A Generalised Jensen's Inequality

In Section 4, we require a version of Jensen's inequality generalised to (possibly) infinite-dimensional vector spaces, because our random variable takes values in $\mathcal{H}_{\mathcal{X}}$, and our convex function is $\|\cdot\|_{\mathcal{H}_{\mathcal{X}}}^{2}$: $\mathcal{H}_{\mathcal{X}} \rightarrow \mathbb{R}$. Note that this square norm function is indeed convex, since, for any $t \in[0,1]$ and any pair $f, g \in \mathcal{H}_{\mathcal{X}}$,

$$
\begin{aligned}
\|t f+(1-t) g\|_{\mathcal{H}_{\mathcal{X}}}^{2} & \leq\left(t\|f\|_{\mathcal{H}_{\mathcal{X}}}+(1-t)\|g\|_{\mathcal{H}_{\mathcal{X}}}\right)^{2} & & \text { by the triangle inequality } \\
& \leq t\|f\|_{\mathcal{H}_{\mathcal{X}}}^{2}+(1-t)\|g\|_{\mathcal{H}_{\mathcal{X}}}^{2}, & & \text { by the convexity of } x \mapsto x^{2} .
\end{aligned}
$$

The following theorem generalises Jensen's inequality to infinite-dimensional vector spaces.
Theorem A. 1 (Generalised Jensen's Inequality, [38], Theorem 3.10). Suppose \mathcal{T} is a real Hausdorff locally convex (possibly infinite-dimensional) linear topological space, and let C be a closed convex subset of \mathcal{T}. Suppose (Ω, \mathcal{F}, P) is a probability space, and $V: \Omega \rightarrow \mathfrak{T}$ a Pettis-integrable random variable such that $V(\Omega) \subseteq C$. Let $f: C \rightarrow[-\infty, \infty)$ be a convex, lower semi-continuous extended-real-valued function such that $\mathbb{E}_{V}[f(V)]$ exists. Then

$$
f\left(\mathbb{E}_{V}[V]\right) \leq \mathbb{E}_{V}[f(V)]
$$

We will actually apply generalised Jensen's inequality with conditional expectations, so we need the following theorem.
Theorem A. 2 (Generalised Conditional Jensen's Inequality). Suppose \mathcal{T} is a real Hausdorff locally convex (possibly infinite-dimensional) linear topological space, and let C be a closed convex subset of \mathcal{T}. Suppose (Ω, \mathcal{F}, P) is a probability space, and $V: \Omega \rightarrow \mathcal{T}$ a Pettis-integrable random variable such that $V(\Omega) \subseteq C$. Let $f: C \rightarrow[-\infty, \infty)$ be a convex, lower semi-continuous extended-realvalued function such that $\mathbb{E}_{V}[f(V)]$ exists. Suppose \mathcal{E} is a sub- σ-algebra of \mathcal{F}. Then

$$
f(\mathbb{E}[V \mid \mathcal{E}]) \leq \mathbb{E}[f(V) \mid \mathcal{E}] .
$$

Proof. Let \mathcal{T}^{*} be the dual space of all real-valued continuous linear functionals on \mathcal{T}. The first part of the proof of [38, Theorem 3.6] tells us that, for all $v \in \mathcal{T}$, we can write

$$
f(v)=\sup \{m(v) \mid m \text { affine }, m \leq f \text { on } C\}
$$

where an affine function m on \mathcal{T} is of the form $m(v)=v^{*}(v)+\alpha$ for some $v^{*} \in \mathcal{T}^{*}$ and $\alpha \in \mathbb{R}$. If we define the subset Q of $\mathcal{T}^{*} \times \mathbb{R}$ as

$$
Q:=\left\{\left(v^{*}, \alpha\right): v^{*} \in \mathcal{T}^{*}, \alpha \in \mathbb{R}, v^{*}(v)+\alpha \leq f(v) \text { for all } v \in \mathcal{T}\right\}
$$

then we can rewrite f as

$$
\begin{equation*}
f(v)=\sup _{\left(v^{*}, \alpha\right) \in Q}\left\{v^{*}(v)+\alpha\right\}, \quad \text { for all } v \in \mathcal{T} \tag{5}
\end{equation*}
$$

See that, for any $\left(v^{*}, \alpha\right) \in Q$, we have

$$
\begin{aligned}
\mathbb{E}[f(V) \mid \mathcal{E}] & \geq \mathbb{E}\left[v^{*}(V)+\alpha \mid \mathcal{E}\right] & & \text { almost surely, by assumption }(*) \\
& =\mathbb{E}\left[v^{*}(V) \mid \mathcal{E}\right]+\alpha & & \text { almost surely, by linearity }(* *)
\end{aligned}
$$

Here, $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ use the properties of conditional expectation of vector-valued random variables given in [12, pp.45-46, Properties 43 and 40 respectively].
We want to show that $\mathbb{E}\left[v^{*}(V) \mid \mathcal{E}\right]=v^{*}(\mathbb{E}[V \mid \mathcal{E}])$ almost surely, and in order to so, we show that the right-hand side is a version of the left-hand side. The right-hand side is clearly \mathcal{E}-measurable, since we have a linear operator on an \mathcal{E}-measurable random variable. Moreover, for any $A \in \mathcal{E}$,

$$
\begin{aligned}
\int_{A} v^{*}(\mathbb{E}[V \mid \mathcal{E}]) d P & =v^{*}\left(\int_{A} \mathbb{E}[V \mid \mathcal{E}] d P\right) & & \text { by [10, p.403, Proposition E.11] } \\
& =v^{*}\left(\int_{A} V d P\right) & & \text { by the definition of conditional expectation } \\
& =\int_{A} v^{*}(V) d P & & \text { by [10, p.403, Proposition E.11] }
\end{aligned}
$$

(here, all the equalities are almost-sure equalities). Hence, by the definition of the conditional expectation, we have that $\mathbb{E}\left[v^{*}(V) \mid \mathcal{E}\right]=v^{*}(\mathbb{E}[V \mid \mathcal{E}])$ almost surely. Going back to our above work, this means that

$$
\mathbb{E}[f(V) \mid \mathcal{E}] \geq v^{*}(\mathbb{E}[V \mid \mathcal{E}])+\alpha
$$

Now take the supremum of the right-hand side over Q. Then (5) tells us that

$$
\mathbb{E}[f(V) \mid \mathcal{E}] \geq f(\mathbb{E}[V \mid \mathcal{E}])
$$

as required.

In the context of Section $4, \mathcal{H}_{\mathcal{X}}$ is real and Hausdorff, and locally convex (because it is a normed space). We take the closed convex subset to be the whole space $\mathcal{H}_{\mathcal{X}}$ itself. The function $\|\cdot\|_{\mathcal{H}_{\mathcal{X}}}^{2}$: $\mathcal{H}_{\mathcal{X}} \rightarrow \mathbb{R}$ is convex (as shown above) and continuous, and finally, since Bochner-integrability implies Pettis integrability, all the conditions of Theorem A. 2 are satisfied.

B Generalisation Error Bounds

Caponnetto and De Vito [5] give an optimal rate of convergence of vector-valued RKHS regression estimators, and its results are quoted by Grünewälder et al. [22] as the state of the art convergence rates, $O\left(\frac{\log n}{n}\right)$. In particular, this implies that the learning algorithm is consistent. However, the lower rate uses an assumption that the output space is a finite-dimensional Hilbert space [5, Theorem 2]; and in our case, this will mean that $\mathcal{H}_{\mathcal{X}}$ is finite-dimensional. This is not true if, for example, we take $k_{\mathcal{X}}$ to be the Gaussian kernel; indeed, this is noted as a limitation by Grünewälder et al. [22], stating that "It is likely that this (finite-dimension) assumption can be weakened, but this requires a deeper analysis". In this paper, we do not want to restrict our attention to finite-dimensional $\mathcal{H}_{\mathcal{X}}$. The upper bound would have been sufficient to guarantee consistency, but an assumption used in the upper bound requires the operator $l_{X Z, z}: \mathcal{H}_{\mathcal{X}} \rightarrow \mathcal{G}_{\mathcal{X Z}}$ defined by

$$
l_{X Z, z}(f)\left(z^{\prime}\right)=l_{X Z}\left(z, z^{\prime}\right)(f)
$$

to be Hilbert-Schmidt for all $z \in \mathcal{Z}$. However, for each $z \in \mathcal{Z}$, taking any orthonormal basis $\left\{\varphi_{i}\right\}_{i=1}^{\infty}$ of $\mathcal{H}_{\mathcal{X}}$, we see that

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left\langle l_{X Z, z}\left(\varphi_{i}\right), l_{X Z, z}\left(\varphi_{i}\right)\right\rangle_{\mathcal{G}_{\mathcal{X}}} & =\sum_{i=1}^{\infty}\left\langle k_{\mathcal{Z}}(z, \cdot) \varphi_{i}, k_{\mathcal{Z}}(z, \cdot) \varphi_{i}\right\rangle_{\mathcal{G}_{\mathcal{X}}} \\
& =\sum_{i=1}^{\infty}\left\langle k_{\mathcal{Z}}(z, z) \varphi_{i}, \varphi_{i}\right\rangle_{\mathcal{H}_{\mathcal{X}}} \\
& =k_{\mathcal{Z}}(z, z) \sum_{i=1}^{\infty} 1 \\
& =\infty
\end{aligned}
$$

meaning this assumption is not fulfilled with our choice of kernel either. Hence, results in [5], used by [22], are not applicable to guarantee consistency in our context.

Kadri et al. [26] address the problem of generalisability of function-valued learning algorithms, using the concept of uniform algorithmic stability [4]. Let us write

$$
\mathcal{D}:=\left\{\left(x_{1}, z_{1}\right), \ldots,\left(x_{n}, z_{n}\right)\right\}
$$

for our training set of size n drawn i.i.d. from the distribution $P_{X Z}$, and we denote by $\mathcal{D}^{i}=$ $\mathcal{D} \backslash\left(x_{i}, z_{i}\right)$ the set \mathcal{D} from which the data point $\left(x_{i}, z_{i}\right)$ is removed. Further, we denote by $\hat{F}_{P_{X \mid Z}, \mathcal{D}}=$ $\hat{F}_{P_{X \mid Z}, n, \lambda}$ the estimate produced by our learning algorithm from the dataset \mathcal{D} by minimising the $\operatorname{loss} \hat{\mathcal{E}}_{X \mid Z, n, \lambda}(F)=\sum_{i=1}^{n}\left\|k_{\mathcal{X}}\left(x_{i}, \cdot\right)-F\left(z_{i}\right)\right\|_{\mathcal{H}_{\mathcal{X}}}^{2}+\lambda\|F\|_{\mathcal{G}_{\mathcal{X Z}}}^{2}$
The assumptions used in this paper, with notations translated to our context, are

1. There exists $\kappa_{1}>0$ such that for all $z \in \mathcal{Z}$,

$$
\left\|l_{\mathcal{X} \mathcal{Z}}(z, z)\right\|_{\mathrm{op}}=\sup _{f \in \mathcal{H}_{\mathcal{X}}} \frac{\left\|l_{\mathcal{X} \mathcal{Z}}(z, z)(f)\right\|_{\mathcal{H}_{\mathcal{X}}}}{\|f\|_{\mathcal{H}_{\mathcal{X}}}} \leq \kappa_{1}^{2}
$$

2. The real function $\mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R}$ defined by

$$
\left(z_{1}, z_{2}\right) \mapsto\left\langle l_{\mathcal{X} \mathcal{Z}}\left(z_{1}, z_{2}\right) f_{1}, f_{2}\right\rangle_{\mathcal{H}_{\mathcal{X}}}
$$

is measurable for all $f_{1}, f_{2} \in \mathcal{H}_{\mathcal{X}}$.
3. The map $(f, F, z) \mapsto\|f-F(z)\|_{\mathcal{H}_{\mathcal{X}}}^{2}$ is τ-admissible, i.e. convex with respect to F and Lipschitz continuous with respect to $F(z)$, with τ as its Lipschitz constant.
4. There exists $\kappa_{2}>0$ such that for all $(z, f) \in \mathcal{Z} \times \mathcal{H}_{\mathcal{X}}$ and any training set \mathcal{D},

$$
\left\|f-\hat{F}_{P_{X \mid Z}, \mathcal{D}}(z)\right\|_{\mathcal{H}_{\mathcal{X}}}^{2} \leq \kappa_{2} .
$$

The concept of uniform stability, with notations translated to our context, is defined as follows.
Definition B. 1 (Uniform algorithmic stability, [26, Definition 6]). For each $F \in \mathcal{G}_{\mathcal{X Z}}$, define the function

$$
\begin{aligned}
\mathcal{R}(F): \mathcal{Z} \times \mathcal{H}_{\mathcal{X}} & \rightarrow \mathbb{R} \\
(z, x) & \mapsto\left\|k_{\mathcal{X}}(x, \cdot)-F(z)\right\|_{\mathcal{H}_{\mathcal{X}}}^{2}
\end{aligned}
$$

A learning algorithm that calculates the estimate $\hat{F}_{P_{X \mid Z}, \mathcal{D}}$ from a training set has uniform stability β with respect to the squared loss if the following holds: for all $n \geq 1$, all $i \in\{1, \ldots, n\}$ and any training set \mathcal{D} of size n,

$$
\left\|\mathcal{R}\left(\hat{F}_{P_{X \mid Z}, \mathcal{D}}\right)-\mathcal{R}\left(\hat{F}_{P_{X \mid Z}, \mathcal{D}^{i}}\right)\right\|_{\infty} \leq \beta
$$

The next two theorems are quoted from [26].
Theorem B. 2 ([26, Theorem 7]). Under assumptions 1, 2 and 3, a learning algorithm that maps a training set \mathcal{D} to the function $\hat{F}_{P_{X \mid Z}, \mathcal{D}}=\hat{F}_{P_{X \mid Z}, n, \lambda}$ is β-stable with

$$
\beta=\frac{\tau^{2} \kappa_{1}^{2}}{2 \lambda n}
$$

Theorem B. 3 ([26, Theorem 8]). Let $\mathcal{D} \mapsto \hat{F}_{P_{X \mid Z}, \mathcal{D}}=\hat{F}_{P_{X \mid Z}, n, \lambda}$ be a learning algorithm with uniform stability β, and assume Assumption 4 is satisfied. Then, for all $n \geq 1$ and any $0<\delta<1$, the following bound holds with probability at least $1-\delta$ over the random draw of training samples:

$$
\tilde{\mathcal{E}}_{X \mid Z}\left(\hat{F}_{P_{X \mid Z}, n, \lambda}\right) \leq \frac{1}{n} \hat{\mathcal{E}}_{X \mid Z, n}\left(\hat{F}_{P_{X \mid Z}, n, \lambda}\right)+2 \beta+\left(4 n \beta+\kappa_{2}\right) \sqrt{\frac{\ln \frac{1}{\delta}}{2 n}}
$$

Theorems B.2 and B.3 give us results about the generalisability of our learning algorithm. It remains to check whether the assumptions are satisfied.
Assumption 2 is satisfied thanks to our assumption that point embeddings are measurable functions, and Assumption 1 is satisfied if we assume that $k_{\mathcal{Z}}$ is a bounded kernel (i.e. there exists $B_{\mathcal{Z}}>0$ such that $k_{\mathcal{Z}}\left(z_{1}, z_{2}\right) \leq B_{\mathcal{Z}}$ for all $\left.z_{1}, z_{2} \in \mathcal{Z}\right)$, because

$$
\left\|l_{\mathcal{X} \mathcal{Z}}(z, z)\right\|_{\mathrm{op}}=\sup _{f \in \mathcal{H}_{\mathcal{X}},\|f\|_{\mathcal{H}_{\mathcal{X}}}=1}\left\|k_{\mathcal{Z}}(z, z)(f)\right\|_{\mathcal{H}_{\mathcal{X}}} \leq B_{\mathcal{Z}}
$$

In [26], a general loss function is used rather than the squared loss, and it is noted that Assumption 3 is in general not satisfied with the squared loss, which is what we use in our context. However, this issue can be addressed if we restrict the output space to a bounded subset. In fact, the only elements in $\mathcal{H}_{\mathcal{X}}$ that appear as the output samples in our case are $k_{\mathcal{X}}(x, \cdot)$ for $x \in \mathcal{X}$, so if we place the assumption that $k_{\mathcal{X}}$ is a bounded kernel (i.e. there exists $B_{\mathcal{X}}>0$ such that $k_{\mathcal{X}}\left(x_{1}, x_{2}\right) \leq B_{\mathcal{X}}$ for all $x_{1}, x_{2} \in \mathcal{X}$), then by the reproducing property,

$$
\left\|k_{\mathcal{X}}(x, \cdot)\right\|_{\mathcal{H}_{\mathcal{X}}}=\sqrt{k_{\mathcal{X}}(x, x)} \leq \sqrt{B_{\mathcal{X}}}
$$

So it is no problem, in our case, to place this boundedness assumption. [26, Appendix D] tells us that Assumption 1 with this boundedness assumption implies Assumption 4 with

$$
\kappa_{2}=B_{\mathcal{X}}\left(1+\frac{\kappa_{1}}{\sqrt{\lambda}}\right)^{2}
$$

while [26, Lemma 2] provides us with a condition which can replace Assumption 3 in Theorem B. 2 giving us the uniform stability of our algorithm with

$$
\beta=\frac{2 \kappa_{1}^{2} B_{\mathcal{X}}\left(1+\frac{\kappa_{1}}{\sqrt{\lambda}}\right)^{2}}{\lambda n}
$$

Then the result of Theorem B. 3 holds with this new β.

C Proofs

Lemma 2.1. For each $f \in \mathcal{H}_{\mathcal{X}}, \int_{\mathcal{X}} f(x) d P_{X}(x)=\left\langle f, \mu_{P_{X}}\right\rangle_{\mathcal{H}_{\mathcal{X}}}$.
Proof. Let L_{P} be a functional on \mathcal{H} defined by $L_{P}(f):=\int_{\mathcal{X}} f(x) d P(x)$. Then L_{P} is clearly linear, and moreover,

$$
\begin{array}{rlr}
\left|L_{P}(f)\right| & =\left|\int_{\mathcal{X}} f(x) d P(x)\right| \\
& =\left|\int_{\mathcal{X}}\langle f, k(x, \cdot)\rangle_{\mathcal{H}} d P(x)\right| \quad \text { by the reproducing property } \\
& \leq \int_{\mathcal{X}}\left|\langle f, k(x, \cdot)\rangle_{\mathcal{H}}\right| d P(x) \quad & \text { by Jensen's inequality } \\
& \leq\|f\|_{\mathcal{H}} \int_{\mathcal{X}}\|k(x, \cdot)\|_{\mathcal{H}} d P(x) \quad \text { by Cauchy-Schwarz inequalty. }
\end{array}
$$

Since the map $x \mapsto k(x, \cdot)$ is Bochner P-integrable, L_{P} is bounded, i.e. $L_{P} \in \mathcal{H}^{*}$. So by the Riesz Representation Theorem, there exists a unique $h \in \mathcal{H}$ such that $L_{P}(f)=\langle f, h\rangle_{\mathcal{H}}$ for all $f \in \mathcal{H}$.
Choose $f(\cdot)=k(x, \cdot)$ for some $x \in \mathcal{X}$. Then

$$
\begin{aligned}
h(x) & =\langle k(x, \cdot), h\rangle_{\mathcal{H}} \\
& =L_{P}(k(x, \cdot)) \\
& =\int_{\mathcal{X}} k\left(x^{\prime}, x\right) d P\left(x^{\prime}\right),
\end{aligned}
$$

which means $h(\cdot)=\int_{\mathcal{X}} k(x, \cdot) d P(x)=\mu_{P}(\cdot)$ (implicitly applying [12, Corollary 37]).
Lemma 2.3. For $f \in \mathcal{H}_{\mathcal{X}}, g \in \mathcal{H}_{\mathcal{Y}},\left\langle f \otimes g, \mu_{P_{X Y}}\right\rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}}=\mathbb{E}_{X Y}[f(X) g(Y)]$.
Proof. For Bochner integrability, we see that

$$
\begin{aligned}
\mathbb{E}_{X Y}\left[\left\|k_{\mathcal{X}}(X, \cdot) \otimes k_{\mathcal{Y}}(Y, \cdot)\right\|_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}}\right] & =\mathbb{E}_{X Y}\left[\sqrt{k_{\mathcal{X}}(X, X)} \sqrt{k_{\mathcal{Y}}(Y, Y)}\right] \\
& \leq \sqrt{\mathbb{E}_{X}\left[k_{\mathcal{X}}(X, X)\right]} \sqrt{\mathbb{E}_{Y}\left[k_{\mathcal{Y}}(Y, Y)\right]}
\end{aligned}
$$

by Cauchy-Schwarz inequality. 2] now implies that $k_{\mathcal{X}}(X, \cdot) \otimes k_{\mathcal{Y}}(Y, \cdot)$ is Bochner $P_{X Y}$-integrable.
Let $L_{P_{X Y}}$ be a functional on $\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}$ defined by $L_{P_{X Y}}\left(\sum_{i} f_{i} \otimes g_{i}\right):=\mathbb{E}_{X Y}\left[\sum_{i} f_{i}(X) g_{i}(Y)\right]$. Then $L_{P_{X Y}}$ is clearly linear, and moreover,

$$
\begin{array}{ll}
\left|L_{P_{X Y}}\left(\sum_{i} f_{i} \otimes g_{i}\right)\right|=\left|\mathbb{E}_{X Y}\left[\sum_{i} f_{i}(X) g_{i}(Y)\right]\right| & \\
\quad \leq \mathbb{E}_{X Y}\left[\left|\sum_{i} f_{i}(X) g_{i}(Y)\right|\right] & \text { by Jensen's inequality }
\end{array}
$$

$$
\begin{array}{ll}
=\mathbb{E}_{X Y}\left[\left|\left\langle\sum_{i} f_{i} \otimes g_{i}, k_{\mathcal{X}}(X, \cdot) \otimes k_{\mathcal{Y}}(Y, \cdot)\right\rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}}\right|\right] & \text { by the reproducing property } \\
\leq\left\|\sum_{i} f_{i} \otimes g_{i}\right\|_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}} \mathbb{E}_{X Y}\left[\left\|k_{\mathcal{X}}(X, \cdot) \otimes k_{\mathcal{Y}}(Y, \cdot)\right\|_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}}\right] & \text { by Cauchy-Schwarz inequality. }
\end{array}
$$

Hence, by Bochner integrability shown above, $L_{P_{X Y}} \in\left(\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}\right)^{*}$. So by the Riesz Representation Theorem, there exists $h \in \mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}$ such that $L_{P_{X Y}}\left(\sum_{i} f_{i} \otimes g_{i}\right)=\left\langle\sum_{i} f_{i} \otimes g_{i}, h\right\rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}}$ for all $\sum_{i} f_{i} \otimes g_{i} \in \mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}$.
Choose $k_{\mathcal{X}}(x, \cdot) \otimes k_{\mathcal{Y}}(y, \cdot) \in \mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}$ for some $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. Then

$$
\begin{aligned}
h(x, y) & =\left\langle k_{\mathcal{X}}(x, \cdot) \otimes k_{\mathcal{Y}}(y, \cdot), h\right\rangle_{\mathcal{H}}^{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}} \quad \text { by the reproducing property } \\
& =L_{P_{X Y}}\left(k_{\mathcal{X}}(x, \cdot) \otimes k_{\mathcal{Y}}(y, \cdot)\right) \\
& =\mathbb{E}_{X Y}\left[k_{\mathcal{X}}(x, X) \otimes k_{\mathcal{Y}}(y, Y)\right] \\
& =\mu_{P_{X Y}}(x, y)
\end{aligned}
$$

as required.
Lemma C.1. Let $\left\{\varphi_{i}\right\}_{i=1}^{\infty}$ and $\left\{\psi_{j}\right\}_{j=1}^{\infty}$ be orthonormal bases of $\mathcal{H}_{\mathcal{X}}$ and $\mathcal{H}_{\mathcal{Y}}$ respectively (note that they are countable, since the RKHSs are separable). Then the map

$$
\begin{aligned}
& \Phi: \mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}} \rightarrow H S\left(\mathcal{H}_{\mathcal{X}}, \mathcal{H}_{\mathcal{Y}}\right) \\
& \quad \sum_{i=1, j=1}^{\infty} c_{i, j}\left(\varphi_{i} \otimes \psi_{j}\right) \mapsto\left[h \mapsto \sum_{i=1, j=1}^{\infty} c_{i, j}\left\langle h, \varphi_{i}\right\rangle_{\mathcal{H}_{\mathcal{X}}} \psi_{j}\right]
\end{aligned}
$$

is an isometric isomorphism.
Proof. Φ is clearly linear. We first show isometry:

$$
\begin{array}{rlr}
\left\|\Phi\left(\sum_{i=1, j=1}^{\infty} c_{i, j}\left(\varphi_{i} \otimes \psi_{j}\right)\right)\right\|_{\mathrm{HS}}^{2} & =\left\|\sum_{i=1, j=1}^{\infty} c_{i, j}\left\langle\cdot, \varphi_{i}\right\rangle_{\mathcal{H}_{\mathcal{X}}} \psi_{j}\right\|_{\mathrm{HS}}^{2} & \\
& =\sum_{k=1}^{\infty}\left\|\sum_{i=1, j=1}^{\infty} c_{i, j}\left\langle\varphi_{k}, \varphi_{i}\right\rangle_{\mathcal{H}_{\mathcal{X}}} \psi_{j}\right\|_{\mathcal{H}_{\mathcal{Y}}}^{2} & \text { by definition } \\
& =\sum_{i=1, j=1}^{\infty} c_{i, j}^{2} & \text { by orthonormality } \\
& =\left\|\sum_{i=1, j=1}^{\infty} c_{i, j}\left(\varphi_{i} \otimes \psi_{j}\right)\right\|_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}}^{2} & \text { by orthonormality, }
\end{array}
$$

as required. It remains to show surjectivity.
Take an element $T \in \operatorname{HS}\left(\mathcal{H}_{\mathcal{X}}, \mathcal{H}_{\mathcal{Y}}\right)$. Then T is completely determined by $\left\{T \varphi_{i}\right\}_{i=1}^{\infty}$. For each i, suppose $T \varphi_{i}=\sum_{j=1}^{\infty} d_{j}^{i} \psi_{j}$, with $d_{j}^{i} \in \mathbb{R}$ for all i and j. Then

$$
\begin{aligned}
\Phi\left(\sum_{i^{\prime}=1, j=1}^{\infty} d_{j}^{i^{\prime}}\left(\varphi_{i^{\prime}} \otimes \psi_{j}\right)\right) & =\left[\varphi_{i} \mapsto \sum_{i^{\prime}=1, j=1}^{\infty}\left\langle d_{j}^{i^{\prime}} \varphi_{i^{\prime}}, \varphi_{i}\right\rangle_{\mathcal{H}_{\mathcal{X}}} \psi_{j}\right] \\
& =\left[\varphi_{i} \mapsto \sum_{j=1}^{\infty} d_{j}^{i} \psi_{j}\right] \quad \text { by orthonormality } \\
& =T
\end{aligned}
$$

So Φ is surjective, and hence an isometric isomorphism.

Before we prove Theorem 2.9, we state the following definition and theorems related to measurable functions for Banach-space valued functions.
Definition C. 2 ([12, p.4, Definition 5]). A function $H: \Omega \rightarrow \mathcal{H}$ is called an \mathcal{F}-simple function if it has the form $H=\sum_{i=1}^{n} h_{i} \mathbf{1}_{B_{i}}$ for some $h_{i} \in \mathcal{H}$ and $B_{i} \in \mathcal{F}$.
A function $H: \Omega \rightarrow \mathcal{H}$ is said to be \mathcal{F}-measurable if there is a sequence $\left(H_{n}\right)$ of \mathcal{H}-valued, \mathcal{F}-simple functions such that $H_{n} \rightarrow H$ pointwise.
Theorem C. 3 ([12, p.4, Theorem 6]). If $H: \Omega \rightarrow \mathcal{H}$ is \mathcal{F}-measurable, then there is a sequence $\left(H_{n}\right)$ of \mathcal{H}-valued, \mathcal{F}-simple functions such that $H_{n} \rightarrow H$ pointwise and $\left|H_{n}\right| \leq|H|$ for every n.
Theorem C. 4 ([12], p.19, Theorem 48], Lebesgue Convergence Theorem). Let $\left(H_{n}\right)$ be a sequence in $L_{\mathcal{H}}^{1}(P), H: \Omega \rightarrow \mathcal{H}$ a P-measurable function, and $g \in L_{+}^{1}(P)$ such that $H_{n} \rightarrow H$-almost everywhere and $\left|H_{n}\right| \leq g$, P-almost everywhere, for each n. Then $H \in L_{\mathcal{H}}^{1}(P)$ and $H_{n} \rightarrow H$ in $L_{\mathcal{H}}^{1}(P)$, i.e. $\int_{\Omega} H_{n} d P \rightarrow \int_{\Omega} H d P$.
Theorem 2.9. Suppose that $P(\cdot \mid \mathcal{E})$ admits a regular version Q. Then $Q H: \Omega \rightarrow \mathcal{H}$ with $\omega \mapsto Q_{\omega} H=\int_{\Omega} H\left(\omega^{\prime}\right) Q_{\omega}\left(d \omega^{\prime}\right)$ is a version of $\mathbb{E}[H \mid \mathcal{E}]$ for every Bochner P-integrable H.

Proof. Suppose H is Bochner P-integrable. Since Q is a regular version of $P(\cdot \mid \mathcal{E})$, it is a probability transition kernel from (Ω, \mathcal{E}) to (Ω, \mathcal{F}).
We first show that $Q H$ is measurable with respect to \mathcal{E}. The map $Q: \Omega \rightarrow \mathcal{H}$ is well-defined, since, for each $\omega \in \Omega, Q_{\omega} H$ is the Bochner-integral of H with respect to the measure $B \rightarrow Q_{\omega}(B)$. Since H is \mathcal{F}-measurable, by Theorem $\mathbf{C} .3$, there is a sequence $\left(H_{n}\right)$ of \mathcal{H}-valued, \mathcal{F}-simple functions such that $H_{n} \rightarrow H$ pointwise. Then for each $\omega \in \Omega, Q_{\omega} H=\lim _{n \rightarrow \infty} Q_{\omega} H_{n}$ by Theorem C.4 But for each n, we can write $H_{n}=\sum_{j=1}^{m} h_{j} \mathbf{1}_{B_{j}}$ for some $h_{j} \in \mathcal{H}$ and $B_{j} \in \mathcal{F}$, and so $\bar{Q}_{\omega} H_{n}=\sum_{j=1}^{m} h_{j} Q_{\omega}\left(B_{j}\right)$. For each B_{j} the map $\omega \mapsto Q_{\omega}\left(B_{j}\right)$ is \mathcal{E}-measurable (by the definition of transition probability kernel, Definition 2.7, and so as a linear combination of \mathcal{E}-measurable functions, $Q H_{n}$ is \mathcal{E}-measurable. Hence, as a pointwise limit of \mathcal{E}-measurable functions, $Q H$ is also \mathcal{E}-measurable, by [12, p.6, Theorem 10].

Next, we show that, for all $A \in \mathcal{E}, \int_{A} H d P=\int_{A} Q H d P$. Fix $A \in \mathcal{E}$. By Theorem C.3, there is a sequence $\left(H_{n}\right)$ of \mathcal{H}-valued, \mathcal{F}-simple functions such that $H_{n} \rightarrow H$ pointwise. For each n, we can write $H_{n}=\sum_{j=1}^{m} h_{j} \mathbf{1}_{B_{j}}$ for some $h_{j} \in \mathcal{H}$ and $B_{j} \in \mathcal{F}$, and

$$
\begin{array}{rlr}
\int_{A} Q H_{n} d P & =\int_{A} \sum_{j=1}^{m} h_{j} Q\left(B_{j}\right) d P \\
& =\int_{A} \sum_{j=1}^{m} h_{j} P\left(B_{j} \mid \mathcal{E}\right) d P \quad \text { since } Q \text { is a version of } P(\cdot \mid \mathcal{E}) \\
& =\sum_{j=1}^{m} h_{j} \int_{A} \mathbb{E}\left[\mathbf{1}_{B_{j}} \mid \mathcal{E}\right] d P & \text { by the definition of conditional probability measures } \\
& =\int_{A} \sum_{j=1}^{m} h_{j} \mathbf{1}_{B_{j}} d P \quad & \\
& =\int_{A} H_{n} d P . & \text { by the definition of conditional expectations, since } A \in \mathcal{E}
\end{array}
$$

We have $H_{n} \rightarrow H$ pointwise by assertion, and as before, $Q H_{n} \rightarrow Q H$ pointwise. Hence,

$$
\begin{aligned}
\int_{A} Q H d P & =\lim _{n \rightarrow \infty} \int_{A} Q H_{n} d P & & \text { by TheoremC. } 4 \\
& =\lim _{n \rightarrow \infty} \int_{A} H_{n} d P & & \text { by above } \\
& =\int_{A} H d P & & \text { by TheoremC.4. }
\end{aligned}
$$

Hence, by the definition of the conditional expectation, $Q H$ is a version of $\mathbb{E}[H \mid \mathcal{E}]$.

Lemma 3.2. For any $f \in \mathcal{H}_{\mathcal{X}}, \mathbb{E}_{X \mid Z}[f(X) \mid Z]=\left\langle f, \mu_{P_{X \mid Z}}\right\rangle_{\mathcal{H}_{\mathcal{X}}}$ almost surely.

Proof. The left-hand side is the conditional expectation of the real-valued random variable $f(X)$ given Z. We need to check that the right-hand side is also that. Note that $\left\langle f, \mu_{P_{X \mid Z}}\right\rangle_{\mathcal{H}_{X}}$ is clearly Z-measurable, and P-integrable (by the Cauchy-Schwarz inequality and the integrability condition (1)). Take any $A \in \sigma(Z)$. Then

$$
\begin{aligned}
\int_{A}\left\langle f, \mu_{P_{X \mid Z}}\right\rangle_{\mathcal{H}_{\mathcal{X}}} d P & =\int_{A}\left\langle f, \mathbb{E}_{X \mid Z}\left[k_{\mathcal{X}}(\cdot, X) \mid Z\right]\right\rangle_{\mathcal{H}_{\mathcal{X}}} d P & & \text { by definition } \\
& =\left\langle f, \int_{A} \mathbb{E}_{X \mid Z}\left[k_{\mathcal{X}}(\cdot, X) \mid Z\right] d P\right\rangle_{\mathcal{H}_{\mathcal{X}}} & & \\
& =\left\langle f, \int_{A} k_{\mathcal{X}}(\cdot, X) d P\right\rangle_{\mathcal{H}_{\mathcal{X}}} & & \text { see Definition 2.5 } \\
& =\int_{A}\left\langle f, k_{\mathcal{X}}(\cdot, X)\right\rangle_{\mathcal{H}_{\mathcal{X}}} d P & & (+) \\
& =\int_{A} f(X) d P & & \text { by the reproducing property. }
\end{aligned}
$$

Here, in $(+)$, we used the fact that the order of a continuous linear operator and Bochner integration can be interchanged [12, p.30, Theorem 36]. Hence $\left\langle f, \mu_{P_{X \mid Z}}\right\rangle_{\mathcal{H}_{\mathcal{X}}}$ is a version of the conditional expectation $\mathbb{E}_{X \mid Z}[f(X) \mid Z]$.

Lemma 3.3. For any pair $f \in \mathcal{H}_{\mathcal{X}}$ and $g \in \mathcal{H}_{\mathcal{Y}}, \mathbb{E}_{X Y \mid Z}[f(X) g(Y) \mid Z]=\left\langle f \otimes g, \mu_{P_{X Y \mid Z}}\right\rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}}$ almost surely.

Proof. The left-hand side is the conditional expectation of the real-valued random variable $f(X) g(Y)$ given Z. We need to check that the right-hand side is also that. Note that $\left\langle f \otimes g, \mu_{P_{X Y \mid Z}}\right\rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}}$ is clearly Z-measurable, and P-integrable (by the Cauchy-Schwarz inequality and the integrability condition (2)). Take any $A \in \sigma(Z)$. Then

$$
\begin{aligned}
\int_{A}\left\langle f \otimes g, \mu_{P_{X Y \mid Z}}\right\rangle_{\mathcal{H} \mathcal{X} \otimes \mathcal{H}_{\mathcal{Y}}} d P & =\int_{A}\left\langle f \otimes g, \mathbb{E}_{X Y \mid Z}\left[k_{\mathcal{X}}(\cdot, X) \otimes k_{\mathcal{Y}}(\cdot, Y) \mid Z\right]\right\rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}} d P \\
& =\left\langle f \otimes g, \int_{A} \mathbb{E}_{X Y \mid Z}\left[k_{\mathcal{X}}(\cdot, X) \otimes k_{\mathcal{Y}}(\cdot, Y) \mid Z\right] d P\right\rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}} \\
& =\left\langle f \otimes g, \int_{A} k_{\mathcal{X}}(\cdot, X) \otimes k_{\mathcal{Y}}(\cdot, Y) d P\right\rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H} Y} \\
& =\int_{A}\left\langle f \otimes g, k_{\mathcal{X}}(\cdot, X) \otimes k_{\mathcal{Y}}(\cdot, Y)\right\rangle_{\mathcal{H} \mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}} d P \\
& =\int_{A} f(X) g(Y) d P .
\end{aligned}
$$

So $\left\langle f \otimes g, \mu_{P_{X Y \mid Z}}\right\rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H} Y}$ is a version of the conditional expectation $\mathbb{E}_{X Y \mid Z}[f(X) g(Y) \mid Z]$.
Theorem 4.1. Assume that $\mathcal{H}_{\mathcal{X}}$ is separable, and denote its Borel σ-algebra by $\mathcal{B}\left(\mathcal{H}_{\mathcal{X}}\right)$. Then we can write

$$
\mu_{P_{X \mid Z}}=F_{P_{X \mid Z}} \circ Z
$$

where $F_{P_{X \mid Z}}: \mathcal{Z} \rightarrow \mathcal{H}_{\mathcal{X}}$ is some deterministic function, measurable with respect to \mathfrak{Z} and $\mathcal{B}\left(\mathcal{H}_{\mathcal{X}}\right)$.

Proof. Let $\operatorname{Im}(Z) \subseteq \mathcal{Z}$ be the image of $Z: \Omega \rightarrow \mathcal{Z}$, and let $\tilde{\mathfrak{Z}}$ denote the σ-algebra on $\operatorname{Im}(Z)$ defined by $\tilde{\mathfrak{Z}}=\{A \cap \operatorname{Im}(Z): A \in \mathfrak{Z}\}$ (see [9, page 5, 1.15]). We will first construct a function $\tilde{F}: \operatorname{Im}(Z) \rightarrow \mathcal{H}_{\mathcal{X}}$, measurable with respect to $\tilde{\mathfrak{Z}}$ and $\mathcal{B}\left(\mathcal{H}_{\mathcal{X}}\right)$, such that $\mu_{P_{X \mid Z}}=\tilde{F} \circ Z$.

For a given $z \in \operatorname{Im}(Z) \subseteq \mathcal{Z}$, we have $Z^{-1}(z) \subseteq \Omega$. Suppose for contradiction that there are two distinct elements $\omega_{1}, \omega_{2} \in Z^{-1}(z)$ such that $\mu_{P_{X \mid Z}}\left(\omega_{1}\right) \neq \mu_{P_{X \mid Z}}\left(\omega_{2}\right)$. Since $\mathcal{H}_{\mathcal{X}}$ is Hausdorff,
there are disjoint open neighbourhoods N_{1} and N_{2} of $\mu_{P_{X \mid Z}}\left(\omega_{1}\right)$ and $\mu_{P_{X \mid Z}}\left(\omega_{2}\right)$ respectively. By definition of a Borel σ-algebra, we have $N_{1}, N_{2} \in \mathcal{B}\left(\mathcal{H}_{\mathcal{X}}\right)$, and since $\mu_{P_{X \mid Z}}$ is $\sigma(Z)$-measurable,

$$
\begin{equation*}
\mu_{P_{X \mid Z}}^{-1}\left(N_{1}\right), \mu_{P_{X \mid Z}}^{-1}\left(N_{2}\right) \in \sigma(Z) \tag{6}
\end{equation*}
$$

Furthermore, $\mu_{P_{X \mid Z}}^{-1}\left(N_{1}\right)$ and $\mu_{P_{X \mid Z}}^{-1}\left(N_{2}\right)$ are neighbourhoods of ω_{1} and ω_{2} respectively, and are disjoint.
(i) For any $B \in \tilde{\mathfrak{Z}}$ with $z \in B$, since $Z\left(\omega_{1}\right)=z=Z\left(\omega_{2}\right)$, we have $\omega_{1}, \omega_{2} \in Z^{-1}(B)$. So $Z^{-1}(B) \neq \mu_{P_{X \mid Z}}^{-1}\left(N_{1}\right)$ and $Z^{-1}(B) \neq \mu_{P_{X \mid Z}}^{-1}\left(N_{2}\right)$, as $\omega_{2} \notin \mu_{P_{X \mid Z}}^{-1}\left(N_{1}\right)$ and $\omega_{1} \notin$ $\mu_{P_{X \mid Z}}^{-1}\left(N_{2}\right)$.
(ii) For any $B \in \tilde{\mathfrak{J}}$ with $z \notin B$, we have $\omega_{1} \notin Z^{-1}(B)$ and $\omega_{2} \notin Z^{-1}(B)$. So $Z^{-1}(B) \neq$ $\mu_{P_{X \mid Z}}^{-1}\left(N_{1}\right)$ and $Z^{-1}(B) \neq \mu_{P_{X \mid Z}}^{-1}\left(N_{2}\right)$.

Since $\sigma(Z)=\left\{Z^{-1}(B) \mid B \in \tilde{\mathfrak{Z}}\right\}$ (see [9], page 11, Exercise 2.20), we can't have $\mu_{P_{X \mid Z}}^{-1}\left(N_{1}\right) \in$ $\sigma(Z)$ nor $\mu_{P_{X \mid Z}}^{-1}\left(N_{2}\right) \in \sigma(Z)$. This is a contradiction to 6 . We therefore conclude that, for any $z \in \mathcal{Z}$, if $Z\left(\omega_{1}\right)=z=Z\left(\omega_{2}\right)$ for distinct $\omega_{1}, \omega_{2} \in \Omega$, then $\mu_{P_{X \mid Z}}\left(\omega_{1}\right)=\mu_{P_{X \mid Z}}\left(\omega_{2}\right)$.
We define $\tilde{F}(z)$ to be the unique value of $\mu_{P_{X \mid Z}}(\omega)$ for all $\omega \in Z^{-1}(z)$. Then for any $\omega \in \Omega$, $\mu_{P_{X \mid Z}}(\omega)=\tilde{F}(Z(\omega))$ by construction. It remains to check that \tilde{F} is measurable with respect to $\tilde{\mathfrak{Z}}$ and $\mathcal{B}\left(\mathcal{H}_{\mathcal{X}}\right)$.
Take any $N \in \mathcal{B}\left(\mathcal{H}_{\mathcal{X}}\right)$. Since $\mu_{P_{X \mid Z}}$ is $\sigma(Z)$-measurable, $\mu_{P_{X \mid Z}}^{-1}(N)=Z^{-1}\left(\tilde{F}^{-1}(N)\right) \in \sigma(Z)$. Since $\sigma(Z)=\left\{Z^{-1}(B) \mid B \in \tilde{\mathfrak{Z}}\right\}$, we have $Z^{-1}\left(\tilde{F}^{-1}(N)\right)=Z^{-1}(C)$ for some $C \in \tilde{\mathfrak{Z}}$. Since the mapping $Z: \Omega \rightarrow \operatorname{Im}(Z)$ is surjective, $\tilde{F}^{-1}(N)=C$. Hence $\tilde{F}^{-1}(N) \in \tilde{\mathfrak{Z}}$, and so \tilde{F} is measurable with respect to $\tilde{\mathfrak{Z}}$ and $\mathcal{B}\left(\mathcal{H}_{\mathcal{X}}\right)$.
Finally, we can extend $\tilde{F}: \operatorname{Im}(Z) \rightarrow \mathcal{H}_{\mathcal{X}}$ to $F: \mathcal{Z} \rightarrow \mathcal{H}_{\mathcal{X}}$ by [13, page 128, Corollary 4.2.7] (note that $\mathcal{H}_{\mathcal{X}}$ is a complete metric space, and assumed to be separable in this theorem).
Theorem 4.2. $F_{P_{X \mid Z}} \in L^{2}\left(\mathcal{Z}, P_{Z} ; \mathcal{H}_{\mathcal{X}}\right)$ minimises both $\tilde{\mathcal{E}}_{X \mid Z}$ and $\mathcal{E}_{X \mid Z}$, i.e.

$$
F_{P_{X \mid Z}}=\underset{F \in L^{2}\left(\mathcal{Z}, P_{\mathcal{Z}} ; \mathcal{H}_{\mathcal{X}}\right)}{\arg \min } \mathcal{E}_{X \mid Z}(F)=\underset{F \in L^{2}\left(\mathcal{Z}, P_{\mathcal{Z}} ; \mathcal{H}_{\mathcal{X}}\right)}{\arg \min } \tilde{\mathcal{E}}_{X \mid Z}(F) .
$$

Moreover, it is almost surely unique, i.e. it is almost surely equal to any other minimiser of the objective functionals.

Proof. Recall that we have

$$
\mathcal{E}_{X \mid Z}(F):=\mathbb{E}_{Z}\left[\left\|F_{P_{X \mid Z}}(Z)-F(Z)\right\|_{\mathcal{H}_{X}}^{2}\right]
$$

So clearly, $\mathcal{E}_{X \mid Z}\left(F_{P_{\tilde{X} \mid Z}}\right)=0$, meaning $F_{P_{X \mid Z}}$ minimises $\mathcal{E}_{X \mid Z}$ in $L^{2}\left(\mathcal{Z}, P_{Z} ; \mathcal{H}_{\mathcal{X}}\right)$. So it only remains to show that $\tilde{\mathcal{E}}_{X \mid Z}$ is minimised in $L^{2}\left(\mathcal{Z}, P_{Z} ; \mathcal{H}_{\mathcal{X}}\right)$ by $F_{P_{X \mid Z}}$.
Let F be any element in $L^{2}\left(\mathcal{Z}, P_{Z} ; \mathcal{H}_{\mathcal{X}}\right)$. Then we have

$$
\begin{align*}
\tilde{\mathcal{E}}_{X \mid Z}(F)-\tilde{\mathcal{E}}_{X \mid Z}\left(F_{P_{X \mid Z}}\right)= & \mathbb{E}_{X, Z}\left[\left\|k_{\mathcal{X}}(X, \cdot)-F(Z)\right\|_{\mathcal{H}_{\mathcal{X}}}^{2}\right]-\mathbb{E}_{X, Z}\left[\left\|k_{\mathcal{X}}(X, \cdot)-F_{P_{X \mid Z}}(Z)\right\|_{\mathcal{H}_{\mathcal{X}}}^{2}\right] \\
= & \mathbb{E}_{Z}\left[\|F(Z)\|_{\mathcal{H}_{\mathcal{X}}}^{2}\right]-2 \mathbb{E}_{X, Z}\left[\left\langle k_{\mathcal{X}}(X, \cdot), F(Z)\right\rangle_{\mathcal{H}_{\mathcal{X}}}\right] \\
& +2 \mathbb{E}_{X, Z}\left[\left\langle k_{\mathcal{X}}(X, \cdot), F_{P_{X \mid Z}}(Z)\right\rangle_{\mathcal{H}_{\mathcal{X}}}\right]-\mathbb{E}_{Z}\left[\left\|F_{P_{X \mid Z}}(Z)\right\|_{\mathcal{H}_{\mathcal{X}}}^{2}\right] \tag{7}
\end{align*}
$$

Here,

$$
\mathbb{E}_{X, Z}\left[\left\langle k_{\mathcal{X}}(X, \cdot), F(Z)\right\rangle_{\mathcal{H}_{\mathcal{X}}}\right]=\mathbb{E}_{Z}\left[\mathbb{E}_{X \mid Z}[F(Z)(X) \mid Z]\right] \quad \text { by the reproducing property }
$$

$$
\begin{array}{ll}
=\mathbb{E}_{Z}\left[\left\langle F(Z), \mu_{P_{X \mid Z}}\right\rangle_{\mathcal{H}_{\mathcal{X}}}\right] & \\
=\mathbb{E}_{Z}\left[\left\langle F(Z), F_{P_{X \mid Z}}(Z)\right\rangle_{\mathcal{H}_{\mathcal{X}}}\right] & \\
\text { sy Lemma } 3.2 \\
=\mu_{P_{X \mid Z}}=F_{P_{X \mid Z}} \circ Z
\end{array}
$$

and similarly,

$$
\begin{aligned}
\mathbb{E}_{X, Z}\left[\left\langle k_{\mathcal{X}}(X, \cdot), F_{P_{X \mid Z}}(Z)\right\rangle_{\mathcal{H}_{\mathcal{X}}}\right] & =\mathbb{E}_{Z}\left[\mathbb{E}_{X \mid Z}\left[F_{P_{X \mid Z}}(Z)(X) \mid Z\right]\right] \quad \text { by the reproducing property } \\
& =\mathbb{E}_{Z}\left[\left\langle F_{P_{X \mid Z}}(Z), F_{P_{X \mid Z}}(Z)\right\rangle_{\mathcal{H}_{X}}\right] \quad \text { by Lemma } 3.2 \\
& =\mathbb{E}_{Z}\left[\left\|F_{P_{X \mid Z}}(Z)\right\|_{\mathcal{H}_{X}}^{2}\right]
\end{aligned}
$$

Substituting these expressions back into (7), we have

$$
\begin{aligned}
\tilde{\mathcal{E}}_{X \mid Z}(F) & -\tilde{\mathcal{E}}_{X \mid Z}\left(F_{P_{X \mid Z}}\right) \\
& =\mathbb{E}_{Z}\left[\|F(Z)\|_{\mathcal{H}_{\mathcal{X}}}^{2}\right]-2 \mathbb{E}_{Z}\left[\left\langle F(Z), F_{P_{X \mid Z}}(Z)\right\rangle_{\mathcal{H}_{\mathcal{X}}}\right]+\mathbb{E}_{Z}\left[\left\|F_{P_{X \mid Z}}(Z)\right\|_{\mathcal{H}_{\mathcal{X}}}^{2}\right] \\
& =\mathbb{E}_{Z}\left[\left\|F(Z)-F_{P_{X \mid Z}}(Z)\right\|_{\mathcal{H}_{\mathcal{X}}}^{2}\right] \\
& \geq 0
\end{aligned}
$$

Hence, $F_{P_{X \mid Z}}$ minimises $\tilde{\mathcal{E}}_{X \mid Z}$ in $L^{2}\left(\mathcal{Z}, P_{Z} ; \mathcal{H}_{\mathcal{X}}\right)$. The minimiser is further more P_{Z}-almost surely unique; indeed, if $F^{\prime} \in L^{2}\left(\mathcal{Z}, P_{Z} ; \mathcal{H}_{\mathcal{X}}\right)$ is another minimiser of $\tilde{\mathcal{E}}_{X \mid Z}$, then the calculation in 7 shows that

$$
\mathbb{E}_{Z}\left[\left\|F_{P_{X \mid Z}}(Z)-F^{\prime}(Z)\right\|_{\mathcal{H}_{\mathcal{X}}}^{2}\right]=0
$$

which immediately implies that $\left\|F_{P_{X \mid Z}}(Z)-F^{\prime}(Z)\right\|_{\mathcal{H}_{\mathcal{X}}}=0 P_{Z}$-almost surely, which in turn implies that $F_{P_{X \mid Z}}=F^{\prime} P_{Z}$-almost surely.

Theorem 4.4. Suppose that $k_{\mathcal{X}}$ and $k_{\mathcal{Z}}$ are bounded kernels, i.e. there exist $B_{\mathcal{Z}}, B_{\mathcal{X}}>0$ such that $\sup _{z \in \mathcal{Z}} k_{\mathcal{Z}}(z, z) \leq B_{\mathcal{Z}}$ and $\sup _{x \in \mathcal{X}} k_{\mathcal{X}}(x, x) \leq B_{\mathcal{X}}$, and that the operator-valued kernel $l_{\mathcal{X} \mathcal{Z}}$ is \mathcal{C}_{0}-universal. Let the regularisation parameter λ_{n} decay to 0 at a slower rate than $\mathcal{O}\left(n^{-1 / 2}\right)$. Then our learning algorithm that produces $\hat{F}_{P_{X \mid Z}, n, \lambda_{n}}$ is universally consistent (in the surrogate loss $\tilde{\mathcal{E}}_{X \mid Z}$), i.e. for any joint distribution $P_{X Z}$ and constants $\epsilon>0$ and $\delta>0$,

$$
P_{X Z}\left(\tilde{\mathcal{E}}_{X \mid Z}\left(\hat{F}_{P_{X \mid Z}, n, \lambda_{n}}\right)-\tilde{\mathcal{E}}_{X \mid Z}\left(F_{P_{X \mid Z}}\right)>\epsilon\right)<\delta
$$

for large enough n.
Proof. Follows immediately from [37, Theorem 2.3].

Theorem 4.5. In addition to the setting in Theorem4.4, assume that $F_{P_{X \mid Z}} \in \mathcal{G}_{\mathcal{X Z}}$. Let the regularisation parameter λ_{n} decay to 0 with rate $\mathcal{O}\left(n^{-1 / 4}\right)$. Then $\tilde{\mathcal{E}}_{X \mid Z}\left(\hat{F}_{P_{X \mid Z}, n, \lambda_{n}}\right)-\tilde{\mathcal{E}}_{X \mid Z}\left(F_{P_{X \mid Z}}\right)=$ $\mathcal{O}_{P}\left(n^{-1 / 4}\right)$.

Proof. Follows immediately from [37, Theorem 2.4].
Theorem 5.2. Suppose that $k_{\mathcal{X}}$ is a characteristic kernel, that P_{Z} and $P_{Z^{\prime}}$ are absolutely continuous with respect to each other, and that $P(\cdot \mid Z)$ and $P\left(\cdot \mid Z^{\prime}\right)$ admit regular versions. Then MCMD $_{P_{X \mid Z}, P_{X^{\prime} \mid Z^{\prime}}}=0 P_{Z^{-}}$(or $P_{Z^{\prime}-}$)almost everywhere if and only if, for $P_{Z^{-}}$(or $P_{Z^{\prime}}$-)almost all $z \in \mathcal{Z}, P_{X \mid Z=z}(B)=P_{X^{\prime} \mid Z^{\prime}=z}(B)$ for all $B \in \mathfrak{X}$.

Proof. Write Q and Q^{\prime} for some regular versions of $P(\cdot \mid Z)$ and $P\left(\cdot \mid Z^{\prime}\right)$ respectively, and assume without loss of generality that the conditional distributions $P_{X \mid Z}$ and $P_{X^{\prime} \mid Z^{\prime}}$ are given by $P_{X \mid Z}(\omega)(B)=Q_{\omega}(X \in B)$ and $P_{X^{\prime} \mid Z^{\prime}}(\omega)(B)=Q_{\omega}^{\prime}\left(X^{\prime} \in B\right)$ for $B \in \mathfrak{X}$. By the definition of regular versions, for each $B \in \mathfrak{X}$, the real-valued random variables $\omega \mapsto P_{X \mid Z}(\omega)(B)$ and $\omega \mapsto P_{X^{\prime} \mid Z^{\prime}}(\omega)(B)$ are measurable with respect to Z and Z^{\prime} respectively, and so there are functions $R_{B}: \mathcal{Z} \rightarrow \mathbb{R}$ and $R_{B}^{\prime}: \mathcal{Z} \rightarrow \mathbb{R}$ such that $P_{X \mid Z}(\omega)(B)=R_{B}(Z(\omega))$ and $P_{X^{\prime} \mid Z^{\prime}}(\omega)(B)=$
$R_{B}^{\prime}\left(Z^{\prime}(\omega)\right)$. Moreover, for each fixed $z \in \mathcal{Z}$, the mappings $B \mapsto P_{X \mid Z}\left(Z^{-1}(z)\right)(B)=R_{B}(z)$ and $B \mapsto P_{X^{\prime} \mid Z^{\prime}}\left(Z^{\prime-1}(z)\right)(B)=R_{B}^{\prime}(z)$ are measures. We write $R_{B}(z)=P_{X \mid Z=z}(B)$ and $R_{B}^{\prime}(z)=P_{X^{\prime} \mid Z^{\prime}=z}(B)$.
By Theorem 2.9, there exists an event $A_{1} \in \mathcal{F}$ with $P\left(A_{1}\right)=1$ such that for all $\omega \in A_{1}$,

$$
\mu_{P_{X \mid Z}}(\omega):=\mathbb{E}_{X \mid Z}\left[k_{\mathcal{X}}(X, \cdot) \mid Z\right](\omega)=\int_{\Omega} k_{\mathcal{X}}\left(X\left(\omega^{\prime}\right), \cdot\right) Q_{\omega}\left(d \omega^{\prime}\right)=\int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) P_{X \mid Z}(\omega)(d x)
$$

and an event $A_{2} \in \mathcal{F}$ with $P\left(A_{2}\right)=1$ such that for all $\omega \in A_{2}$,

$$
\begin{aligned}
\mu_{P_{X^{\prime} \mid Z^{\prime}}}(\omega):=\mathbb{E}_{X^{\prime} \mid Z^{\prime}}\left[k_{\mathcal{X}}\left(X^{\prime}, \cdot\right) \mid Z^{\prime}\right](\omega) & =\int_{\Omega} k_{\mathcal{X}}\left(X^{\prime}\left(\omega^{\prime}\right), \cdot\right) Q_{\omega}\left(d \omega^{\prime}\right) \\
& =\int_{\mathcal{X}} k_{\mathcal{X}}\left(x^{\prime}, \cdot\right) P_{X^{\prime} \mid Z^{\prime}}(\omega)\left(d x^{\prime}\right)
\end{aligned}
$$

Suppose for contradiction that there exists some $D \in \mathfrak{Z}$ with $P_{Z}(D)>0$ such that for all $z \in D$, $F_{P_{X \mid Z}}(z) \neq \int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{d x}(z)$. Then $P\left(Z^{-1}(D)\right)=P_{Z}(D)>0$, and hence $P\left(Z^{-1}(D) \cap A_{1}\right)>$ 0 . For all $\omega \in Z^{-1}(D) \cap A_{1}$, we have $Z(\omega) \in D$, and hence

$$
\mu_{P_{X \mid Z}}(\omega)=F_{P_{X \mid Z}}(Z(\omega)) \neq \int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{d x}(Z(\omega))=\int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) P_{X \mid Z}(\omega)(d x)
$$

This contradicts our assertion that $\mu_{P_{X \mid Z}}(\omega)=\int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) P_{X \mid Z}(\omega)(d x)$ for all $\omega \in A_{1}$, hence there does not exist $D \in \mathfrak{Z}$ with $P_{Z}(D)>0$ such that for all $z \in D, F_{P_{X \mid Z}}(z) \neq \int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{d x}(z)$. Therefore, there must exist some $C_{1} \in \mathcal{Z}$ with $P_{Z}\left(C_{1}\right)=1$ such that for all $z \in C_{1}, F_{P_{X \mid Z}}(z)=$ $\int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{d x}(z)$. Similarly, there must exist some $C_{2} \in \mathfrak{Z}$ with $P_{Z}\left(C_{2}\right)=1$ such that for all $z \in C_{2}, F_{P_{X^{\prime} \mid Z^{\prime}}}(z)=\int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{d x}^{\prime}(z)$. Since P_{Z} and $P_{Z^{\prime}}$ are absolutely continuous with respect to each other, we also have $P_{Z}\left(C_{2}\right)=1=P_{Z^{\prime}}\left(C_{1}\right)$.
(\Longrightarrow) Suppose first that $\operatorname{MCMD}_{P_{X \mid Z}, P_{X^{\prime} \mid Z^{\prime}}}=\left\|F_{P_{X \mid Z}}-F_{P_{X^{\prime} \mid Z^{\prime}}}\right\|_{\mathcal{H}_{\mathcal{X}}}=0 P_{Z}$-almost everywhere, i.e. there exists $C \in \mathfrak{Z}$ with $P_{Z}(C)=1$ such that for all $z \in C$, $\left\|F_{P_{X \mid Z}}(z)-F_{P_{X^{\prime} \mid Z^{\prime}}}(z)\right\|_{\mathcal{H}_{\mathcal{X}}}=0$. Then for each $z \in C \cap C_{1} \cap C_{2}$,

$$
\begin{aligned}
\int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{d x}(z) & =F_{P_{X \mid Z}}(z) & & \text { since } z \in C_{1} \\
& =F_{P_{X^{\prime} \mid Z^{\prime}}}(z) & & \text { since } z \in C \\
& =\int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{d x}^{\prime}(z) & & \text { since } z \in C_{2}
\end{aligned}
$$

Since the kernel $k_{\mathcal{X}}$ is characteristic, this means that $B \mapsto R_{B}(z)$ and $B \mapsto R_{B}^{\prime}(z)$ are the same probability measure on $(\mathcal{X}, \mathfrak{X})$. By countable intersection, we have $P_{Z}\left(C \cap C_{1} \cap C_{2}\right)=$ 1, so P_{Z}-almost everywhere,

$$
P_{X \mid Z=z}(B)=P_{X^{\prime} \mid Z^{\prime}=z}(B)
$$

for all $B \in \mathfrak{X}$.
(\Longleftarrow) Now assume there exists $C \in \mathfrak{Z}$ with $P_{Z}(C)=1$ such that for each $z \in C, R_{B}(z)=R_{B}^{\prime}(z)$ for all $B \in \mathfrak{X}$. Then for all $z \in C \cap C_{1} \cap C_{2}$,

$$
\begin{aligned}
& \left\|F_{P_{X \mid Z}}(z)-F_{P_{X^{\prime} \mid Z^{\prime}}}(z)\right\|_{\mathcal{H}_{\mathcal{X}}} \\
& =\left\|\int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{d x}(z)-\int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{d x}^{\prime}(z)\right\|_{\mathcal{H}_{\mathcal{X}}} \quad \text { since } z \in C_{1} \cap C_{2} \\
& =\left\|\int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{d x}(z)-\int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{d x}(z)\right\|_{\mathcal{H}_{\mathcal{X}}} \quad \text { since } z \in C \\
& =0
\end{aligned}
$$

and since $P_{Z}\left(C \cap C_{1} \cap C_{2}\right)=1,\left\|F_{P_{X \mid Z}}-F_{P_{X^{\prime} \mid Z^{\prime}}}\right\|_{\mathcal{H}_{\mathcal{X}}}=0 P_{Z}$-almost everywhere.

Theorem 5.4. Suppose $k_{\mathcal{X}} \otimes k_{\mathcal{Y}}$ is a characteristic kernel on $\mathcal{X} \times \mathcal{Y}$, and that $P(\cdot \mid Z)$ admits a regular version. Then $\operatorname{HSCIC}(X, Y \mid Z)=0$ almost surely if and only if $X \Perp Y \mid Z$.

Proof. Write Q for a regular version of $P(\cdot \mid Z)$, and assume without loss of generality that the conditional distributions $P_{X \mid Z}, P_{Y \mid Z}$ and $P_{X Y \mid Z}$ are given by $P_{X \mid Z}(\omega)(B)=Q_{\omega}(X \in B)$ for $B \in \mathcal{X}, P_{Y \mid Z}(\omega)(C)=Q_{\omega}(Y \in C)$ for $C \in \mathfrak{Y}$ and $P_{X Y \mid Z}(\omega)(D)=Q_{\omega}((X, Y) \in D)$ for $D \in \mathfrak{X} \times \mathfrak{Y}$. By Theorem 2.9, there exists an event $A_{1} \in \mathcal{F}$ with $P\left(A_{1}\right)=1$ such that for all $\omega \in A_{1}$,

$$
\mu_{P_{X \mid Z}}(\omega):=\mathbb{E}_{X \mid Z}\left[k_{\mathcal{X}}(X, \cdot) \mid Z\right](\omega)=\int_{\Omega} k_{\mathcal{X}}\left(X\left(\omega^{\prime}\right), \cdot\right) Q_{\omega}\left(d \omega^{\prime}\right)=\int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) P_{X \mid Z}(\omega)(d x)
$$

an event $A_{2} \in \mathcal{F}$ with $P\left(A_{2}\right)=1$ such that for all $\omega \in A_{2}$,

$$
\mu_{P_{Y \mid Z}}(\omega):=\mathbb{E}_{Y \mid Z}\left[k_{\mathcal{Y}}(Y, \cdot) \mid Z\right](\omega)=\int_{\Omega} k_{\mathcal{Y}}\left(Y\left(\omega^{\prime}\right), \cdot\right) Q_{\omega}\left(d \omega^{\prime}\right)=\int_{\mathcal{Y}} k_{\mathcal{Y}}(y, \cdot) P_{Y \mid Z}(\omega)(d y)
$$

and an event $A_{3} \in \mathcal{F}$ with $P\left(A_{3}\right)=1$ such that for all $\omega \in A_{3}$,

$$
\mu_{P_{X Y \mid Z}}(\omega)=\int_{\mathcal{X} \times \mathcal{Y}} k_{\mathcal{X}}(x, \cdot) \otimes k_{\mathcal{Y}}(y, \cdot) P_{X Y \mid Z}(\omega)(d(x, y))
$$

This means that, for each $\omega \in A_{1}, \mu_{P_{X \mid Z}}(\omega)$ is the mean embedding of $P_{X \mid Z}(\omega)$, and for each $\omega \in A_{2}, \mu_{P_{Y \mid Z}}(\omega)$ is the mean embedding of $P_{Y \mid Z}(\omega)$.
(\Longrightarrow) Suppose first that $\operatorname{HSCIC}(X, Y \mid Z)=\left\|\mu_{P_{X Y \mid Z}}-\mu_{P_{X \mid Z}} \otimes \mu_{P_{Y \mid Z}}\right\|_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H} Y}=0$ almost surely, i.e. there exists $A \in \mathcal{F}$ with $P(A)=1$ such that for all $\omega \in A, \| \mu_{P_{X Y \mid Z}}(\omega)-$ $\mu_{P_{X \mid Z}}(\omega) \otimes \mu_{P_{Y \mid Z}}(\omega) \|_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}}=0$. Then for each $\omega \in A \cap A_{1} \cap A_{2} \cap A_{3}$,

$$
\begin{aligned}
\int_{\mathcal{X} \times \mathcal{Y}} & k_{\mathcal{X}}(x, \cdot) \otimes k_{\mathcal{Y}}(y, \cdot) P_{X Y \mid Z}(\omega)(d(x, y))=\mu_{P_{X Y \mid Z}}(\omega) & & \text { since } \omega \in A_{3} \\
& =\mu_{P_{X \mid Z}}(\omega) \otimes \mu_{P_{Y \mid Z}}(\omega) & & \text { since } \omega \in A \\
& =\int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) P_{X \mid Z}(\omega)(d x) \otimes \int_{\mathcal{Y}} k_{\mathcal{Y}}(y, \cdot) P_{Y \mid Z}(\omega)(d y) & & \text { since } \omega \in A_{1} \cap A_{2} \\
& =\int_{\mathcal{X} \times \mathcal{Y}} k_{\mathcal{X}}(x, \cdot) \otimes k_{\mathcal{Y}}(y, \cdot) P_{X \mid Z}(\omega) P_{Y \mid Z}(\omega)(d(x, y)) & & \text { by Fubini. }
\end{aligned}
$$

Since the kernel $k_{\mathcal{X}} \otimes k_{\mathcal{Y}}$ is characteristic, the distributions $P_{X Y \mid Z}(\omega)$ and $P_{X \mid Z}(\omega) P_{Y \mid Z}(\omega)$ on $\mathcal{X} \times \mathcal{Y}$ are the same. By countable intersection, we have $P\left(A \cap A_{1} \cap A_{2} \cap A_{3}\right)=1$, so $P_{X Y \mid Z}$ and $P_{X \mid Z} P_{Y \mid Z}$ are the same almost surely, and we have $X \Perp Y \mid Z$.
(\Longleftarrow) Now assume $X \Perp Y \mid Z$, i.e. there exists $A \in \mathcal{F}$ with $P(A)=1$ such that for each $\omega \in A$, the distributions $P_{X Y \mid Z}(\omega)$ and $P_{X \mid Z}(\omega) P_{Y \mid Z}(\omega)$ are the same. Then for all $\omega \in A \cap A_{1} \cap A_{2} \cap A_{3}$,

$$
\begin{aligned}
\mu_{P_{X Y \mid Z}}(\omega) & =\int_{\mathcal{X} \times \mathcal{Y}} k_{\mathcal{X}}(x, \cdot) \otimes k_{\mathcal{Y}}(y, \cdot) P_{X Y \mid Z}(\omega)(d(x, y)) & & \text { since } \omega \in A_{3} \\
& =\int_{\mathcal{X} \times \mathcal{Y}} k_{\mathcal{X}}(x, \cdot) \otimes k_{\mathcal{Y}}(y, \cdot) P_{X \mid Z}(\omega)(d x) P_{Y \mid Z}(\omega)(d y) & & \text { since } \omega \in A \\
& =\int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) P_{X \mid Z}(\omega)(d x) \otimes \int_{\mathcal{Y}} k_{\mathcal{Y}}(y, \cdot) P_{Y \mid Z}(\omega)(d y) & & \text { by Fubini } \\
& =\mu_{P_{X \mid Z}}(\omega) \otimes \mu_{P_{Y \mid Z}}(\omega) & & \text { since } \omega \in A_{1} \cap A_{2} .
\end{aligned}
$$

and since $P\left(A \cap A_{1} \cap A_{2} \cap A_{3}\right)=1, \operatorname{HSCIC}(X, Y \mid Z)=0$ almost surely.

