {Ec}

]
¬
≤E

[
e−um(W)Θ(ε−1))σ1 exp(−ε−p)

]
=

Θ(ε−δ)

Θ(ε−δ) + um(W)Θ(ε−1)
· 2 exp(−ε−p)

=
1

1 + uaε
exp(−ε−p)

­
≤ ρ/3

1 + u− ρ
,

(17)

where ¬ uses the fact that supθ0∈Ω−2εγ I {∃t ∈ (0, σ1) : θt /∈ Ω} ≤ 1 and the sequence θ̂t obeys
Ω−2εγ due to θ0 ∈ Ω−2εγ and the results in Lemma 3:

sup
θ0∈Ω

P
(

sup
0≤t<σ1

‖θt − θ̂t‖ ≥ εγ
)
≤ 2 exp(−ε−p),

where the sequences θt and θ̂t share the same initialization θ0 = θ̂0. In ­ we set ε small enough
such that 2 exp(−ε−p) ≤ ρ/3

1+u−ρ . Similarly, we can upper bound

E

[
sup

θ0∈Ω−2εγ
I
{
∃t∈(0, t1) : θt /∈Ω−ε

γ
}]
≤E

[
sup

θ0∈Ω−2εγ
I
{
∃t∈(0, t1) : θt /∈ Ω−ε

γ
}

(I {E}+I {Ec})

]

≤ exp(−ε−p)≤ ρ/3

1 + u− ρ
.

(18)

Since p is much smaller than 1, then we have for k = 2, · · · , k

Resk ≤

[
E

[
e−um(W)Θ(ε−1))σ1 sup

θ0∈Ω−2εγ
I
{
t ∈ [0, σ1] : θt ∈ Ω−ε

γ
}]]k−2

E

[
e−um(W)Θ(ε−1))σ1

sup
θ0∈Ω−2εγ

I
{
t ∈ [0, σ1] : θt ∈ Ω−ε

γ
}
I
{
∃t ∈ (0, σ1) : θt /∈ Ω−ε

γ
}]
≤
[

1− aε(1− ρ)

1 + uaε

]k−2
aε(1 + ρ/3)

1 + uaε
.
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where we use the above results, namely, supθ0∈Ω−2εγ E
[
e−um(W)Θ(ε−1)σ1I

{
θt ∈ Ω−ε

γ

, t ∈ [0, σ1]
}]
≤

1−aε(1−ρ)
1+uaε

and supθ0∈Ω−2εγ E
[
e−um(W)Θ(ε−1)σ1I

{
θt ∈ Ω−ε

γ

, t ∈ [0, σ1)
}
I
{
θσ1

/∈ Ω−ε
γ}] ≤

aε(1+ρ/3)
1+uaε

. So in this case, we have

R2 =

+∞∑
k=1

E [Resk] ≤ ρ/3

1 + u− ρ
+

+∞∑
k=2

[
1− aε(1− ρ)

1 + uaε

]k−2
aε(1 + ρ/3)

1 + uaε
=

1 + 2ρ/3

1 + u− ρ

Therefore, for any θ0 ∈ Ω−2εγ we can upper bound

E
[
e−um(W)Θ(ε−1))Γ

]
≤ R1 +R2 ≤

1 + ρ

1 + u− ρ
,

where ρ ↓ 0 as ε ↓ 0.

Lower bound of E
[
exp

(
−um(W)Θ(ε−1)Γ

)]
. In this part, we only consider the big jumps in the

process ζ which may escape the local minimum θ∗, and ignore the possibility of the small jumps
in the process ξ which may also help escape local minimum θ∗. Here we consider the result under
θ0 ∈ Ω−ε

γ

which is stronger than the results under θ0 ∈ Ω−2εγ due to Ω−2εγ ⊂ Ω−ε
γ

.

Step 1. In this step we give the formulation of the lower bound of E
[
e−um(W)Θ(ε−1)Γ

]
. For any

u > −1, we can compute the formula of the total probability as follows

E
[
e−um(W)Θ(ε−1)Γ

]
≥

+∞∑
k=1

E
[
e−um(W)Θ(ε−1)tkI {Γ = tk}

]
.

This inequality holds, since we ignore the small jumps in the process ξ which may also help escape
local minimum θ∗.

For any small ρ̄ > 0, we define the inner part of Ω as Ω−ρ̄ = {y ∈ Ω | dis(∂Ω,y) ≥ ρ} and the
outer ρ-neighborhood of Ω as Ω+ρ̄ = {y | dis(∂Ω,y) ≥ ρ̄}. For k ≥ 1, we can use the strong
Markov property and obtain

E
[
e−um(W)Θ(ε−1)tkI {Γ = tk}

]
= E

[
e−um(W)Θ(ε−1)tkI {θt ∈ Ω, t ∈ [0, tk),θtk /∈ Ω}

]
=E

[
e−um(W)Θ(ε−1)σkI

{
θt+tk−1

∈ Ω, t ∈ [0, σk)
}
I {θtk /∈ Ω}

·
k−1∏
i=1

e−um(W)Θ(ε−1)σiI
{
θt+ti−1 ∈ Ω, t ∈ [0, σi]

}]
≥ inf
θ0∈Ω−ρ̄

E
[
e−um(W)Θ(ε−1)σ1I

{
θt ∈ Ω−ρ̄, t∈ [0, σ1)

}
I {θσ1 /∈ Ω}

]
· inf
θ0∈Ω−ρ̄

E
[
e−um(W)Θ(ε−1)σ1I

{
θt ∈ Ω−ρ, t∈ [0, σ1]

}]k−1

.

(19)

Step 2. In this step we specifically lower bounds each terms in the lower bound of
E
[
e−um(W)Θ(ε−1)Γ

]
. Recall ρ̄ = εγ where γ is a constant such that the results of Lemmas 1∼ 3

holds. The escaping from the basin Ω with a big jump εJ1 occurs whenQ−1
σ1−Σσ1−εJ1 ∈ Ω. Further-

more, sup0≤t<σ1
‖θt − θ̂t‖ ≤ 1

2ε
γ with probability exponentially close to 1 (verified by Lemma 3).

Meanwhile σ1 = 2
αε

αδ in the α-stable (SαS) distribution is much larger than vε = O(ln(1/ε)) with
sufficient small ε, θ̂t reaches a 1

2ε
γ-neighborhood of the optimum θ∗ which only requires time vε. So

this actually means sup0≤t<σ1
‖θt − θ∗‖ ≤ εγ . In this way, to obtain the final lower bound results,

we only need to estimate the escaping probability P
(
Q−1
θ ΣθεJ1 ∈ Ω−ε

γ)
and P

(
Q−1
θ ΣθεJ1 /∈ Ω

)
uniformly over ‖θ − θ∗‖ ≤ εγ .

Based on the results in Eqn. (14) and (15) which provides the upper bound of
P
(
Q−1
θ∗Σθ∗εJ1 /∈ Ω

)
and some important inequalities, we first upper bound the term
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inf‖θ−θ∗‖≤ε−γ P
(
Q−1
θ ΣθεJk /∈ Ω−ε

−γ
)

as follows:

inf
‖θ−θ∗‖≤εγ

P
(
Q−1
θ ΣθεJk /∈ Ω−ε

γ
)

= inf
‖θ−θ∗‖≤εγ

P
(
Q−1
θ ΣθεJk /∈ Ω−ε

γ

, ‖εJk‖ ≤ R
)

+P
(
Q−1
θ ΣθεJk /∈ Ω−ε

γ

, ‖εJk‖>R
)

¬
≤P
(
Q−1
θ∗Σθ∗εJk /∈ Ω, ‖εJk‖≤R

)
+
δ′

4

Θ(ε−1)

Θ(ε−δ)
+P

(
Q−1
θ ΣθεJk /∈ Ω−ε

−γ
, ‖εJk‖>R

)
≤P
(
Q−1
θ∗Σθ∗εJk /∈ Ω

)
+
δ′

4

Θ(ε−1)

Θ(ε−δ)
+ P (‖εJk‖ > R)

­
≤m(W)(1 + δ′)

Θ(ε−1)

Θ(ε−δ)
+
δ′

4

Θ(ε−1)

Θ(ε−δ)
+
δ′

4

Θ(ε−1)

Θ(ε−δ)

=m(W)(1 + δ′ +
δ′

2m(W)
)
Θ(ε−1)

Θ(ε−δ)

®
≤ m(W)(1 + ρ)

Θ(ε−1)

Θ(ε−δ)
,

where ¬ uses the result in Eqn. (14), ­ uses Eqn. (13), and in ® we set δ′ enough small via setting
small ε such that ρ ≥ δ′ + δ′

2m(W) . So for any ρ we choose δ′ > 0 small enough to upper bound

inf
‖θ−θ∗‖≤εγ

P
(
Q−1
θ ΣθεJk ∈ Ω−ε

γ
)

= 1− inf
‖θ−θ∗‖≤εγ

P
(
Q−1
θ ΣθεJk /∈ Ω−ε

γ
)
≥ 1− aε(1 + ρ).

Similarly, we only need to lower bound the remaining term inf‖θ−θ∗‖≤εγ P
(
Q−1
θ ΣθεJk /∈ Ω

)
as

follows:

inf
‖θ−θ∗‖≤εγ

P
(
Q−1
θ ΣθεJk /∈ Ω

)
= inf
‖θ−θ∗‖≤εγ

P
(
Q−1
θ ΣθεJk /∈ Ω, ‖εJk‖ ≤ R

)
+P

(
Q−1
θ ΣθεJk /∈ Ω, ‖εJk‖ > R

)
¬
≥ inf
‖θ−θ∗‖≤εγ

P
(
Q−1
θ∗Σθ∗εJk /∈Ω−ε

γ

, ‖εJk‖≤R
)
− δ
′

4

Θ(ε−1)

Θ(ε−δ)
+P

(
Q−1
θ ΣθεJk∈Ω, ‖εJk‖>R

)
≥ inf
‖θ−θ∗‖≤εγ

P
(
Q−1
θ∗Σθ∗εJk /∈Ω, ‖εJk‖≤R

)
− δ
′

4

Θ(ε−1)

Θ(ε−δ)
+P

(
Q−1
θ ΣθεJk∈Ω, ‖εJk‖>R

)
≥P
(
Q−1
θ∗Σθ∗εJk /∈ Ω, ‖εJk‖ ≤ R

)
− δ′

4

Θ(ε−1)

Θ(ε−δ)

­
≥P
(
Q−1
θ∗Σθ∗εJk /∈ Ω

)
− δ′

2

Θ(ε−1)

Θ(ε−δ)

®
≥m(W)

(
1− δ′ − δ′

2m(W)

)
Θ(ε−1)

Θ(ε−δ)
≥ m(W)(1− ρ)

Θ(ε−1)

ε−δ
= aε(1− ρ),

where ¬ uses the result in Eqn. (14), ­ uses Eqn. (15), and ® uses Eqn. (13).

Next, for any ρ > 0 and ε we can obtain Laplace transforms for any u > −1 as follows:

inf
θ0∈Ω−ε

γ
E
[
e−um(W)Θ(ε−1)σ1I

{
θt ∈ Ω−ε

γ

, t ∈ [0, σ1]
}]

≥[1− aε(1 + ρ)]E
[∫ +∞

0

e−um(W)Θ(ε−1)σ1 ·Θ(ε−δ)e−Θ(ε−δ)σ1dσ1

]
=

1− aε(1 + ρ)

1 + uaε
,

(20)

and

inf
θ0∈Ωε−γ

E
[
e−um(W)Θ(ε−1)σ1I

{
θt ∈ Ω−ε

γ

, t ∈ [0, σ1)
}
I {θσ1

/∈ Ω}
]

≥ [1− aε(1 + ρ)]E
[∫ +∞

0

e−um(W)Θ(ε−1)σ1 ·Θ(ε−δ)e−Θ(ε−δ)σ1dσ1

]
=
aε(1− ρ)

1 + uaε
.
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Step 3. Here we summarize the results in Steps 1 and 2 such that we can lower bound the desired
results E

[
e−um(W)Θ(ε−1)Γ

]
. Specifically, from Eqn. (19), for any θ0 ∈ Ω−ε

γ

we can lower bound

E
[
e−um(W)Θ(ε−1)Γ

]
≥ aε(1− ρ)

1 + uaε

+∞∑
k=1

(
1− aε(1 + ρ)

1 + uaε

)k−1

=
1− ρ

1 + u+ ρ
,

where ρ ↓ 0 as ε ↓ 0. The proof is completed.

D.2 Proof of Theorem 2

Proof. In this step we prove the sequence {θ̂t} produced by Eqn. (8) or (9) locates in a very small
neighborhood of the optimum solution θ∗ of the local basin Ω after a very small time interval.

Step 1. In this step, we prove the first part of Theorem 2. Since we assume the function is locally
strongly convex, by using Lemmas 3 and 4, we know that the sequence {θ̂t} produced by Eqn. (8) or
(9) exponentially converges to the minimum θ∗ at the current local basin Ω. So for any initialization
θ0 ∈ Ω, we have

‖θ̂t − θ∗‖22 ≤ c1 exp (−c2t) ,

where c1 = 2∆
µ and c2 = 2µτ

β1(vmax+ε)+µτ

(
β1 − β2

4

)
in Adam, c1 = 2∆

µ and c2 = 2µ in SGD.
Therefore, for any initialization θ0 ∈ Ω and sufficient small ε, we can obtain

‖θ̂t − θ∗‖22 ≤ ερ̄ if t ≥ vε =
1

c3
ln
( 2∆

µερ̄
)
.

where c3 = 2µτ
β1(vmax+ε)+µτ

(
β1 − β2

4

)
in ADAM, c3 = 2µ in SGD, and ∆ = F (θ0)− F (θ∗).

Step 2. In this step, we prove the second part of Theorem 2. By replacing p with p/2 in Lemma E.5,
we can directly obtain the results.

E Proofs of Auxiliary Theories and Lemmas in Appendix C

Before analysis, we first introduce two useful lemmas which will be used in subsequent analysis.

Lemma 4 (Grönwall’s Lemma [12]). Suppose g(s) : [0, t0] is a non-negative continues function. If
for almost s ∈ [0, t0]

g′(s) ≤ q(s)g(s)

where q(s) is a continuous function, then we have

g(t) ≤ g(0) exp

(∫ t

0

q(s)ds
)
.

Lemma 5 (Theorem 5.3 in [13]). Consider a setA ∈ B(R\0) with 0 ∈ Ā and a function f : R → R
with Borel measurable and finite onA. Then we have
(1) The process (

∫ t
0

∫
A
f(x)ν(ds,dx))0≤t≤T is a compound Poisson process with characteristic

function

E
(

exp

(
iλ

∫ t

0

∫
A

f(x)µL(ds,dx)

))
= exp

(
t

∫
A

(eiλf(x) − 1)ν(dx)

)
.

(2) If f ∈ L1(A), then

E
(∫ t

0

∫
A

f(x)µL(ds,dx)

)
= t

∫
A

f(x)ν(dx).

12



E.1 Proof of Theorem 3 for the Linear Convergence of Lévy-driven SGD SDE (8)

Proof. Step 1. In this step, we upper bound the gradient norm of the Lyapunov function L(t) =

F (θ̂t) − F (θ∗) of (8) with Q̂t = I and β2 = 0. More specifically, we can upper bound dL(t) as
follows:

dL(t) = 〈∇F (θ̂t),dθ̂t〉 =
〈
∇F (θ̂t),−∇F (θ̂t)

〉
= −‖∇F (θ̂t)‖22. (21)

Step 2. Here we prove the linear convergence behavior of L(t) = F (θ̂t) − F (θ∗) by using the
results in Step 1. Since F (θ) is locally µ-strongly convex, then we have

F (y) ≥ F (θ) + 〈∇F (θ),y − θ〉+
µ

2
‖y − θ‖22.

Next, by minimizing y on both side (y = θ∗ for the left side and y = θ − 1
µ∇F (θ) for the right

side), it yields

‖∇F (θ)‖22 ≥ 2µ(F (θ)− F (θ∗)). (22)

Hence, plugging the above equation into Eqn. (21) gives

dL(t) ≤ −2µ(F (θ)− F (θ∗)) = −2µL(t).

In this way, by using the result in Lemma 4, we can easily obtain

L(t) ≤ L(0) exp

(
−
∫ t

0

2µds
)
≤ ∆ exp (−2µt) ,

where we use L(0) = F (θ̂0)− F (θ∗) = ∆ where θ∗ is the optimum of the current basin.

Step 3. Finally, we explore the local strong-convexity of F (θ) to show the linear convergence of
‖θ̂t − θ∗‖22. Specifically, by using the strongly convex property of F (θ), we can obtain

F (θ)− F (θ∗) ≥ µ

2
‖θ − θ∗‖22.

So this gives

‖θ̂t − θ∗‖22 ≤
2∆

µ
exp (−2µt) .

The proof is completed.

E.2 Proof of Theorem 4 for the Linear Convergence of Lévy-driven ADAM SDE (9)

Proof. Step 1. In this step, we upper bound the gradient norm of the Lyapunov function of (9)
defined as

L(t) = F (θ̂t)− F (θ∗) +
1

2
‖m̂t‖2ŝ−1

t
, (23)

where ŝt = ht
µt

(√
ωtv̂t + ε

)
with ht = β1, µt = (1− e−β1t)−1 and ωt = (1− e−β2t)−1. Here we

define ‖x‖2y =
∑
i yix

2
i . Then we can compute the derivative of Lyapunov function as

dL(t) = 〈∇F (θ̂t),dθ̂t〉+

d∑
i=1

1

ŝt,i
m̂t,idm̂t,i −

d∑
i=1

1

2ŝ2
t,i

m̂2
t,i∇v̂t ŝt,idv̂t,i︸ ︷︷ ︸

P1

−
d∑
i=1

1

2ŝ2
t,i

m̂2
t,i∇tŝt,i︸ ︷︷ ︸

P2

,

(24)
where m̂t,i, v̂t,i and ŝt,i respectively denote the i-th entries of m̂t, v̂t and ŝt.

We first consider Adam in which ht = β1, µt = (1− e−β1t)−1, and ωt = (1− e−β2t)−1. We also
assume β1 ≤ β2 ≤ 2β1 which is consistent with the practical setting where β1 = 0.9 and β2 = 0.999.
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Let [∇fSt(θ̂t)2]i denotes the i-th entry of the vector ∇fSt(θ̂t)2. Under this setting, we can first
upper bound the first term P1 as follows:

P1

=〈∇F (θ̂t),dθ̂t〉+

d∑
i=1

1

ŝt,i
m̂t,idm̂t,i −

d∑
i=1

1

2ŝ2
t,i

m̂2
t,i∇v̂t ŝt,idv̂t,i

=〈∇F (θ̂t),−
µtm̂t√
ωtv̂t + ε

〉+ β1

d∑
i=1

1

ŝt,i
m̂t,i(∇Fi(θt)− m̂t,i)−

d∑
i=1

β2

2ŝ2
t,i

m̂2
t,i([∇fSt(θ̂t)2]i − v̂t,i)∇v̂t ŝt,i

=− β1

〈
∇F (θ̂t),

m̂t

ŝt

〉
+ β1

〈
∇F (θ̂t),

m̂t

ŝt

〉
− β1

d∑
i=1

1

ŝt,i
m̂2
t,i − β2

d∑
i=1

1

2ŝ2
t,i

m̂2
t,i([∇fSt(θ̂t)2]i − v̂t,i)∇v̂t ŝt,i

=− β1

d∑
i=1

1

ŝt,i
m̂2
t,i − β2

d∑
i=1

1

2ŝ2
t,i

m̂2
t,i([∇fSt(θ̂t)2]i − v̂t,i)∇v̂t ŝt,i.

Next, we plug the specific formulation of∇v̂t ŝt,i =
β1
√
ωt

2µt
√
v̂t,i

into the above equation and obtain:

P1 =− β1

d∑
i=1

1

ŝt,i
m̂2
t,i − β2

d∑
i=1

1

2ŝ2
t,i

m̂2
t,i([∇fSt(θ̂t)2]i − v̂t,i)

β1
√
ωt

2µt
√
v̂t,i

=− β2
1

d∑
i=1

m̂2
t,i

µtŝ2
t,i

(
ε+ (1− β2

4β1
)
√
ωtv̂t,i +

β2

4β1

[∇fSt(θ̂t)2]i
√
ωt√

v̂t,i

)

=− β1

d∑
i=1

m̂2
t,i

ŝt,i

(
1− β2

4β1
+

β2ε

4β1(ε+
√
ωtv̂t,i)

+
β2

4β1

[∇fSt(θ̂t)2]i
√
ωt√

v̂t,i(ε+
√
ωtv̂t,i)

)

≤−
(
β1 −

β2

4

) d∑
i=1

m̂2
t,i

ŝt,i
= −

(
β1 −

β2

4

)
‖m̂t‖2ŝ−1

t
.

Then we consider the second term P2 under the setting ŝt = β1

µt

(√
ωtv̂t + ε

)
with µt = (1−e−β1t)−1

and ωt = (1− e−β2t)−1. Similarly, we can upper bound P2 as

P2 =−
d∑
i=1

1

2ŝ2
t,i

m̂2
t,i∇tŝt,i

=− β1

d∑
i=1

1

2ŝ2
t,i

m̂2
t,i

(
β1e
−β1t

(
ε+

√
v̂t,i

1− e−β2t

)
− 1

2
β2e
−β2t

1− e−β1t

1− e−β2t

√
v̂t,i

1− e−β2t

)

=− β2
1

2

d∑
i=1

m̂2
t,i

µtŝ2
t,i

e−β1t

1− e−β1t

(
ε+

(
1− β2e

−β2t(1− e−β1t)

2β1e−β1t(1− e−β2t)

)√
v̂t,i

1− e−β2t

)
¬
≤− β2

1

2

d∑
i=1

m̂2
t,i

µtŝ2
t,i

e−β1t

1− e−β1t

(
ε+

(
1− β2

2β1

)√
v̂t,i

1− e−β2t

)

=− β1

2

d∑
i=1

m̂2
t,i

ŝt,i

e−β1t

1− e−β1t

(
1− β2

2β1
+

β2ε

2β1(ε+
√
ωtv̂t,i)

)

≤− 1

2

(
β1 −

β2

2

)
e−β1t

1− e−β1t

d∑
i=1

m̂2
t,i

ŝt,i
= −1

2

(
β1 −

β2

2

)
e−β1t

1− e−β1t
‖m̂t‖2ŝ−1

t

­
≤ 0,

where ¬ uses β2e
−β2t(1−e−β1t)

2β1e−β1t(1−e−β2t)
≤ β2

2β1
since β2 ≥ β1; in ­ we assume β1 − β2

2 > 0. Therefore, by
combining the upper bounds of P1 and P2 we can upper bound

dL(t) ≤ −
[
β1 −

β2

4

]
‖m̂t‖2ŝ−1

t
. (25)
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On the other hand, noting ht = β1, µt = (1− e−β1t)−1 and ωt = (1− e−β2t)−1, we have

ŝt,i =
ht
µt

(
ε+

√
ωtv̂t,i

)
= β1(1− e−β1t)

(
ε+

√
v̂t,i

1− e−β2t

)
≤ β1

(
ε+

1− e−β1t

√
1− e−β2t

√
v̂t,i

)
¬
≤β1

(
ε+

1− e−β1t

1− e−β2t/2

√
v̂t,i

)
­
≤ β1 (ε+ vmax) ,

where ¬ uses
√

1− x ≥ 1 −
√
x for 0 ≤ x ≤ 1 and ­ holds since

√
v̂t,i ≤ vmax. By using the

assumption ‖m̂t‖2 ≥ τ‖∇F (θ̂t)‖2, we can establish

‖m̂t‖2ŝ−1
t
≥ 1

β1 (ε+ vmax)
‖m̂t‖22 ≥

τ

β1 (ε+ vmax)
‖∇F (θ̂t)‖22. (26)

Then from the locally µ-strongly convex property Eqn. (22):

‖∇F (θ)‖22 ≥ 2µ(F (θ)− F (θ∗)).

then we plug the above inequality into Eqn. (26) and establish

‖m̂t‖2ŝ−1
t
≥ 1

β1 (ε+ vmax)
‖m̂t‖22 ≥

2µτ

β1 (ε+ vmax)
(F (θ̂t)− F (θ∗)).

Finally, we can write Eqn. (25) as

dL(t) ≤− 2µτ

β1 (ε+ vmax) + µτ

[
β1 −

β2

4

](
1

2
+
β1 (ε+ vmax)

2µτ

)
‖m̂t‖2ŝ−1

t

≤− 2µτ

β1 (ε+ vmax) + µτ

[
β1 −

β2

4

](
F (θ̂t)− F (θ∗) +

1

2
‖m̂t‖2ŝ−1

t

)
=− c1L(t),

where c1 = 2µτ
β1(ε+vmax)+µτ

[
β1 − β2

4

]
.

Step 2. Here we prove the linear convergence behavior of L(t) = F (θ̂t) − F (θ∗) by using the
results in Step 1. More specifically, by using the result in Lemma 4, we can easily obtain

L(t) ≤L(0) exp

(∫ t

0

c1ds
)

= L(0) exp

(
− 2µτ

β1 (ε+ vmax) + µτ

(
β1 −

β2

4

)
t

)
¬
≤(F (θ̂0)− F (θ∗)) exp

(
− 2µτ

β1 (ε+ vmax) + µτ

(
β1 −

β2

4

)
t

)
,

where ¬ uses L(0) = F (θ̂0)− F (θ∗) = ∆ due to m̂0 = 0.

Step 3. Finally, we explore the local strong-convexity of F (θ) to show the linear convergence of
‖θ̂t − θ∗‖22. Specifically, by using the strongly convex property of F (θ), we can obtain

F (θ)− F (θ∗) ≥ µ

2
‖θ − θ∗‖22.

So this gives

‖θ̂t − θ∗‖22 ≤
2∆

µ
exp

(
− 2µτ

β1 (ε+ vmax) + µτ

(
β1 −

β2

4

)
t

)
.

The proof is completed.

E.3 Proof of Lemma 1

Proof. To begin with, the process ξ is defined as ξt =
∑
s≤t ∆LsI

{
‖Ls‖ ≤ ε−δ

}
. Then by

setting the set A = {y | ‖y‖ ≤ ε−δ} in Lemma 5 and noting f(x) = x ∈ L1(A), one can find
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E[ξt] = t
∫
A
f(x)ν(dx). Therefore, we can decompose the process ξ into two processes ξ̂ and linear

drift, namely,
ξt = ξ̂t + µεt,

where ξ̂ is a zero mean Lévymartingale with bounded jumps. Then we prove our results in two steps.

Step 1. We first estimate the value of µε. Since ξ is a Lévyprocess, by Lévy-Itô decomposition
theory [13, Theorem 6.1] its characteristic function is of form

E[ei〈λ,ξt〉] = exp

(
t

∫
Rd\{0}

(
ei〈λ,y〉 − 1− i〈λ,y〉I {‖y‖ ≤ 1}

)
I
{
‖y‖ ≤ ε−δ

}
dy

)
,

which can be further split into two Lévyprocesses ξ(1) and ξ(2) with characteristic functions

E[ei〈λ,ξ(1),t〉] = exp

(
t

∫
0<‖y‖<1

(
ei〈λ,y〉 − 1− i〈λ,y〉

)
dy

)
and

E[ei〈λ,ξ(2),t〉] = exp

(
t

∫
1≤‖y‖≤ε−δ

(
ei〈λ,y〉 − 1

)
dy

)
.

Let we consider ξ on the set {y | 0 < ‖y‖ ≤ 1}. We construct a compensated compound Poisson
process

L′t =
∑
s≤t

∆L′sI {1 > ‖∆Ls‖ > ε′}−t
∫

1>‖y‖>ε′
yν(dy) =

∫ t

0

∫
1>‖y‖>ε′

yµL(dy,ds)−t
∫

1>‖y‖>ε′
yν(dy),

where ε′ is a very small constant. By applying Lemma 5 on
∑
s≤t ∆L′sI {1 > ‖∆Ls‖ > ε′}, the

characteristic function of L′t is

E[ei〈λ,L
′
t〉] = exp

(
t

∫
ε′<‖y‖<1

(
ei〈λ,y〉 − 1− i〈λ,y〉

)
dy

)
.

This means that there exists a Lévyprocess L′ which is a square integral martingale such that
L′ → ξ(1) as ε′ → 0. As L′ is a square integral martingale, we have E(ξ(1)) = E(L′) = 0, which
means that µε is only related to ξ(2). Therefore, we have

µiε = E[ξi(2)] =

∫
1≤‖y‖≤ε−δ

yiν(dy), (i = 1, · · · , d)

‖µε‖2 =

∫
1≤‖y‖≤ε−δ

‖y‖2ν(dy) = −
∫ ε−δ

1

u2dΘ(u) = −u2Θ(u)
∣∣ε−δ
1

+ 2

∫ ε−δ

1

uΘ(u)d ≤ ε−2δΘ(1).

Thus, we can bound ‖µε‖ ≤ ε−δ
√

Θ(1). Finally, by setting θ0 = (1 − δ)/3 and ρ0 = (1 − δ)/4
we can obtain ε‖µε‖Tε = ε1−δ−θ

√
Θ(1) ≤ ε2ρ by setting ε sufficient small such that Θ(1) ≤

1
ε1−2ρ−δ−θ .

Step 2. Since the increment is non-negative, the quadratic variation process [εξ̂]dt is a Lévysubordi-
nator, namely,

[εξ̂]dt = ε2
∑
s≤t

‖∆ξ̂s‖2 = ε2

∫ t

o

∫
0<‖y‖≤ε−δ

‖y‖2N(dy,ds),

where ∆ξ̂s = ξ̂s − ξ̂s− where ξ̂s− = limt↑s ξ̂t.

Since the jumps of [εξ̂]d are bounded, its Laplace transform is well-defined for all λ ∈ R:

Eeλ[εξ̂]dt = exp

(
t

∫
0<‖y‖≤ε−δ

(eλε
2‖y‖2 − 1)ν(dy)

)
= exp

(
−t
∫

0<u≤ε−δ
(eλε

2u2

− 1)dΘ(u)

)
.
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For any λ > 0, the exponential Chebyshev inequality indicates

P
(

[εξ̂]dTε > ερ
)

=P
(
eλ[εξ̂]dTε > eλε

ρ
)
≤ e−λε

ρ

E[eλ[εξ̂]dTε ]

= exp

(
−λερ − Tε

∫
0<u≤ε−δ

(eλε
2u2

− 1)dΘ(u)

)
.

(27)

For λ = λε = ε−2ρ with 0 < ρ < ρ0 = (1 − δ)/4 we have max0≤u≤ε−δ λε
2u2 ≤ λεε

2(1−δ) ≤
ε

3
2 (1−δ) ↓ 0 as ε ↓ 0. With help of the elementary inequality ex − 1 ≤ 2x for small positive x the

second summand appearing in the exponent in right-hand side of (27) can be now established as∣∣∣∣Tε ∫
0<u≤ε−δ

(eλεε
2u2

− 1)dΘ(u)

∣∣∣∣ ≤ ∣∣∣∣2Tελεε2

(∫
0<u≤1

+

∫
1<u≤ε−δ

)
u2dΘ(u)

∣∣∣∣
≤2Tελεε

2

∣∣∣∣∫
0<u≤1

u2dΘ(u)

∣∣∣∣+ 2Tελεε
2(1−δ)

∣∣∣∣∫
1<u≤ε−δ

dΘ(u)

∣∣∣∣
≤2CTελεε

2 + 2Θ(1)Tελεε
2(1−δ)

where C =
∣∣∣∫0<u≤1

u2dΘ(u)
∣∣∣ ∈ (0,+∞) is a constant. Consequently, for all 0 < ρ ≤ ρ0 and

0 < θ < θ0 we see that the exponential inequality

P
(

[εξ̂]dTε > ερ
)
≤ exp

(
−λεερ + 2CTελεε

2 + 2Θ(1)Tελεε
2(1−δ)

)
≤ exp(−ε−ρ/2)

holds for small enough ε with p ∈ (0, ρ/2). This is because

− λεερ + 2CTελεε
2 + 2Θ(1)Tελεε

2(1−δ) = −ε−ρ + 2Cε2− 1−δ
3 −

1−δ
2 + 2Θ(1)ε2(1−δ)− 1−δ

3 −
1−δ

2

≤− ε−ρ + 2(C + Θ(1))ε2(1−δ)− 1−δ
3 −

1−δ
2 ≤ −ε−ρ + 2(C + Θ(1))ε

7
6 (1−δ) ¬

≤ −ε−ρ/2,

where ¬ holds by setting ε enough small such that (ε−ρ − 2(C + Θ(1))ε
7
6 (1−δ))/ε−ρ/2 ≥ ε−ρ/2 −

2(C + Θ(1))ε
7
6 (1−δ)+ ρ

2 ≥ 1. The proof is completed.

E.4 Proof of Lemma 2

Proof. Step 1. Suppose supt≥0 ‖gt‖ ≤ cg for some constant cg > 0. Then we consider the
one-dimensional martingale

Mt =

d∑
i=1

∫ t

0

gis−dξ̂is.

We estimate the probability of a deviation of the size ερ of εMt from zero with help of the exponential
inequality for martingales, see Theorem 26.17 (i) in [14]. Indeed for any ρ > 0 and θ > 0, we have

P
(

sup
t≤Tε
|εMt| ≥ ερ

)
≤ P

(
sup
t≤Tε
|εMt| ≥ ερ

∣∣ [εM]Tε ≤ ε4ρ

)
+ P

(
[εM]Tε > ε4ρ

)
.

Inspecting the proofs of Lemma 26.19 and Theorem 26.17 (i) in [14] we get that for any λ > 0

P
(

sup
t≤Tε
|εMt| ≥ ερ

∣∣ [εM]Tε ≤ ε4ρ

)
≤ exp

(
−λερ + λ2h(λcgε

1−δ)ε4ρ
)
,

where h(x) = −(x+ ln(1− x)+)x−2. For any 0 < ρ < ρ1 = (1− δ)/2 we set λ = λε = ε−2ρ so
that h(λεcgε

1−δ)→ 1/2 as ε → 0 by using LHopital’s rule. Hence we obtain the estimate

P
(

sup
t≤Tε
|εMt| ≥ ερ

∣∣ [εM]Tε ≤ ε4ρ

)
≤ exp

(
−ε−ρ +

1

2

)
¬
≤ exp

(
−ε−ρ/2

)
≤ exp

(
−ε−p

)
,

which holds for small enough ε and p ∈ (0, ρ/2]. In ¬, we set ε enough small such that 0 <
ε−ρ/2 − ερ/2 ≤ 1.

Step 2. Since ‖gt‖ ≤ cg is well bounded, then there is a constant c1 with

[εM]t =

∫ t

0

g2
s−d[εξ̂]ds ≤ c1[εξ̂]dt .
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Then we can use Lemma 1 to upper bound:

P
(
[εM]Tε ≥ ε4ρ

)
≤ P

(
c1[εξ̂]dt ≥ ε4ρ

) ¬
≤ exp (−p),

where ¬ uses ρ < ρ2 < ρ0

4 with ρ0 = 1−δ
4 in Lemma 1 and sets ε sufficient small such that

ερ0−4ρ ≤ c1. This is because if ερ0 ≤ ε4ρ

c1
, then it yields P

(
[εξ̂]dt ≥ ε4ρ/c1

)
≤ exp (−p) due to

P
(

[εξ̂]dt ≥ ερ0

)
≤ exp (−p). So the result in this lemma holds with ρ0 = min(ρ0 = 1−δ

4 , ρ1, ρ2) =
1−δ
16 , p0 = min(p0 = ρ

2 , p1) = δ
2 . The parameters ρ0 and p0 in the operator (·) are from Lemma 1 as

the results here is based on Lemma 1. Under this setting, we have

P

(
sup

0≤t≤Tε
ε

∣∣∣∣∣
d∑
i=1

∫ t

0

gis−dξ̂is

∣∣∣∣∣ ≥ ερ
)
≤ 2 exp

(
−ε−p

)
The proof is completed.

E.5 Proof of Lemma 3

Proof. Step 1. In this step we prove the sequence {θ̂t} produced by Eqn. (8) or (9) locates in a very
small neighborhood of the optimum solution θ∗ of the local basin Ω after a very small time interval.
Since we assume the function is locally strongly convex, by using Theorems 3 and 4, we know that
the sequence {θ̂t} produced by Eqn. (8) or (9) exponentially converges to the minimum θ∗ at the
current local basin Ω. So for any initialization θ0 ∈ Ω, we have

‖θ̂t − θ∗‖22 ≤ c1 exp (−c2t) ,

where c1 = 2∆
µ and c2 = 2µτ

β1(vmax+ε)+µτ

(
β1 − β2

4

)
in ADAM, c1 = 2∆

µ and c2 = 2µ in SGD.
Therefore, for any initialization θ0 ∈ Ω and sufficient small ε, we can obtain

‖θ̂t − θ∗‖22 ≤ ερ̄ when t ≥ vε =
1

c2
ln
( c1
ερ̄

)
.

Step 2. Here we prove that for the time t ∈ [0, vε], the sequence {θt} is always very close to the
sequence {θ̂t} when they are with the same initialization θ0 in the absence of the big jumps Jk in the
stochastic process L.

To begin with, according to the updating rule in SGD, we have

‖θt∧vε∧σ1− − θ̂t∧vε∧σ1−‖ =

∣∣∣∣∫ t∧vε∧σ1−

0

(
−∇F (θs) +∇F (θ̂s)

)
ds+

∫ t∧vε∧σ1−

0

εΣsdLs

∣∣∣∣
¬
≤`
∫ t∧vε∧σ1−

0

‖θs − θ̂s‖ds+ ε

∥∥∥∥∫ t∧vε∧σ1−

0

ΣsdLs

∥∥∥∥ ,
(28)

where in ¬, F (θ) is `-smooth, namely ‖∇F (θ1)−∇F (θ2)‖ ≤ `‖θ1 − θ2‖ for any θ1 and θ2 in
the local basin Ω.

Then we consider ADAM which needs more efforts. According to the dynamic system of ADAM, we
can first establish

mt − m̂t =

∫ t

0

(∇F (θs)−∇F (θ̂s))ds−
∫ t

0

(ms − m̂s)ds.

Therefore, with the assumption ‖mt − m̂t‖ ≤ τm‖
∫ t

0
(ms − m̂s)ds‖, it yields

|1− τm| ·
∥∥∥∥∫ t

0

(ms − m̂s)ds
∥∥∥∥ ≤∥∥∥∥mt − m̂t +

∫ t

0

(ms − m̂s)ds
∥∥∥∥ =

∥∥∥∥∫ t

0

(∇F (θs)−∇F (θ̂s))ds
∥∥∥∥

≤ `
∫ t

0

∥∥∥θs − θ̂s∥∥∥ds.
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Moreover, we can upper bound µs√
ωsvs+ε

=

√
1−e−β2t

1−e−β1t
· 1

1+ε
√

1−e−β2t
. Then let q(x) =

√
1−e−β2t

1−e−β1t
≤

c4 = min(q(0), q(+∞), q(t∗)), where t∗ is a time such that q′(t∗) = 0. Since q(0) = β2

2β1
by

LHopital’s rule, q(+∞) = 1 and q(t∗) <∞ is a constant, c4 <∞ is a constant. So there exists a
constant c5 such that µs√

ωsvs+ε
≤ c5

vmin+ε . Then similarly, in ADAM, we also can establish

‖θt∧vε∧σ1− − θ̂t∧vε∧σ1−‖ =

∣∣∣∣∫ t∧vε∧σ1−

0

(
− µsms√

ωsvs + ε
+

µsm̂s√
ωsv̂s + ε

)
ds+

∫ t∧vε∧σ1−

0

εQ−1
s ΣsdLs

∣∣∣∣
¬
≤ c5`

(vmin + ε)|τm − 1|

∫ t∧vε∧σ1−

0

‖θs − θ̂s‖ds+ ε

∥∥∥∥∫ t∧vε∧σ1−

0

Q−1
s ΣsdLs

∥∥∥∥ .
Next, we can employ Gronwall’s to estimate

sup
0≤t≤σ1∧vε

‖θt − θ̂t‖ ≤ exp (κ1vε) sup
0≤t≤vε

ε

∥∥∥∥∫ t

0

Q−1
s Σsdξs

∥∥∥∥ ,
where κ1 = ` in SGD, and κ1 = c5`

(vmin+ε)|τm−1| in ADAM. Since when ε is small enough, vε =
1
c2

ln
(
c1
ερ̄

)
is much smaller than Tε = ε−θ when ε is sufficient small. It yields

P
(

sup
0≤t≤σ1∧vε

‖θt − θ̂t‖ ≥ ερ̄
)
≤P
(

exp (κ1vε) sup
0≤t≤vε

ε

∥∥∥∥∫ t

0

Q−1
s Σsdξs

∥∥∥∥ ≥ ερ̄)
¬
≤P
(

sup
0≤t≤vε

ε

∥∥∥∥∫ t

0

Q−1
s Σsdξ̂s

∥∥∥∥+ ε‖µε‖Tε ≥ ερ̄+c3κ1ρ̄

)
=P
(

sup
0≤t≤vε

ε

∥∥∥∥∫ t

0

Q−1
s Σsdξ̂s

∥∥∥∥ ≥ ερ(ερ̄(1+c3κ1)−ρ − ερ
)

­
≤ exp(−p),

where ¬ uses Lemma 1: (1) the process ξ can be decomposed into two processes ξ̂ and linear
drift, namely, ξt = ξ̂t + µεt, where ξ̂ is a zero mean Lévymartingale with bounded jumps;
(2) ‖εξTε‖ = ε‖µε‖Tε < ε2ρ. In ­, (1) we set ρ̄(1 + c3κ1) < ρ and also set ε suf-
ficient small such that ερ̄(1+c3κ1)−ρ − ερ ≥ 1; (2) by assume ρ0 = ρ0(δ) = 1−δ

16 > 0,
θ0 = θ0(δ) = 1−δ

3 > 0 and p0 = p0(ρ) = ρ
2 , we use Lemma 2 by setting gt = Q−1

t Σt and obtain

P
(

sup0≤t≤Tε ε
∣∣∣∑d

i=1

∫ t
0
gis−dξ̂is

∣∣∣ ≥ ερ) ≤ 2 exp (−ε−p) for all p ∈ (0, p0] and 0 < ε ≤ ε0 with
ε0 = ε0(ρ).

Step 3. In the first step, we have analyzed that the sequence {θ̂t} will converge to the optimum θ∗

of the basin Ω. Moreover, in the second step, we prove that θt is very close to θ̂t. In this step, we
show that in absence of the big jumps of the driving process L the sequence θt is close to θ∗. For
brevity, we set θ∗ = 0. Then we define a function h(θ) = ln(1 +F (θ)) ≥ 0. Since for a small local
convex basin Ω, the function F (θ) can be well approximated by a quadratic function. In this way,
for small θ one can always estimate c6‖θ‖2 ≤ h(θ) ≤ c7‖θ‖2 for some positive constants c6 and c7.
Furthermore, the derivatives ∂ih(θ) = ∂iF (θ)

1+F (θ) and ∂i∂jh(θ) =
∂ijF (θ)(1+F (θ))−∂iF (θ)∂jF (θ)

(1+F (θ))2 are
bounded since the assumptions on the function F (θ), namely F (θ) being upper bounded, `-smooth.
Next we can apply the Itô formulation to the process h(θt):

0 ≤h(θt∧Tε∧σ1−) = h(θ) +

d∑
i=1

∫ t∧Tε∧σ1−

0

∂ih(θs−)dθis− +
1

2

d∑
i,j=1

∫ t∧Tε∧σ1−

0

∂i∂jh(θs−)d[θi,θj ]cs

+
∑

s<t∧Tε∧σ1

(
h(θs)− h(θs−)−

d∑
i=1

∂ih(θs−)∆θis

)
¬
≤h(θ)−

∫ t∧Tε∧σ1−

0

〈
∇F (θs−)

1 + F (θs−)
,

µtms−

ε+
√
ωs−vs−

〉
ds+

∫ t∧Tε∧σ1−

0

ε(∇F (θs−))TQ−1
s−Σs−

1 + F (θs−)
dLs

+
∑

s<t∧Tε∧σ1

(
h(θs)− h(θs−)−

d∑
i=1

∂ih(θs−)∆θis

)
,
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where ¬ uses dθs = − µsms

ε+
√
ωsvs

+ εQ−1
s ΣsdLs and the path-by-path continuous part

[θi,θj ]cs = 0 of the quadratic covariation of θi and θj . Since in Adam by assumption∫ t∧Tε∧σ1−
0

〈
∇F (θs−)
1+F (θs−) ,

µtms−
ε+
√
ωs−vs−

〉
ds ≥ 0, the second term is non-negative due to F (θ) ≥ 0.

Note in SGD, ms = ∇F (θs). So in SGD we do not make the assumption 〈∇F (θt),mt〉 ≥ 0. In
SGD, ε+

√
ωs−vs− equals to one. In this way, we can estimate the last term as

∑
s<t∧Tε∧σ1

∣∣∣∣∣h(θs)− h(θs−)−
d∑
i=1

∂ih(θs−)∆θis

∣∣∣∣∣
≤1

2

d∑
i,j=1

∑
s<t∧Tε∧σ1

∣∣∣∣∫ 1

0

(1− v)∂i∂jh(θs− + v∆θs)dv
∣∣∣∣ · |∆θis∆θjs| ≤ c8∑

s≤t

‖∆θs‖2 = c8[θ]dt ,

holds with some c8 > 0. Furthermore, since vt and Σt are assumed to be bounded, then we can
upper bound [θ]dt as follows:

[θ]dt ≤ c9[εL]dt
¬
= c9[εξ]dt

hold for some constant c9 for all t ≤ σ1. ¬ holds since we assume there is no big jump during t ≤ σ1.
Then by combining all the results and letting gs =

(∇F (θs))
TQ−1

s Σs

1+F (θs)
and considering F (θ) ≤ c7‖θ‖,

we can obtain the following results when ‖θ‖ = ‖θ0‖ ≤ ερ̄ with enough small ε:

0 ≤ ‖θt∧Tε∧σ1−‖2 ≤
1

c6
h(θt∧Tε∧σ1−) ≤ c10

(
ε2ρ̄ + ε sup

0≤t≤Tε

∣∣∣∣∫ t

0

gs−dξ̂s

∣∣∣∣+ ε‖µε‖Tε + ε2[ξ]dTε

)
.

where c10 is a certain constant. Combining the above results gives

P
(

sup
0≤t≤Tε∧σ1

‖θt‖ ≥ ερ̄
)
≤P
(
ε2ρ̄ ≥ ερ̄

4c10

)
+ P

(
ε sup

0≤t≤Tε

∣∣∣∣∫ t

0

gs−dξ̂s

∣∣∣∣ ≥ ερ̄

4c10

)
+ P

(
ε‖µε‖Tε ≥

ερ̄

4c10

)
+ P

(
ε2[ξ]dTε ≥

ερ̄

4c10

)
.

Then by setting ρ̄ < ρ and sufficient small ε such that ε
ρ̄−ρ

4c10
≥ 1 giving ερ̄

4c10
≥ ερ. Then let the results

in Lemma 1 and 2 hold simultaneously by setting ρ0 = ρ0(δ) = 1−δ
16 > 0, θ0 = θ0(δ) = 1−δ

3 > 0,
p0 = ρ

2 , and small enough ε, we have ‖εξTε‖ = ε‖µε‖Tε < ε2ρ and P
(
[εξ]dTε ≥ ε

ρ
)
≤

exp(−ε−p) in Lemma 1, and P
(

sup0≤t≤Tε ε
∣∣∣∑d

i=1

∫ t
0
gis−dξ̂is

∣∣∣ ≥ ερ) ≤ 2 exp (−ε−p) in
Lemma 2. By using these results, we have

P
(

sup
0≤t≤Tε∧σ1

‖θt‖ ≥ ερ̄
)
≤ 4 exp(−ε−p).

for all p ∈ (0, p0] and 0 < ε ≤ ε0 with ε0 = ε0(ρ).

Step 4. In Steps 1 and 2, we guarantee P
(

sup0≤t≤vε∧σ1
‖θt − θ̂t‖ ≥ ερ̄

)
≤ 4 exp(−ε−p). Then

after vε time, we have ‖θt‖ ≤ ερ̄ for all t ≥ vε. In this way, the result in Step 4 holds. So in this
step, we combine the results in Steps 1, 2 and 3 and extend the initialization in Step 3 to all possible
parameter in θ0 ∈ Ω:

P
(

sup
0≤t≤vε∧σ1

‖θt − θ̂t‖ ≥ ερ̄
)
≤ 4 exp(−ε−p),

for all p ∈ (0, p0] and 0 < ε ≤ ε0 with ε0 = ε0(ρ) by setting ρ0 = ρ0(δ) = 1−δ
16 > 0, θ0 = θ0(δ) =

1−δ
3 > 0, p0 = ρ

2 , ρ̄(1 + c3κ1) < ρ and small enough ε. Note here we can remove the extra factor
ρ by setting ε0 = ε0(ρ̄), ρ0 = ρ0(δ) = 1−δ

16(1+c3κ1) > 0, θ0 = θ0(δ) = 1−δ
3 > 0, p0 = ρ̄(1+c3κ1)

2 ,
p ∈ (0, p0).

Step 5. In this step, we extend the result in Step 4 from the time interval [0, Tε ∧ σ1) to the time
interval [0, σ1).
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Let θξt denote the sequence produced by SGD (4) or Adam (5) driven by the process ξ. Then it is easy
to check that for any t < σ1, we have θξt = θt, since there are no big jumps in θt. Then consider any
θ0 ∈ Ω and k ≥ 1, we have for any ρ̄ > 0 and θ > 0

P
(

sup
0≤t<σ1

‖θt − θ̂t‖ ≥ ερ̄
)

≤P
(

sup
0≤t<kTε∧σ1

‖θt − θ̂t‖ ≥ ερ̄
∣∣ kTε < σ1

)
+ P

(
sup

0≤t<σ1

‖θt − θ̂t‖ ≥ ερ̄
∣∣ kTε ≥ σ1

)
≤P
(

sup
0≤t<kTε∧σ1

‖θt − θ̂t‖ ≥ ερ̄
)

+ P (kTε ≥ σ1)

≤P
(

sup
0≤t<kTε

‖θt − θ̂t‖ ≥ ερ̄
)

+ P (kTε ≥ σ1) .

Besides, by using the linear convergence results of θ̂t to the optimum solution θ∗ = 0 in the local
basin Ω, for enough small ε we have ‖θ̂Tε‖ ≤ ε2ρ̄ with initialization θ0 ∈ Ω. Then we let θ̂t(θ)

denote the sequence θ̂t but with initialization θ and define

Ei =

{
sup

t∈[iTε,(i+1)Tε]

‖θξt − θ̂t−iTε(θ
ξ
iTε

)‖ < ερ̄

}
, 0 ≤ i ≤ k − 1.

Note that the probability of Ec
0 =

{
supt∈[0,Tε] ‖θ

ξ
t − θ̂t(θ

ξ
0)‖ ≥ ερ̄

}
is given in Step 4 where

θξ0 = θ0. Furthermore for any k ≥ 1, we have
k−1⋂
i=0

Ei ⊆

{
sup

t∈[0,kTε]

‖θξt − θ̂t‖ < 2ερ̄

}
.

As a result, we can obtain

P

(
sup

t∈[0,kTε]

‖θξt − θ̂t‖ ≥ 2ερ̄

)
≤P

(
k−1⋃
i=0

Ec
i

)
= P

(
Ec

0

⋃
(E0E

c
1)
⋃

(E0E1E
c
2)
⋃
· · · (

k−2⋃
i=0

EiE
c
k−1)

)

≤
k−1∑
i=0

P
(
Ec
i ,θ

ξ
iTε
∈ Ω

)
≤ k sup

θ0∈Ω
P (Ec

0) .

For k = kε = ε−2r and any θ > 0 we have

P (σ1 ≥ kεTε) = exp(−kεTεΘ(ε−δ)) ≤ exp(−εrδ−θ−2rΘ(ε−δ)) ≤ exp(−ε−p)
for all 0 < p ≤ (2− δ)r with enough small ε. On the other hand, we have

P

(
sup

t∈[0,kTε]

‖θξt − θ̂t‖ ≥ 2ερ̄

)
≤ k sup

θ0∈Ω
P (Ec

0) ≤ ε−2r exp(−ε−p) ≤ exp(−ε−p/2)

for any p ≤ 2 log(r log(ε)))
log(ε) . Therefore, the result in this lemma holds

P

(
sup

t∈[0,σ1)

‖θξt − θ̂t‖ ≥ 2ερ̄

)

=P

(
sup

t∈[0,σ1)

‖θξt − θ̂t‖ ≥ 2ερ̄, σ1 < kTε

)
+ P

(
sup

t∈[0,σ1)

‖θξt − θ̂t‖ ≥ 2ερ̄, σ1 ≥ kTε

)

≤P

(
sup

t∈[0,kTε]

‖θξt − θ̂t‖ ≥ 2ερ̄

)
+ P (σ1 ≥ kTε) ≤ 2 exp(−ε−p/2).

for all p ∈ (0, p0] and 0 < ε ≤ ε0 with ε0 = ε0(ρ̄) by setting ρ0 = ρ0(δ) = 1−δ
16(1+c3κ1) > 0,

θ0 = θ0(δ) = 1−δ
3 > 0, p0 = min( ρ̄(1+c3κ1)

2 , p) with p > 0 and small enough ε. Besides, we also

require vε = 1
c2

ln
(
c1
ερ̄

)
= 1

c2
ln
(

2∆
µερ̄

)
≤ ε−θ0 where c1 = 2∆

µ and c2 = 2µτ
β1(vmax+ε)+µτ

(
β1 − β2

4

)
in ADAM, c1 = 2∆

µ and c2 = 2µ in SGD. That is, The proof is completed.
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