A Generalised Jensen's Inequality

In Section 4, we require a version of Jensen's inequality generalised to (possibly) infinite-dimensional vector spaces, because our random variable takes values in $\mathcal{H}_{\mathcal{X}}$, and our convex function is $\|\cdot\|_{\mathcal{H}_{\mathcal{X}}}^2$: $\mathcal{H}_{\mathcal{X}} \to \mathbb{R}$. Note that this square norm function is indeed convex, since, for any $t \in [0, 1]$ and any pair $f, g \in \mathcal{H}_{\mathcal{X}}$,

$$\begin{split} \|tf + (1-t)g\|_{\mathcal{H}_{\mathcal{X}}}^2 &\leq (t\|f\|_{\mathcal{H}_{\mathcal{X}}} + (1-t)\|g\|_{\mathcal{H}_{\mathcal{X}}})^2 \qquad \text{by the triangle inequality} \\ &\leq t\|f\|_{\mathcal{H}_{\mathcal{X}}}^2 + (1-t)\|g\|_{\mathcal{H}_{\mathcal{X}}}^2, \qquad \text{by the convexity of } x \mapsto x^2. \end{split}$$

The following theorem generalises Jensen's inequality to infinite-dimensional vector spaces.

Theorem A.1 (Generalised Jensen's Inequality, [38], Theorem 3.10). Suppose \mathcal{T} is a real Hausdorff locally convex (possibly infinite-dimensional) linear topological space, and let C be a closed convex subset of \mathcal{T} . Suppose (Ω, \mathcal{F}, P) is a probability space, and $V : \Omega \to \mathfrak{T}$ a Pettis-integrable random variable such that $V(\Omega) \subseteq C$. Let $f : C \to [-\infty, \infty)$ be a convex, lower semi-continuous extended-real-valued function such that $\mathbb{E}_V[f(V)]$ exists. Then

$$f(\mathbb{E}_V[V]) \le \mathbb{E}_V[f(V)].$$

We will actually apply generalised Jensen's inequality with conditional expectations, so we need the following theorem.

Theorem A.2 (Generalised Conditional Jensen's Inequality). Suppose \mathcal{T} is a real Hausdorff locally convex (possibly infinite-dimensional) linear topological space, and let C be a closed convex subset of \mathcal{T} . Suppose (Ω, \mathcal{F}, P) is a probability space, and $V : \Omega \to \mathcal{T}$ a Pettis-integrable random variable such that $V(\Omega) \subseteq C$. Let $f : C \to [-\infty, \infty)$ be a convex, lower semi-continuous extended-realvalued function such that $\mathbb{E}_V[f(V)]$ exists. Suppose \mathcal{E} is a sub- σ -algebra of \mathcal{F} . Then

$$f(\mathbb{E}[V \mid \mathcal{E}]) \le \mathbb{E}[f(V) \mid \mathcal{E}]$$

Proof. Let \mathcal{T}^* be the dual space of all real-valued continuous linear functionals on \mathcal{T} . The first part of the proof of [38, Theorem 3.6] tells us that, for all $v \in \mathcal{T}$, we can write

$$f(v) = \sup\{m(v) \mid m \text{ affine, } m \le f \text{ on } C\},\$$

where an *affine* function m on \mathcal{T} is of the form $m(v) = v^*(v) + \alpha$ for some $v^* \in \mathcal{T}^*$ and $\alpha \in \mathbb{R}$. If we define the subset Q of $\mathcal{T}^* \times \mathbb{R}$ as

$$Q := \{ (v^*, \alpha) : v^* \in \mathcal{T}^*, \alpha \in \mathbb{R}, v^*(v) + \alpha \le f(v) \text{ for all } v \in \mathcal{T} \},\$$

then we can rewrite f as

$$f(v) = \sup_{(v^*, \alpha) \in Q} \{v^*(v) + \alpha\}, \quad \text{for all } v \in \mathcal{T}.$$
(5)

See that, for any $(v^*, \alpha) \in Q$, we have

$$\mathbb{E}\left[f(V) \mid \mathcal{E}\right] \ge \mathbb{E}\left[v^*(V) + \alpha \mid \mathcal{E}\right] \qquad \text{almost surely, by assumption (*)} \\ = \mathbb{E}\left[v^*(V) \mid \mathcal{E}\right] + \alpha \qquad \text{almost surely, by linearity (**).}$$

Here, (*) and (**) use the properties of conditional expectation of vector-valued random variables given in [12, pp.45-46, Properties 43 and 40 respectively].

We want to show that $\mathbb{E}\left[v^*(V) \mid \mathcal{E}\right] = v^*\left(\mathbb{E}\left[V \mid \mathcal{E}\right]\right)$ almost surely, and in order to so, we show that the right-hand side is a version of the left-hand side. The right-hand side is clearly \mathcal{E} -measurable, since we have a linear operator on an \mathcal{E} -measurable random variable. Moreover, for any $A \in \mathcal{E}$,

$$\begin{split} \int_{A} v^{*} \left(\mathbb{E} \left[V \mid \mathcal{E} \right] \right) dP &= v^{*} \left(\int_{A} \mathbb{E} \left[V \mid \mathcal{E} \right] dP \right) & \text{by [10, p.403, Proposition E.11]} \\ &= v^{*} \left(\int_{A} V dP \right) & \text{by the definition of conditional expectation} \\ &= \int_{A} v^{*} \left(V \right) dP & \text{by [10, p.403, Proposition E.11]} \end{split}$$

(here, all the equalities are almost-sure equalities). Hence, by the definition of the conditional expectation, we have that $\mathbb{E}\left[v^*(V) \mid \mathcal{E}\right] = v^*\left(\mathbb{E}\left[V \mid \mathcal{E}\right]\right)$ almost surely. Going back to our above work, this means that

$$\mathbb{E}\left[f(V) \mid \mathcal{E}\right] \ge v^* \left(\mathbb{E}\left[V \mid \mathcal{E}\right]\right) + \alpha.$$

Now take the supremum of the right-hand side over Q. Then (5) tells us that

$$\mathbb{E}\left[f(V) \mid \mathcal{E}\right] \ge f\left(\mathbb{E}\left[V \mid \mathcal{E}\right]\right),$$

as required.

In the context of Section 4, $\mathcal{H}_{\mathcal{X}}$ is real and Hausdorff, and locally convex (because it is a normed space). We take the closed convex subset to be the whole space $\mathcal{H}_{\mathcal{X}}$ itself. The function $\|\cdot\|_{\mathcal{H}_{\mathcal{X}}}^2$: $\mathcal{H}_{\mathcal{X}} \to \mathbb{R}$ is convex (as shown above) and continuous, and finally, since Bochner-integrability implies Pettis integrability, all the conditions of Theorem A.2 are satisfied.

B Generalisation Error Bounds

Caponnetto and De Vito [5] give an optimal rate of convergence of vector-valued RKHS regression estimators, and its results are quoted by Grünewälder et al. [22] as the state of the art convergence rates, $O(\frac{\log n}{n})$. In particular, this implies that the learning algorithm is consistent. However, the lower rate uses an assumption that the output space is a finite-dimensional Hilbert space [5, Theorem 2]; and in our case, this will mean that $\mathcal{H}_{\mathcal{X}}$ is finite-dimensional. This is not true if, for example, we take $k_{\mathcal{X}}$ to be the Gaussian kernel; indeed, this is noted as a limitation by Grünewälder et al. [22], stating that "It is likely that this (finite-dimension) assumption can be weakened, but this requires a deeper analysis". In this paper, we do not want to restrict our attention to finite-dimensional $\mathcal{H}_{\mathcal{X}}$. The upper bound would have been sufficient to guarantee consistency, but an assumption used in the upper bound requires the operator $l_{XZ,z} : \mathcal{H}_{\mathcal{X}} \to \mathcal{G}_{\mathcal{X}\mathcal{Z}}$ defined by

$$l_{XZ,z}(f)(z') = l_{XZ}(z,z')(f)$$

to be Hilbert-Schmidt for all $z \in \mathcal{Z}$. However, for each $z \in \mathcal{Z}$, taking any orthonormal basis $\{\varphi_i\}_{i=1}^{\infty}$ of $\mathcal{H}_{\mathcal{X}}$, we see that

$$\sum_{i=1}^{\infty} \langle l_{XZ,z}(\varphi_i), l_{XZ,z}(\varphi_i) \rangle_{\mathcal{G}_{XZ}} = \sum_{i=1}^{\infty} \langle k_{\mathcal{Z}}(z, \cdot)\varphi_i, k_{\mathcal{Z}}(z, \cdot)\varphi_i \rangle_{\mathcal{G}_{XZ}}$$
$$= \sum_{i=1}^{\infty} \langle k_{\mathcal{Z}}(z, z)\varphi_i, \varphi_i \rangle_{\mathcal{H}_{X}}$$
$$= k_{\mathcal{Z}}(z, z) \sum_{i=1}^{\infty} 1$$
$$= \infty.$$

meaning this assumption is not fulfilled with our choice of kernel either. Hence, results in [5], used by [22], are not applicable to guarantee consistency in our context.

Kadri et al. [26] address the problem of generalisability of function-valued learning algorithms, using the concept of uniform algorithmic stability [4]. Let us write

$$\mathcal{D} := \{(x_1, z_1), ..., (x_n, z_n)\}$$

for our training set of size *n* drawn i.i.d. from the distribution P_{XZ} , and we denote by $\mathcal{D}^i = \mathcal{D} \setminus (x_i, z_i)$ the set \mathcal{D} from which the data point (x_i, z_i) is removed. Further, we denote by $\hat{F}_{P_{X|Z},\mathcal{D}} = \hat{F}_{P_{X|Z},n,\lambda}$ the estimate produced by our learning algorithm from the dataset \mathcal{D} by minimising the loss $\hat{\mathcal{E}}_{X|Z,n,\lambda}(F) = \sum_{i=1}^{n} \|k_{\mathcal{X}}(x_i, \cdot) - F(z_i)\|_{\mathcal{H}_{\mathcal{X}}}^2 + \lambda \|F\|_{\mathcal{G}_{\mathcal{X}Z}}^2$

The assumptions used in this paper, with notations translated to our context, are

1. There exists $\kappa_1 > 0$ such that for all $z \in \mathbb{Z}$,

$$\|l_{\mathcal{XZ}}(z,z)\|_{\mathrm{op}} = \sup_{f \in \mathcal{H}_{\mathcal{X}}} \frac{\|l_{\mathcal{XZ}}(z,z)(f)\|_{\mathcal{H}_{\mathcal{X}}}}{\|f\|_{\mathcal{H}_{\mathcal{X}}}} \le \kappa_1^2.$$

2. The real function $\mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$ defined by

$$(z_1, z_2) \mapsto \langle l_{\mathcal{XZ}}(z_1, z_2) f_1, f_2 \rangle_{\mathcal{H}_{\mathcal{XZ}}}$$

is measurable for all $f_1, f_2 \in \mathcal{H}_{\mathcal{X}}$.

- 3. The map $(f, F, z) \mapsto ||f F(z)||^2_{\mathcal{H}_{\mathcal{X}}}$ is τ -admissible, i.e. convex with respect to F and Lipschitz continuous with respect to F(z), with τ as its Lipschitz constant.
- 4. There exists $\kappa_2 > 0$ such that for all $(z, f) \in \mathcal{Z} \times \mathcal{H}_{\mathcal{X}}$ and any training set \mathcal{D} ,

$$\|f - \hat{F}_{P_{X|Z},\mathcal{D}}(z)\|_{\mathcal{H}_{\mathcal{X}}}^2 \le \kappa_2.$$

The concept of *uniform stability*, with notations translated to our context, is defined as follows. **Definition B.1** (Uniform algorithmic stability, [26, Definition 6]). For each $F \in \mathcal{G}_{\mathcal{XZ}}$, define the function

$$\mathcal{R}(F) : \mathcal{Z} \times \mathcal{H}_{\mathcal{X}} \to \mathbb{R}$$
$$(z, x) \mapsto \|k_{\mathcal{X}}(x, \cdot) - F(z)\|_{\mathcal{H}_{\mathcal{X}}}^2.$$

A learning algorithm that calculates the estimate $\hat{F}_{P_X|Z,\mathcal{D}}$ from a training set has uniform stability β with respect to the squared loss if the following holds: for all $n \ge 1$, all $i \in \{1, ..., n\}$ and any training set \mathcal{D} of size n,

$$\|\mathcal{R}(F_{P_{X|Z},\mathcal{D}}) - \mathcal{R}(F_{P_{X|Z},\mathcal{D}^{i}})\|_{\infty} \leq \beta.$$

The next two theorems are quoted from [26].

Theorem B.2 ([26, Theorem 7]). Under assumptions 1, 2 and 3, a learning algorithm that maps a training set \mathcal{D} to the function $\hat{F}_{P_{X|Z},\mathcal{D}} = \hat{F}_{P_{X|Z},n,\lambda}$ is β -stable with

$$\beta = \frac{\tau^2 \kappa_1^2}{2\lambda n}.$$

Theorem B.3 ([26, Theorem 8]). Let $\mathcal{D} \mapsto \hat{F}_{P_{X|Z},\mathcal{D}} = \hat{F}_{P_{X|Z},n,\lambda}$ be a learning algorithm with uniform stability β , and assume Assumption 4 is satisfied. Then, for all $n \ge 1$ and any $0 < \delta < 1$, the following bound holds with probability at least $1 - \delta$ over the random draw of training samples:

$$\tilde{\mathcal{E}}_{X|Z}(\hat{F}_{P_{X|Z},n,\lambda}) \leq \frac{1}{n} \hat{\mathcal{E}}_{X|Z,n}(\hat{F}_{P_{X|Z},n,\lambda}) + 2\beta + (4n\beta + \kappa_2)\sqrt{\frac{\ln\frac{1}{\delta}}{2n}}.$$

Theorems B.2 and B.3 give us results about the generalisability of our learning algorithm. It remains to check whether the assumptions are satisfied.

Assumption 2 is satisfied thanks to our assumption that point embeddings are measurable functions, and Assumption 1 is satisfied if we assume that $k_{\mathcal{Z}}$ is a bounded kernel (i.e. there exists $B_{\mathcal{Z}} > 0$ such that $k_{\mathcal{Z}}(z_1, z_2) \leq B_{\mathcal{Z}}$ for all $z_1, z_2 \in \mathcal{Z}$), because

$$\|l_{\mathcal{XZ}}(z,z)\|_{\mathrm{op}} = \sup_{f \in \mathcal{H}_{\mathcal{X}}, \|f\|_{\mathcal{H}_{\mathcal{X}}} = 1} \|k_{\mathcal{Z}}(z,z)(f)\|_{\mathcal{H}_{\mathcal{X}}} \le B_{\mathcal{Z}}.$$

In [26], a general loss function is used rather than the squared loss, and it is noted that Assumption 3 is in general *not* satisfied with the squared loss, which is what we use in our context. However, this issue can be addressed if we restrict the output space to a bounded subset. In fact, the only elements in $\mathcal{H}_{\mathcal{X}}$ that appear as the output samples in our case are $k_{\mathcal{X}}(x, \cdot)$ for $x \in \mathcal{X}$, so if we place the assumption that $k_{\mathcal{X}}$ is a bounded kernel (i.e. there exists $B_{\mathcal{X}} > 0$ such that $k_{\mathcal{X}}(x_1, x_2) \leq B_{\mathcal{X}}$ for all $x_1, x_2 \in \mathcal{X}$), then by the reproducing property,

$$||k_{\mathcal{X}}(x,\cdot)||_{\mathcal{H}_{\mathcal{X}}} = \sqrt{k_{\mathcal{X}}(x,x)} \le \sqrt{B_{\mathcal{X}}}.$$

So it is no problem, in our case, to place this boundedness assumption. [26, Appendix D] tells us that Assumption 1 with this boundedness assumption implies Assumption 4 with

$$\kappa_2 = B_{\mathcal{X}} \left(1 + \frac{\kappa_1}{\sqrt{\lambda}} \right)^2,$$

while [26, Lemma 2] provides us with a condition which can replace Assumption 3 in Theorem B.2, giving us the uniform stability of our algorithm with

$$\beta = \frac{2\kappa_1^2 B_{\mathcal{X}} \left(1 + \frac{\kappa_1}{\sqrt{\lambda}}\right)^2}{\lambda n}.$$

Then the result of Theorem B.3 holds with this new β .

C Proofs

|L|

Lemma 2.1. For each $f \in \mathcal{H}_{\mathcal{X}}, \int_{\mathcal{X}} f(x) dP_X(x) = \langle f, \mu_{P_X} \rangle_{\mathcal{H}_{\mathcal{X}}}$.

Proof. Let L_P be a functional on \mathcal{H} defined by $L_P(f) := \int_{\mathcal{X}} f(x) dP(x)$. Then L_P is clearly linear, and moreover,

$$\begin{split} P(f)| &= \left| \int_{\mathcal{X}} f(x) dP(x) \right| \\ &= \left| \int_{\mathcal{X}} \langle f, k(x, \cdot) \rangle_{\mathcal{H}} dP(x) \right| \qquad \text{by the reproducing property} \\ &\leq \int_{\mathcal{X}} |\langle f, k(x, \cdot) \rangle_{\mathcal{H}} | dP(x) \qquad \text{by Jensen's inequality} \\ &\leq \|f\|_{\mathcal{H}} \int_{\mathcal{X}} \|k(x, \cdot)\|_{\mathcal{H}} dP(x) \qquad \text{by Cauchy-Schwarz inequality} \end{split}$$

Since the map $x \mapsto k(x, \cdot)$ is Bochner *P*-integrable, L_P is bounded, i.e. $L_P \in \mathcal{H}^*$. So by the Riesz Representation Theorem, there exists a unique $h \in \mathcal{H}$ such that $L_P(f) = \langle f, h \rangle_{\mathcal{H}}$ for all $f \in \mathcal{H}$.

Choose $f(\cdot) = k(x, \cdot)$ for some $x \in \mathcal{X}$. Then

$$\begin{split} h(x) &= \langle k(x,\cdot),h\rangle_{\mathcal{H}} \\ &= L_P(k(x,\cdot)) \\ &= \int_{\mathcal{X}} k(x',x) dP(x'), \end{split}$$

which means $h(\cdot) = \int_{\mathcal{X}} k(x, \cdot) dP(x) = \mu_P(\cdot)$ (implicitly applying [12, Corollary 37]). Lemma 2.3. For $f \in \mathcal{H}_{\mathcal{X}}, g \in \mathcal{H}_{\mathcal{Y}}, \langle f \otimes g, \mu_{P_{XY}} \rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}} = \mathbb{E}_{XY}[f(X)g(Y)].$

Proof. For Bochner integrability, we see that

$$\mathbb{E}_{XY}\left[\left\|k_{\mathcal{X}}(X,\cdot)\otimes k_{\mathcal{Y}}(Y,\cdot)\right\|_{\mathcal{H}_{\mathcal{X}}\otimes\mathcal{H}_{\mathcal{Y}}}\right] = \mathbb{E}_{XY}\left[\sqrt{k_{\mathcal{X}}(X,X)}\sqrt{k_{\mathcal{Y}}(Y,Y)}\right] \\ \leq \sqrt{\mathbb{E}_{X}\left[k_{\mathcal{X}}(X,X)\right]}\sqrt{\mathbb{E}_{Y}\left[k_{\mathcal{Y}}(Y,Y)\right]},$$

by Cauchy-Schwarz inequality. (2) now implies that $k_{\mathcal{X}}(X, \cdot) \otimes k_{\mathcal{Y}}(Y, \cdot)$ is Bochner P_{XY} -integrable. Let $L_{P_{XY}}$ be a functional on $\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}$ defined by $L_{P_{XY}}\left(\sum_{i} f_{i} \otimes g_{i}\right) := \mathbb{E}_{XY}\left[\sum_{i} f_{i}(X)g_{i}(Y)\right]$. Then $L_{P_{XY}}$ is clearly linear, and moreover,

$$\begin{split} |L_{P_{XY}}(\sum_{i} f_{i} \otimes g_{i})| &= |\mathbb{E}_{XY}[\sum_{i} f_{i}(X)g_{i}(Y)]| \\ &\leq \mathbb{E}_{XY}[|\sum_{i} f_{i}(X)g_{i}(Y)|] \end{split}$$
 by Jensen's inequality

$$= \mathbb{E}_{XY}[|\langle \sum_{i} f_{i} \otimes g_{i}, k_{\mathcal{X}}(X, \cdot) \otimes k_{\mathcal{Y}}(Y, \cdot) \rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}}|]$$
 by the reproducing property
$$\leq \|\sum_{i} f_{i} \otimes g_{i}\|_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}} \mathbb{E}_{XY}\left[\left\|k_{\mathcal{X}}(X, \cdot) \otimes k_{\mathcal{Y}}(Y, \cdot)\right\|_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}}\right]$$
 by Cauchy-Schwarz inequality.

Hence, by Bochner integrability shown above, $L_{P_{XY}} \in (\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}})^*$. So by the Riesz Representation Theorem, there exists $h \in \mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}$ such that $L_{P_{XY}}(\sum_i f_i \otimes g_i) = \langle \sum_i f_i \otimes g_i, h \rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}}$ for all $\sum_i f_i \otimes g_i \in \mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}$.

Choose $k_{\mathcal{X}}(x, \cdot) \otimes k_{\mathcal{Y}}(y, \cdot) \in \mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}$ for some $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. Then

$$\begin{split} h(x,y) &= \langle k_{\mathcal{X}}(x,\cdot) \otimes k_{\mathcal{Y}}(y,\cdot), h \rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}} & \text{by the reproducing property} \\ &= L_{P_{XY}}(k_{\mathcal{X}}(x,\cdot) \otimes k_{\mathcal{Y}}(y,\cdot)) \\ &= \mathbb{E}_{XY}\left[k_{\mathcal{X}}(x,X) \otimes k_{\mathcal{Y}}(y,Y)\right] \\ &= \mu_{P_{XY}}(x,y), \end{split}$$

as required.

Lemma C.1. Let $\{\varphi_i\}_{i=1}^{\infty}$ and $\{\psi_j\}_{j=1}^{\infty}$ be orthonormal bases of $\mathcal{H}_{\mathcal{X}}$ and $\mathcal{H}_{\mathcal{Y}}$ respectively (note that they are countable, since the RKHSs are separable). Then the map

$$\Phi: \mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}} \to HS(\mathcal{H}_{\mathcal{X}}, \mathcal{H}_{\mathcal{Y}})$$
$$\sum_{i=1,j=1}^{\infty} c_{i,j}(\varphi_i \otimes \psi_j) \mapsto [h \mapsto \sum_{i=1,j=1}^{\infty} c_{i,j} \langle h, \varphi_i \rangle_{\mathcal{H}_{\mathcal{X}}} \psi_j]$$

is an isometric isomorphism.

Proof. Φ is clearly linear. We first show isometry:

$$\begin{split} \left\| \Phi(\sum_{i=1,j=1}^{\infty} c_{i,j}(\varphi_i \otimes \psi_j)) \right\|_{\mathrm{HS}}^2 &= \left\| \sum_{i=1,j=1}^{\infty} c_{i,j} \langle \cdot, \varphi_i \rangle_{\mathcal{H}_{\mathcal{X}}} \psi_j \right\|_{\mathrm{HS}}^2 \\ &= \sum_{k=1}^{\infty} \left\| \sum_{i=1,j=1}^{\infty} c_{i,j} \langle \varphi_k, \varphi_i \rangle_{\mathcal{H}_{\mathcal{X}}} \psi_j \right\|_{\mathcal{H}_{\mathcal{Y}}}^2 \qquad \text{by definition} \\ &= \sum_{i=1,j=1}^{\infty} c_{i,j}^2 \qquad \qquad \text{by orthonormality} \\ &= \left\| \sum_{i=1,j=1}^{\infty} c_{i,j} (\varphi_i \otimes \psi_j) \right\|_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}}^2 \qquad \qquad \text{by orthonormality}, \end{split}$$

as required. It remains to show surjectivity.

Take an element $T \in HS(\mathcal{H}_{\mathcal{X}}, \mathcal{H}_{\mathcal{Y}})$. Then T is completely determined by $\{T\varphi_i\}_{i=1}^{\infty}$. For each i, suppose $T\varphi_i = \sum_{j=1}^{\infty} d_j^i \psi_j$, with $d_j^i \in \mathbb{R}$ for all i and j. Then

$$\begin{split} \Phi\left(\sum_{i'=1,j=1}^{\infty} d_j^{i'}(\varphi_{i'} \otimes \psi_j)\right) &= \left[\varphi_i \mapsto \sum_{i'=1,j=1}^{\infty} \langle d_j^{i'}\varphi_{i'},\varphi_i \rangle_{\mathcal{H}_{\mathcal{X}}}\psi_j\right] \\ &= \left[\varphi_i \mapsto \sum_{j=1}^{\infty} d_j^i\psi_j\right] \qquad \text{by orthonormality} \\ &= T. \end{split}$$

So Φ is surjective, and hence an isometric isomorphism.

Before we prove Theorem 2.9, we state the following definition and theorems related to measurable functions for Banach-space valued functions.

Definition C.2 ([12, p.4, Definition 5]). A function $H : \Omega \to \mathcal{H}$ is called an \mathcal{F} -simple function if it has the form $H = \sum_{i=1}^{n} h_i \mathbf{1}_{B_i}$ for some $h_i \in \mathcal{H}$ and $B_i \in \mathcal{F}$.

A function $H : \Omega \to \mathcal{H}$ is said to be \mathcal{F} -measurable if there is a sequence (H_n) of \mathcal{H} -valued, \mathcal{F} -simple functions such that $H_n \to H$ pointwise.

Theorem C.3 ([12, p.4, Theorem 6]). If $H : \Omega \to \mathcal{H}$ is \mathcal{F} -measurable, then there is a sequence (H_n) of \mathcal{H} -valued, \mathcal{F} -simple functions such that $H_n \to H$ pointwise and $|H_n| \leq |H|$ for every n.

Theorem C.4 ([12, p.19, Theorem 48], Lebesgue Convergence Theorem). Let (H_n) be a sequence in $L^1_{\mathcal{H}}(P)$, $H : \Omega \to \mathcal{H}$ a *P*-measurable function, and $g \in L^1_+(P)$ such that $H_n \to H$ *P*-almost everywhere and $|H_n| \leq g$, *P*-almost everywhere, for each *n*. Then $H \in L^1_{\mathcal{H}}(P)$ and $H_n \to H$ in $L^1_{\mathcal{H}}(P)$, i.e. $\int_{\Omega} H_n dP \to \int_{\Omega} H dP$.

Theorem 2.9. Suppose that $P(\cdot | \mathcal{E})$ admits a regular version Q. Then $QH : \Omega \to \mathcal{H}$ with $\omega \mapsto Q_{\omega}H = \int_{\Omega} H(\omega')Q_{\omega}(d\omega')$ is a version of $\mathbb{E}[H | \mathcal{E}]$ for every Bochner *P*-integrable *H*.

Proof. Suppose *H* is Bochner *P*-integrable. Since *Q* is a regular version of $P(\cdot | \mathcal{E})$, it is a probability transition kernel from (Ω, \mathcal{E}) to (Ω, \mathcal{F}) .

We first show that QH is measurable with respect to \mathcal{E} . The map $Q: \Omega \to \mathcal{H}$ is well-defined, since, for each $\omega \in \Omega$, $Q_{\omega}H$ is the Bochner-integral of H with respect to the measure $B \to Q_{\omega}(B)$. Since H is \mathcal{F} -measurable, by Theorem C.3, there is a sequence (H_n) of \mathcal{H} -valued, \mathcal{F} -simple functions such that $H_n \to H$ pointwise. Then for each $\omega \in \Omega$, $Q_{\omega}H = \lim_{n\to\infty} Q_{\omega}H_n$ by Theorem C.4. But for each n, we can write $H_n = \sum_{j=1}^m h_j \mathbf{1}_{B_j}$ for some $h_j \in \mathcal{H}$ and $B_j \in \mathcal{F}$, and so $Q_{\omega}H_n = \sum_{j=1}^m h_j Q_{\omega}(B_j)$. For each B_j the map $\omega \mapsto Q_{\omega}(B_j)$ is \mathcal{E} -measurable (by the definition of transition probability kernel, Definition 2.7), and so as a linear combination of \mathcal{E} -measurable functions, QH_n is \mathcal{E} -measurable. Hence, as a pointwise limit of \mathcal{E} -measurable functions, QH is also \mathcal{E} -measurable, by [12, p.6, Theorem 10].

Next, we show that, for all $A \in \mathcal{E}$, $\int_A H dP = \int_A QH dP$. Fix $A \in \mathcal{E}$. By Theorem C.3, there is a sequence (H_n) of \mathcal{H} -valued, \mathcal{F} -simple functions such that $H_n \to H$ pointwise. For each n, we can write $H_n = \sum_{j=1}^m h_j \mathbf{1}_{B_j}$ for some $h_j \in \mathcal{H}$ and $B_j \in \mathcal{F}$, and

$$\begin{split} \int_{A} QH_{n} dP &= \int_{A} \sum_{j=1}^{m} h_{j} Q(B_{j}) dP \\ &= \int_{A} \sum_{j=1}^{m} h_{j} P(B_{j} \mid \mathcal{E}) dP \quad \text{since } Q \text{ is a version of } P(\cdot \mid \mathcal{E}) \\ &= \sum_{j=1}^{m} h_{j} \int_{A} \mathbb{E}[\mathbf{1}_{B_{j}} \mid \mathcal{E}] dP \quad \text{by the definition of conditional probability measures} \\ &= \int_{A} \sum_{j=1}^{m} h_{j} \mathbf{1}_{B_{j}} dP \quad \text{by the definition of conditional expectations, since } A \in \mathcal{E} \\ &= \int_{A} H_{n} dP. \end{split}$$

We have $H_n \to H$ pointwise by assertion, and as before, $QH_n \to QH$ pointwise. Hence,

$$\int_{A} QHdP = \lim_{n \to \infty} \int_{A} QH_{n}dP \qquad \text{by Theorem C.4}$$
$$= \lim_{n \to \infty} \int_{A} H_{n}dP \qquad \text{by above}$$
$$= \int_{A} HdP \qquad \text{by Theorem C.4.}$$

Hence, by the definition of the conditional expectation, QH is a version of $\mathbb{E}[H \mid \mathcal{E}]$.

Lemma 3.2. For any $f \in \mathcal{H}_{\mathcal{X}}, \mathbb{E}_{X|Z}[f(X) \mid Z] = \langle f, \mu_{P_{X|Z}} \rangle_{\mathcal{H}_{\mathcal{X}}}$ almost surely.

Proof. The left-hand side is the conditional expectation of the real-valued random variable f(X) given Z. We need to check that the right-hand side is also that. Note that $\langle f, \mu_{P_{X|Z}} \rangle_{\mathcal{H}_{\mathcal{X}}}$ is clearly Z-measurable, and P-integrable (by the Cauchy-Schwarz inequality and the integrability condition (1)). Take any $A \in \sigma(Z)$. Then

$$\begin{split} \int_{A} \langle f, \mu_{P_{X|Z}} \rangle_{\mathcal{H}_{\mathcal{X}}} dP &= \int_{A} \left\langle f, \mathbb{E}_{X|Z} [k_{\mathcal{X}}(\cdot, X) \mid Z] \right\rangle_{\mathcal{H}_{\mathcal{X}}} dP & \text{by definition} \\ &= \left\langle f, \int_{A} \mathbb{E}_{X|Z} [k_{\mathcal{X}}(\cdot, X) \mid Z] dP \right\rangle_{\mathcal{H}_{\mathcal{X}}} & (+) \\ &= \left\langle f, \int_{A} k_{\mathcal{X}}(\cdot, X) dP \right\rangle_{\mathcal{H}_{\mathcal{X}}} & \text{see Definition 2.5} \\ &= \int_{A} \langle f, k_{\mathcal{X}}(\cdot, X) \rangle_{\mathcal{H}_{\mathcal{X}}} dP & (+) \\ &= \int_{A} f(X) dP & \text{by the reproducing property.} \end{split}$$

Here, in (+), we used the fact that the order of a continuous linear operator and Bochner integration can be interchanged [12, p.30, Theorem 36]. Hence $\langle f, \mu_{P_X|Z} \rangle_{\mathcal{H}_X}$ is a version of the conditional expectation $\mathbb{E}_{X|Z}[f(X) \mid Z]$.

Lemma 3.3. For any pair $f \in \mathcal{H}_{\mathcal{X}}$ and $g \in \mathcal{H}_{\mathcal{Y}}$, $\mathbb{E}_{XY|Z}[f(X)g(Y) \mid Z] = \langle f \otimes g, \mu_{P_{XY|Z}} \rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}}$ almost surely.

Proof. The left-hand side is the conditional expectation of the real-valued random variable f(X)g(Y) given Z. We need to check that the right-hand side is also that. Note that $\langle f \otimes g, \mu_{P_{XY|Z}} \rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}}$ is clearly Z-measurable, and P-integrable (by the Cauchy-Schwarz inequality and the integrability condition (2)). Take any $A \in \sigma(Z)$. Then

$$\begin{split} \int_{A} \langle f \otimes g, \mu_{P_{XY|Z}} \rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}} dP &= \int_{A} \left\langle f \otimes g, \mathbb{E}_{XY|Z} [k_{\mathcal{X}}(\cdot, X) \otimes k_{\mathcal{Y}}(\cdot, Y) \mid Z] \right\rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}} dP \\ &= \left\langle f \otimes g, \int_{A} \mathbb{E}_{XY|Z} [k_{\mathcal{X}}(\cdot, X) \otimes k_{\mathcal{Y}}(\cdot, Y) \mid Z] dP \right\rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}} \\ &= \left\langle f \otimes g, \int_{A} k_{\mathcal{X}}(\cdot, X) \otimes k_{\mathcal{Y}}(\cdot, Y) dP \right\rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}} \\ &= \int_{A} \langle f \otimes g, k_{\mathcal{X}}(\cdot, X) \otimes k_{\mathcal{Y}}(\cdot, Y) \rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}} dP \\ &= \int_{A} f(X)g(Y) dP. \end{split}$$

So $\langle f \otimes g, \mu_{P_{XY|Z}} \rangle_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}}$ is a version of the conditional expectation $\mathbb{E}_{XY|Z}[f(X)g(Y) \mid Z]$. \Box

Theorem 4.1. Assume that $\mathcal{H}_{\mathcal{X}}$ is separable, and denote its Borel σ -algebra by $\mathcal{B}(\mathcal{H}_{\mathcal{X}})$. Then we can write

$$\mu_{P_X|Z} = F_{P_X|Z} \circ Z$$

where $F_{P_{X|Z}}: \mathcal{Z} \to \mathcal{H}_{\mathcal{X}}$ is some deterministic function, measurable with respect to \mathfrak{Z} and $\mathcal{B}(\mathcal{H}_{\mathcal{X}})$.

Proof. Let $\operatorname{Im}(Z) \subseteq Z$ be the image of $Z : \Omega \to Z$, and let $\tilde{\mathfrak{Z}}$ denote the σ -algebra on $\operatorname{Im}(Z)$ defined by $\tilde{\mathfrak{Z}} = \{A \cap \operatorname{Im}(Z) : A \in \mathfrak{Z}\}$ (see [9, page 5, 1.15]). We will first construct a function $\tilde{F} : \operatorname{Im}(Z) \to \mathcal{H}_{\mathcal{X}}$, measurable with respect to $\tilde{\mathfrak{Z}}$ and $\mathcal{B}(\mathcal{H}_{\mathcal{X}})$, such that $\mu_{P_{\mathcal{X}|Z}} = \tilde{F} \circ Z$.

For a given $z \in \text{Im}(Z) \subseteq \mathbb{Z}$, we have $Z^{-1}(z) \subseteq \Omega$. Suppose for contradiction that there are two distinct elements $\omega_1, \omega_2 \in Z^{-1}(z)$ such that $\mu_{P_{X|Z}}(\omega_1) \neq \mu_{P_{X|Z}}(\omega_2)$. Since $\mathcal{H}_{\mathcal{X}}$ is Hausdorff,

there are disjoint open neighbourhoods N_1 and N_2 of $\mu_{P_X|Z}(\omega_1)$ and $\mu_{P_X|Z}(\omega_2)$ respectively. By definition of a Borel σ -algebra, we have $N_1, N_2 \in \mathcal{B}(\mathcal{H}_{\mathcal{X}})$, and since $\mu_{P_X|Z}$ is $\sigma(Z)$ -measurable,

$$\mu_{P_{X|Z}}^{-1}(N_1), \mu_{P_{X|Z}}^{-1}(N_2) \in \sigma(Z).$$
(6)

Furthermore, $\mu_{P_X|Z}^{-1}(N_1)$ and $\mu_{P_X|Z}^{-1}(N_2)$ are neighbourhoods of ω_1 and ω_2 respectively, and are disjoint.

- (i) For any $B \in \tilde{\mathfrak{Z}}$ with $z \in B$, since $Z(\omega_1) = z = Z(\omega_2)$, we have $\omega_1, \omega_2 \in Z^{-1}(B)$. So $Z^{-1}(B) \neq \mu_{P_X|Z}^{-1}(N_1)$ and $Z^{-1}(B) \neq \mu_{P_X|Z}^{-1}(N_2)$, as $\omega_2 \notin \mu_{P_X|Z}^{-1}(N_1)$ and $\omega_1 \notin \mu_{P_X|Z}^{-1}(N_2)$.
- (ii) For any $B \in \tilde{\mathfrak{Z}}$ with $z \notin B$, we have $\omega_1 \notin Z^{-1}(B)$ and $\omega_2 \notin Z^{-1}(B)$. So $Z^{-1}(B) \neq \mu_{P_X|Z}^{-1}(N_1)$ and $Z^{-1}(B) \neq \mu_{P_X|Z}^{-1}(N_2)$.

Since $\sigma(Z) = \{Z^{-1}(B) \mid B \in \tilde{\mathfrak{Z}}\}$ (see [9], page 11, Exercise 2.20), we can't have $\mu_{P_{X|Z}}^{-1}(N_1) \in \sigma(Z)$ nor $\mu_{P_{X|Z}}^{-1}(N_2) \in \sigma(Z)$. This is a contradiction to (6). We therefore conclude that, for any $z \in \mathcal{Z}$, if $Z(\omega_1) = z = Z(\omega_2)$ for distinct $\omega_1, \omega_2 \in \Omega$, then $\mu_{P_{X|Z}}(\omega_1) = \mu_{P_{X|Z}}(\omega_2)$.

We define $\tilde{F}(z)$ to be the unique value of $\mu_{P_X|z}(\omega)$ for all $\omega \in Z^{-1}(z)$. Then for any $\omega \in \Omega$, $\mu_{P_X|z}(\omega) = \tilde{F}(Z(\omega))$ by construction. It remains to check that \tilde{F} is measurable with respect to $\tilde{\mathfrak{Z}}$ and $\mathcal{B}(\mathcal{H}_{\mathcal{X}})$.

Take any $N \in \mathcal{B}(\mathcal{H}_{\mathcal{X}})$. Since $\mu_{P_{X|Z}}$ is $\sigma(Z)$ -measurable, $\mu_{P_{X|Z}}^{-1}(N) = Z^{-1}(\tilde{F}^{-1}(N)) \in \sigma(Z)$. Since $\sigma(Z) = \{Z^{-1}(B) \mid B \in \tilde{\mathfrak{Z}}\}$, we have $Z^{-1}(\tilde{F}^{-1}(N)) = Z^{-1}(C)$ for some $C \in \tilde{\mathfrak{Z}}$. Since the mapping $Z : \Omega \to \operatorname{Im}(Z)$ is surjective, $\tilde{F}^{-1}(N) = C$. Hence $\tilde{F}^{-1}(N) \in \tilde{\mathfrak{Z}}$, and so \tilde{F} is measurable with respect to $\tilde{\mathfrak{Z}}$ and $\mathcal{B}(\mathcal{H}_{\mathcal{X}})$.

Finally, we can extend $\tilde{F} : \text{Im}(Z) \to \mathcal{H}_{\mathcal{X}}$ to $F : \mathcal{Z} \to \mathcal{H}_{\mathcal{X}}$ by [13, page 128, Corollary 4.2.7] (note that $\mathcal{H}_{\mathcal{X}}$ is a complete metric space, and assumed to be separable in this theorem).

Theorem 4.2. $F_{P_{X|Z}} \in L^2(\mathcal{Z}, P_Z; \mathcal{H}_{\mathcal{X}})$ minimises both $\tilde{\mathcal{E}}_{X|Z}$ and $\mathcal{E}_{X|Z}$, i.e.

$$F_{P_{X|Z}} = \operatorname*{arg\,min}_{F \in L^2(\mathcal{Z}, P_Z; \mathcal{H}_{\mathcal{X}})} \mathcal{E}_{X|Z}(F) = \operatorname*{arg\,min}_{F \in L^2(\mathcal{Z}, P_Z; \mathcal{H}_{\mathcal{X}})} \tilde{\mathcal{E}}_{X|Z}(F).$$

Moreover, it is almost surely unique, i.e. it is almost surely equal to any other minimiser of the objective functionals.

Proof. Recall that we have

$$\mathcal{E}_{X|Z}(F) := \mathbb{E}_Z\left[\|F_{P_{X|Z}}(Z) - F(Z)\|_{\mathcal{H}_X}^2 \right].$$

So clearly, $\mathcal{E}_{X|Z}(F_{P_{X|Z}}) = 0$, meaning $F_{P_{X|Z}}$ minimises $\mathcal{E}_{X|Z}$ in $L^2(\mathcal{Z}, P_Z; \mathcal{H}_{\mathcal{X}})$. So it only remains to show that $\tilde{\mathcal{E}}_{X|Z}$ is minimised in $L^2(\mathcal{Z}, P_Z; \mathcal{H}_{\mathcal{X}})$ by $F_{P_{X|Z}}$.

Let F be any element in $L^2(\mathcal{Z}, P_Z; \mathcal{H}_{\mathcal{X}})$. Then we have

$$\mathcal{E}_{X|Z}(F) - \mathcal{E}_{X|Z}(F_{P_{X|Z}}) = \mathbb{E}_{X,Z}[\|k_{\mathcal{X}}(X,\cdot) - F(Z)\|_{\mathcal{H}_{\mathcal{X}}}^2] - \mathbb{E}_{X,Z}[\|k_{\mathcal{X}}(X,\cdot) - F_{P_{X|Z}}(Z)\|_{\mathcal{H}_{\mathcal{X}}}^2]$$

$$= \mathbb{E}_{Z}[\|F(Z)\|_{\mathcal{H}_{\mathcal{X}}}^2] - 2\mathbb{E}_{X,Z}[\langle k_{\mathcal{X}}(X,\cdot), F(Z) \rangle_{\mathcal{H}_{\mathcal{X}}}]$$

$$+ 2\mathbb{E}_{X,Z}\left[\langle k_{\mathcal{X}}(X,\cdot), F_{P_{X|Z}}(Z) \rangle_{\mathcal{H}_{\mathcal{X}}}\right] - \mathbb{E}_{Z}\left[\|F_{P_{X|Z}}(Z)\|_{\mathcal{H}_{\mathcal{X}}}^2\right].$$
(7)

Here,

$$\mathbb{E}_{X,Z}\left[\langle k_{\mathcal{X}}(X,\cdot), F(Z) \rangle_{\mathcal{H}_{\mathcal{X}}}\right] = \mathbb{E}_{Z}\left[\mathbb{E}_{X|Z}\left[F(Z)(X) \mid Z\right]\right]$$
by the reproducing property

$$= \mathbb{E}_{Z} \left[\langle F(Z), \mu_{P_{X|Z}} \rangle_{\mathcal{H}_{X}} \right]$$
 by Lemma 3.2
$$= \mathbb{E}_{Z} \left[\langle F(Z), F_{P_{X|Z}}(Z) \rangle_{\mathcal{H}_{X}} \right]$$
 since $\mu_{P_{X|Z}} = F_{P_{X|Z}} \circ Z$

and similarly,

$$\begin{split} \mathbb{E}_{X,Z}[\langle k_{\mathcal{X}}(X,\cdot), F_{P_{X|Z}}(Z) \rangle_{\mathcal{H}_{\mathcal{X}}}] &= \mathbb{E}_{Z}[\mathbb{E}_{X|Z}[F_{P_{X|Z}}(Z)(X) \mid Z]] & \text{by the reproducing property} \\ &= \mathbb{E}_{Z}\left[\langle F_{P_{X|Z}}(Z), F_{P_{X|Z}}(Z) \rangle_{\mathcal{H}_{\mathcal{X}}}\right] & \text{by Lemma 3.2} \\ &= \mathbb{E}_{Z}\left[\|F_{P_{X|Z}}(Z)\|_{\mathcal{H}_{\mathcal{X}}}^{2}\right]. \end{split}$$

Substituting these expressions back into (7), we have

$$\begin{split} \tilde{\mathcal{E}}_{X|Z}(F) &- \tilde{\mathcal{E}}_{X|Z}(F_{P_{X|Z}}) \\ &= \mathbb{E}_{Z}[\|F(Z)\|_{\mathcal{H}_{\mathcal{X}}}^{2}] - 2\mathbb{E}_{Z}[\langle F(Z), F_{P_{X|Z}}(Z) \rangle_{\mathcal{H}_{\mathcal{X}}}] + \mathbb{E}_{Z}[\|F_{P_{X|Z}}(Z)\|_{\mathcal{H}_{\mathcal{X}}}^{2}] \\ &= \mathbb{E}_{Z}[\|F(Z) - F_{P_{X|Z}}(Z)\|_{\mathcal{H}_{\mathcal{X}}}^{2}] \\ &\geq 0. \end{split}$$

Hence, $F_{P_{X|Z}}$ minimises $\hat{\mathcal{E}}_{X|Z}$ in $L^2(\mathcal{Z}, P_Z; \mathcal{H}_{\mathcal{X}})$. The minimiser is further more P_Z -almost surely unique; indeed, if $F' \in L^2(\mathcal{Z}, P_Z; \mathcal{H}_{\mathcal{X}})$ is another minimiser of $\tilde{\mathcal{E}}_{X|Z}$, then the calculation in (7) shows that

$$\mathbb{E}_{Z}\left[\|F_{P_{X|Z}}(Z) - F'(Z)\|_{\mathcal{H}_{\mathcal{X}}}^{2}\right] = 0,$$

which immediately implies that $||F_{P_{X|Z}}(Z) - F'(Z)||_{\mathcal{H}_{X}} = 0$ P_{Z} -almost surely, which in turn implies that $F_{P_{X|Z}} = F' P_{Z}$ -almost surely.

Theorem 4.4. Suppose that $k_{\mathcal{X}}$ and $k_{\mathcal{Z}}$ are bounded kernels, i.e. there exist $B_{\mathcal{Z}}, B_{\mathcal{X}} > 0$ such that $\sup_{z \in \mathcal{Z}} k_{\mathcal{Z}}(z, z) \leq B_{\mathcal{Z}}$ and $\sup_{x \in \mathcal{X}} k_{\mathcal{X}}(x, x) \leq B_{\mathcal{X}}$, and that the operator-valued kernel $l_{\mathcal{XZ}}$ is C_0 -universal. Let the regularisation parameter λ_n decay to 0 at a slower rate than $\mathcal{O}(n^{-1/2})$. Then our learning algorithm that produces $\hat{F}_{P_{X|Z},n,\lambda_n}$ is universally consistent (in the surrogate loss $\tilde{\mathcal{E}}_{X|Z}$), i.e. for any joint distribution P_{XZ} and constants $\epsilon > 0$ and $\delta > 0$,

$$P_{XZ}(\hat{\mathcal{E}}_{X|Z}(\hat{F}_{P_{X|Z},n,\lambda_n}) - \hat{\mathcal{E}}_{X|Z}(F_{P_{X|Z}}) > \epsilon) < \delta$$

for large enough n.

Proof. Follows immediately from [37, Theorem 2.3].

Theorem 4.5. In addition to the setting in Theorem 4.4, assume that $F_{P_{X|Z}} \in \mathcal{G}_{\mathcal{XZ}}$. Let the regularisation parameter λ_n decay to 0 with rate $\mathcal{O}(n^{-1/4})$. Then $\tilde{\mathcal{E}}_{X|Z}(\hat{F}_{P_{X|Z},n,\lambda_n}) - \tilde{\mathcal{E}}_{X|Z}(F_{P_{X|Z}}) = \mathcal{O}_P(n^{-1/4})$.

Proof. Follows immediately from [37, Theorem 2.4].

Theorem 5.2. Suppose that $k_{\mathcal{X}}$ is a characteristic kernel, that P_Z and $P_{Z'}$ are absolutely continuous with respect to each other, and that $P(\cdot | Z)$ and $P(\cdot | Z')$ admit regular versions. Then $\mathrm{MCMD}_{P_{X|Z},P_{X'|Z'}} = 0 P_Z$ - (or $P_{Z'}$ -)almost everywhere if and only if, for P_Z - (or $P_{Z'}$ -)almost all $z \in \mathcal{Z}$, $P_{X|Z=z}(B) = P_{X'|Z'=z}(B)$ for all $B \in \mathfrak{X}$.

Proof. Write Q and Q' for some regular versions of $P(\cdot | Z)$ and $P(\cdot | Z')$ respectively, and assume without loss of generality that the conditional distributions $P_{X|Z}$ and $P_{X'|Z'}$ are given by $P_{X|Z}(\omega)(B) = Q_{\omega}(X \in B)$ and $P_{X'|Z'}(\omega)(B) = Q'_{\omega}(X' \in B)$ for $B \in \mathfrak{X}$. By the definition of regular versions, for each $B \in \mathfrak{X}$, the real-valued random variables $\omega \mapsto P_{X|Z}(\omega)(B)$ and $\omega \mapsto P_{X'|Z'}(\omega)(B)$ are measurable with respect to Z and Z' respectively, and so there are functions $R_B : \mathcal{Z} \to \mathbb{R}$ and $R'_B : \mathcal{Z} \to \mathbb{R}$ such that $P_{X|Z}(\omega)(B) = R_B(Z(\omega))$ and $P_{X'|Z'}(\omega)(B) =$

 $R'_B(Z'(\omega))$. Moreover, for each fixed $z \in \mathbb{Z}$, the mappings $B \mapsto P_{X|Z}(Z^{-1}(z))(B) = R_B(z)$ and $B \mapsto P_{X'|Z'}(Z'^{-1}(z))(B) = R'_B(z)$ are measures. We write $R_B(z) = P_{X|Z=z}(B)$ and $R'_B(z) = P_{X'|Z'=z}(B)$.

By Theorem 2.9, there exists an event $A_1 \in \mathcal{F}$ with $P(A_1) = 1$ such that for all $\omega \in A_1$,

$$\mu_{P_{X|Z}}(\omega) := \mathbb{E}_{X|Z}[k_{\mathcal{X}}(X, \cdot) \mid Z](\omega) = \int_{\Omega} k_{\mathcal{X}}(X(\omega'), \cdot)Q_{\omega}(d\omega') = \int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot)P_{X|Z}(\omega)(dx),$$

and an event $A_2 \in \mathcal{F}$ with $P(A_2) = 1$ such that for all $\omega \in A_2$,

$$\mu_{P_{X'|Z'}}(\omega) := \mathbb{E}_{X'|Z'}[k_{\mathcal{X}}(X', \cdot) \mid Z'](\omega) = \int_{\Omega} k_{\mathcal{X}}(X'(\omega'), \cdot)Q_{\omega}(d\omega')$$
$$= \int_{\mathcal{X}} k_{\mathcal{X}}(x', \cdot)P_{X'|Z'}(\omega)(dx').$$

Suppose for contradiction that there exists some $D \in \mathfrak{Z}$ with $P_Z(D) > 0$ such that for all $z \in D$, $F_{P_X|Z}(z) \neq \int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{dx}(z)$. Then $P(Z^{-1}(D)) = P_Z(D) > 0$, and hence $P(Z^{-1}(D) \cap A_1) > 0$. For all $\omega \in Z^{-1}(D) \cap A_1$, we have $Z(\omega) \in D$, and hence

$$\mu_{P_{X|Z}}(\omega) = F_{P_{X|Z}}(Z(\omega)) \neq \int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{dx}(Z(\omega)) = \int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) P_{X|Z}(\omega)(dx).$$

This contradicts our assertion that $\mu_{P_{X|Z}}(\omega) = \int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) P_{X|Z}(\omega)(dx)$ for all $\omega \in A_1$, hence there does not exist $D \in \mathfrak{Z}$ with $P_Z(D) > 0$ such that for all $z \in D$, $F_{P_{X|Z}}(z) \neq \int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{dx}(z)$. Therefore, there must exist some $C_1 \in \mathfrak{Z}$ with $P_Z(C_1) = 1$ such that for all $z \in C_1$, $F_{P_{X|Z}}(z) = \int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{dx}(z)$. Similarly, there must exist some $C_2 \in \mathfrak{Z}$ with $P_Z(C_2) = 1$ such that for all $z \in C_2$, $F_{P_{X'|Z'}}(z) = \int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R'_{dx}(z)$. Since P_Z and $P_{Z'}$ are absolutely continuous with respect to each other, we also have $P_Z(C_2) = 1 = P_{Z'}(C_1)$.

 $(\implies) \text{ Suppose first that } \operatorname{MCMD}_{P_{X|Z},P_{X'|Z'}} = \|F_{P_{X|Z}} - F_{P_{X'|Z'}}\|_{\mathcal{H}_{\mathcal{X}}} = 0 \ P_Z \text{-almost everywhere, i.e. there exists } C \in \mathfrak{Z} \text{ with } P_Z(C) = 1 \text{ such that for all } z \in C, \\ \|F_{P_{X|Z}}(z) - F_{P_{X'|Z'}}(z)\|_{\mathcal{H}_{\mathcal{X}}} = 0. \text{ Then for each } z \in C \cap C_1 \cap C_2, \end{cases}$

$$\begin{split} \int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{dx}(z) &= F_{P_{X|Z}}(z) & \text{since } z \in C_1 \\ &= F_{P_{X'|Z'}}(z) & \text{since } z \in C \\ &= \int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R'_{dx}(z) & \text{since } z \in C_2. \end{split}$$

Since the kernel $k_{\mathcal{X}}$ is characteristic, this means that $B \mapsto R_B(z)$ and $B \mapsto R'_B(z)$ are the same probability measure on $(\mathcal{X}, \mathfrak{X})$. By countable intersection, we have $P_Z(C \cap C_1 \cap C_2) = 1$, so P_Z -almost everywhere,

$$P_{X|Z=z}(B) = P_{X'|Z'=z}(B)$$

for all $B \in \mathfrak{X}$.

(\Leftarrow) Now assume there exists $C \in \mathfrak{Z}$ with $P_Z(C) = 1$ such that for each $z \in C$, $R_B(z) = R'_B(z)$ for all $B \in \mathfrak{X}$. Then for all $z \in C \cap C_1 \cap C_2$,

$$\begin{split} \left\| F_{P_{X|Z}}(z) - F_{P_{X'|Z'}}(z) \right\|_{\mathcal{H}_{\mathcal{X}}} \\ &= \left\| \int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{dx}(z) - \int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R'_{dx}(z) \right\|_{\mathcal{H}_{\mathcal{X}}} \quad \text{since } z \in C_1 \cap C_2 \\ &= \left\| \int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{dx}(z) - \int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) R_{dx}(z) \right\|_{\mathcal{H}_{\mathcal{X}}} \quad \text{since } z \in C \\ &= 0, \end{split}$$

and since $P_Z(C \cap C_1 \cap C_2) = 1$, $\|F_{P_X|_Z} - F_{P_{X'|Z'}}\|_{\mathcal{H}_X} = 0$ P_Z -almost everywhere.

Theorem 5.4. Suppose $k_{\mathcal{X}} \otimes k_{\mathcal{Y}}$ is a characteristic kernel on $\mathcal{X} \times \mathcal{Y}$, and that $P(\cdot | Z)$ admits a regular version. Then HSCIC(X, Y | Z) = 0 almost surely if and only if $X \perp Y | Z$.

Proof. Write Q for a regular version of $P(\cdot | Z)$, and assume without loss of generality that the conditional distributions $P_{X|Z}$, $P_{Y|Z}$ and $P_{XY|Z}$ are given by $P_{X|Z}(\omega)(B) = Q_{\omega}(X \in B)$ for $B \in \mathcal{X}$, $P_{Y|Z}(\omega)(C) = Q_{\omega}(Y \in C)$ for $C \in \mathfrak{Y}$ and $P_{XY|Z}(\omega)(D) = Q_{\omega}((X,Y) \in D)$ for $D \in \mathfrak{X} \times \mathfrak{Y}$. By Theorem 2.9, there exists an event $A_1 \in \mathcal{F}$ with $P(A_1) = 1$ such that for all $\omega \in A_1$,

$$\mu_{P_{X|Z}}(\omega) := \mathbb{E}_{X|Z}[k_{\mathcal{X}}(X,\cdot) \mid Z](\omega) = \int_{\Omega} k_{\mathcal{X}}(X(\omega'),\cdot)Q_{\omega}(d\omega') = \int_{\mathcal{X}} k_{\mathcal{X}}(x,\cdot)P_{X|Z}(\omega)(dx),$$

an event $A_2 \in \mathcal{F}$ with $P(A_2) = 1$ such that for all $\omega \in A_2$,

$$\mu_{P_{Y|Z}}(\omega) := \mathbb{E}_{Y|Z}[k_{\mathcal{Y}}(Y, \cdot) \mid Z](\omega) = \int_{\Omega} k_{\mathcal{Y}}(Y(\omega'), \cdot)Q_{\omega}(d\omega') = \int_{\mathcal{Y}} k_{\mathcal{Y}}(y, \cdot)P_{Y|Z}(\omega)(dy),$$

and an event $A_3 \in \mathcal{F}$ with $P(A_3) = 1$ such that for all $\omega \in A_3$,

$$\mu_{P_{XY|Z}}(\omega) = \int_{\mathcal{X}\times\mathcal{Y}} k_{\mathcal{X}}(x,\cdot) \otimes k_{\mathcal{Y}}(y,\cdot) P_{XY|Z}(\omega)(d(x,y)).$$

This means that, for each $\omega \in A_1$, $\mu_{P_{X|Z}}(\omega)$ is the mean embedding of $P_{X|Z}(\omega)$, and for each $\omega \in A_2$, $\mu_{P_{Y|Z}}(\omega)$ is the mean embedding of $P_{Y|Z}(\omega)$.

(\implies) Suppose first that HSCIC $(X, Y \mid Z) = \|\mu_{P_{XY\mid Z}} - \mu_{P_{X\mid Z}} \otimes \mu_{P_{Y\mid Z}}\|_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}} = 0$ almost surely, i.e. there exists $A \in \mathcal{F}$ with P(A) = 1 such that for all $\omega \in A$, $\|\mu_{P_{XY\mid Z}}(\omega) - \mu_{P_{X\mid Z}}(\omega) \otimes \mu_{P_{Y\mid Z}}(\omega)\|_{\mathcal{H}_{\mathcal{X}} \otimes \mathcal{H}_{\mathcal{Y}}} = 0$. Then for each $\omega \in A \cap A_1 \cap A_2 \cap A_3$,

$$\begin{split} \int_{\mathcal{X}\times\mathcal{Y}} & k_{\mathcal{X}}(x,\cdot)\otimes k_{\mathcal{Y}}(y,\cdot)P_{XY|Z}(\omega)(d(x,y)) = \mu_{P_{XY|Z}}(\omega) & \text{ since } \omega \in A_3 \\ & = \mu_{P_{X|Z}}(\omega)\otimes \mu_{P_{Y|Z}}(\omega) & \text{ since } \omega \in A \\ & = \int_{\mathcal{X}} k_{\mathcal{X}}(x,\cdot)P_{X|Z}(\omega)(dx)\otimes \int_{\mathcal{Y}} k_{\mathcal{Y}}(y,\cdot)P_{Y|Z}(\omega)(dy) & \text{ since } \omega \in A_1 \cap A_2 \\ & = \int_{\mathcal{X}\times\mathcal{Y}} k_{\mathcal{X}}(x,\cdot)\otimes k_{\mathcal{Y}}(y,\cdot)P_{X|Z}(\omega)P_{Y|Z}(\omega)(d(x,y)) & \text{ by Fubini.} \end{split}$$

Since the kernel $k_{\mathcal{X}} \otimes k_{\mathcal{Y}}$ is characteristic, the distributions $P_{XY|Z}(\omega)$ and $P_{X|Z}(\omega)P_{Y|Z}(\omega)$ on $\mathcal{X} \times \mathcal{Y}$ are the same. By countable intersection, we have $P(A \cap A_1 \cap A_2 \cap A_3) = 1$, so $P_{XY|Z}$ and $P_{X|Z}P_{Y|Z}$ are the same almost surely, and we have $X \perp Y \mid Z$.

(\Leftarrow) Now assume $X \perp Y \mid Z$, i.e. there exists $A \in \mathcal{F}$ with P(A) = 1 such that for each $\omega \in A$, the distributions $P_{XY|Z}(\omega)$ and $P_{X|Z}(\omega)P_{Y|Z}(\omega)$ are the same. Then for all $\omega \in A \cap A_1 \cap A_2 \cap A_3$,

$$\begin{split} \mu_{P_{XY|Z}}(\omega) &= \int_{\mathcal{X} \times \mathcal{Y}} k_{\mathcal{X}}(x, \cdot) \otimes k_{\mathcal{Y}}(y, \cdot) P_{XY|Z}(\omega)(d(x, y)) & \text{ since } \omega \in A_3 \\ &= \int_{\mathcal{X} \times \mathcal{Y}} k_{\mathcal{X}}(x, \cdot) \otimes k_{\mathcal{Y}}(y, \cdot) P_{X|Z}(\omega)(dx) P_{Y|Z}(\omega)(dy) & \text{ since } \omega \in A \\ &= \int_{\mathcal{X}} k_{\mathcal{X}}(x, \cdot) P_{X|Z}(\omega)(dx) \otimes \int_{\mathcal{Y}} k_{\mathcal{Y}}(y, \cdot) P_{Y|Z}(\omega)(dy) & \text{ by Fubini} \\ &= \mu_{P_{X|Z}}(\omega) \otimes \mu_{P_{Y|Z}}(\omega) & \text{ since } \omega \in A_1 \cap A_2 \end{split}$$

and since $P(A \cap A_1 \cap A_2 \cap A_3) = 1$, HSCIC $(X, Y \mid Z) = 0$ almost surely.