
Sharper Generalization Bounds for Pairwise
Learning: Supplementary Material

A Proof of Theorem 1

To prove Theorem 1, we need to introduce some lemmas. The following lemma is attributed to [7],
which provides far-reaching moment bounds for a summation of weakly dependent and mean-zero
random functions with bounded increments under a change of any single coordinate. We denote
S\{zi} the set {z1, . . . , zi−1, zi+1, . . . , zn}. The Lp-norm of a random variable Z is denoted by

‖Z‖p :=
(
E[|Z|p]

) 1
p , p ≥ 1.

Lemma A.1 ([4]). Let S = {z1, . . . , zn} be a set of independent random variables each taking
values in Z and M > 0. Let g1, . . . , gn be some functions gi : Zn 7→ R such that the following
holds for any i ∈ [n]

•
∣∣ES\{zi}[gi(S)]∣∣ ≤M almost surely (a.s.),

• Ezi
[
gi(S)

]
= 0 a.s.,

• for any j ∈ [n] with j 6= i, and z′′j ∈ Z∣∣gi(S)− gi(z1, . . . , zj−1, z′′j , zj+1, . . . , zn)
∣∣ ≤ β. (A.1)

Then, for any p ≥ 2 ∥∥∥ n∑
i=1

gi(S)
∥∥∥
p
≤ 12

√
6pnβdlog2 ne+ 3

√
2M
√
pn.

The bounds on moments of random variables can be used to establish concentration inequalities, as
shown in the following lemma [4, 16].
Lemma A.2. Let a, b ∈ R+ and δ ∈ (0, 1/e). Let Z be a random variable with ‖Z‖p ≤

√
pa+ pb

for any p ≥ 2. Then with probability at least 1− δ

|Z| ≤ e
(
a
√
log(e/δ) + b log(e/δ)

)
.

The following lemma controls the change on the output of stable algorithms if we perturb a training
dataset by two examples.
Lemma A.3. Let A : Zn 7→ W be γ-uniformly stable. Then for any S′ = {z′1, . . . , z′n} and i 6= j,
we have

sup
z,z̃∈Z

∣∣`(A(S); z, z̃)− `(A(Si,j); z, z̃)∣∣ ≤ 2γ,

where Si,j is defined in (3.4).

Proof. For any i ∈ [n], introduce

Si = {z1, . . . , zi−1, z′i, zi+1, . . . , zn}. (A.2)

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Note that S, Si differ only by a single example, and Si, Si,j differ only by a single example. It then
follows from the definition of uniform stability that

sup
z,z̃∈Z

∣∣`(A(S); z, z̃)− `(A(Si,j); z, z̃)∣∣
≤ sup
z,z̃∈Z

∣∣`(A(S); z, z̃)− `(A(Si); z, z̃)∣∣+ sup
z,z̃∈Z

∣∣`(A(Si); z, z̃)− `(A(Si,j); z, z̃)∣∣
≤ 2γ.

The proof is complete.

With these lemmas, we can give the proof of Theorem 1 on high-probability bounds of the general-
ization gap. The concentration inequality established in Lemma A.1 applies to a summation of n
random functions involving n independent random variables, which does not apply to the objective
function in pairwise learning since it is a U -statistic. We introduce a novel decomposition to exploit
the structure of pairwise learning problems. We abbreviate

∑
i,j∈[n]:i6=j as

∑
i 6=j .

Proof of Theorem 1. Let p ≥ 2 be any number. We can decompose the generalization gap associated
to A(S) as follows

n(n− 1)EZ,Z̃
[
`(A(S);Z, Z̃)

]
−
∑
i6=j

`(A(S); zi, zj) =
∑
i 6=j

EZ,Z̃
[
`(A(S);Z, Z̃)− Ez′i,z′j [`(A(Si,j);Z, Z̃)]

]
+
∑
i6=j

Ez′i,z′j
[
EZ,Z̃

[
`(A(Si,j);Z, Z̃)

]
− `(A(Si,j); zi, zj)

]
+
∑
i 6=j

Ez′i,z′j
[
`(A(Si,j); zi, zj)− `(A(S); zi, zj)

]
,

where Si,j is defined in (3.4). According to Lemma A.3, we know∣∣∣`(A(S);Z, Z̃)− Ez′i,z′j [`(A(Si,j);Z, Z̃)]
∣∣∣ ≤ 2γ

and ∣∣`(A(Si,j); zi, zj)− `(A(S); zi, zj)∣∣ ≤ 2γ.

Therefore,∣∣∣n(n− 1)EZ,Z̃
[
`(A(S);Z, Z̃)

]
−
∑
i6=j

`(A(S); zi, zj)
∣∣∣ ≤ 4n(n− 1)γ +

∣∣∑
i 6=j

gi,j(S)
∣∣, (A.3)

where we introduce

gi,j(S) = Ez′i,z′j
[
EZ,Z̃

[
`(A(Si,j);Z, Z̃)

]
− `(A(Si,j); zi, zj)

]
, ∀i, j ∈ [n].

For any i, j ∈ [n], we can further decompose gi,j as gi,j = g
(i)
j + g̃

(j)
i , where (we omit the argument

S for brevity)

g
(i)
j = Ez′i,z′j

[
EZ,Z̃

[
`(A(Si,j);Z, Z̃)

]
− EZ [`(A(Si,j);Z, zj)]

]
g̃
(j)
i = Ez′i,z′j

[
EZ
[
`(A(Si,j);Z, zj

]
− `(A(Si,j); zi, zj)

]
.

Let us temporarily fix i, and consider n−1 random functions g(i)1 , . . . , g
(i)
i−1, g

(i)
i+1, . . . , g

(i)
n . According

to the assumption
∣∣ES [`(A(S); z, z̃)]∣∣ ≤M for all z, z̃, we know∣∣ES\{zj}[g(i)j (S)]

∣∣ ≤ 2M, ∀j ∈ [n].

For any j 6= i, since zj is independent of Si,j we know

Ezj
[
EZ,Z̃

[
`(A(Si,j);Z, Z̃)

]
− EZ [`(A(Si,j);Z, zj)]

]
= 0.

Therefore, Ezj [g
(i)
j ] = 0. For any k 6= j and any z′′k ∈ Z , it is clear from the uniform stability of A

that ∣∣∣Ez′i,z′jEZ,Z̃[`(A(Si,j);Z, Z̃)]− Ez′i,z′jEZ,Z̃
[
`(A(S

(k)
i,j );Z, Z̃)

]∣∣∣ ≤ γ,
2



where S(k)
i,j is the set derived by replacing the k-th element of Si,j with z′′k . Similarly, one have∣∣∣Ez′i,z′jEZ [`(A(Si,j);Z, zj)]− Ez′i,z′jEZ [`(A(S

(k)
i,j );Z, zj)]

∣∣∣ ≤ γ.
It then follows from the above two inequalities that g(i)j satisfies the bounded increment condition
(A.1) with β = 2γ for all k 6= j, i.e.,∣∣∣∣Ez′i,z′j[EZ,Z̃[`(A(Si,j);Z, Z̃)]− EZ [`(A(Si,j);Z, zj)]

]
− Ez′i,z′j

[
EZ,Z̃

[
`(A(S

(k)
i,j );Z, Z̃)

]
− EZ [`(A(S(k)

i,j );Z, zj)]
]∣∣∣∣ ≤ 2γ.

Therefore, all the assumptions of Lemma A.1 hold for the random functions
g
(i)
1 , . . . , g

(i)
i−1, g

(i)
i+1, . . . , g

(i)
n with n there replaced by n − 1 and β = 2γ. We can apply

Lemma A.1 to derive∥∥∥ ∑
j∈[n],j 6=i

g
(i)
j

∥∥∥
p
≤ 24

√
6p(n− 1)γdlog2(n− 1)e+ 6

√
2M
√
p(n− 1), ∀i ∈ [n].

Similarly, we can also show that∥∥∥ ∑
i∈[n],i6=j

g̃
(j)
i

∥∥∥
p
≤ 24

√
6p(n− 1)γdlog2(n− 1)e+ 6

√
2M
√
p(n− 1), ∀j ∈ [n].

It then follows from the subadditivity of ‖ · ‖p and the above two inequalities that∥∥∑
i6=j

gi,j
∥∥
p
≤
∥∥∥∑
i6=j

g
(i)
j

∥∥∥
p
+
∥∥∥∑
i 6=j

g̃
(j)
i

∥∥∥
p

≤
∑
i∈[n]

∥∥∥ ∑
j∈[n],j 6=i

g
(i)
j

∥∥∥
p
+
∑
j∈[n]

∥∥∥ ∑
i∈[n],i6=j

g̃
(j)
i

∥∥∥
p

≤ 48
√
6p(n− 1)nγdlog2(n− 1)e+ 12

√
2M
√
p(n− 1)n.

We can combine the above p-norm and Lemma A.2 to derive the following inequality with probability
at least 1− δ∣∣∣∑

i 6=j

gi,j

∣∣∣ ≤ e(12√2M√(n− 1)n
√

log(e/δ) + 48
√
6(n− 1)nγdlog2(n− 1)e log(e/δ)

)
.

Plugging the above inequality back into (A.3) and using the definition of RS , R, we derive the
following inequality with probability at least 1− δ

|RS(A(S))−R(A(S))| ≤ 4γ +
1

n(n− 1)

∣∣∑
i6=j

gi,j
∣∣

≤ 4γ + e
(
12
√
2M(n− 1)−

1
2

√
log(e/δ) + 48

√
6γdlog2(n− 1)e log(e/δ)

)
.

The proof is complete.

B Proof of Theorem 3

In this section, we prove Theorem 3 on high-probability bounds for learning with strongly convex
objective functions. We first prove Lemma 2 on the norm of output model.

Proof of Lemma 2. Since A(S) is the minimizer of FS , we know there is a F ′S(A(S)) = 0 (F ′S is a
subgradient of FS at A(S)). This together with the definition of strong convexity implies

RS(w
∗) + r(w∗)−RS(A(S))− r(A(S)) ≥

σ

2
‖A(S)−w∗‖2. (B.1)
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Analogous to (A.3), we know

n(n− 1)
(
R(A(S))−RS(A(S))

)
≤ 4n(n− 1)γ +

∑
i,j∈[n]:i 6=j

gi,j ,

where gi,j is defined in the proof of Theorem 1. In the proof of Theorem 1, we have shown E[gi,j ] = 0.
It then follows that

E
[
R(A(S))−RS(A(S))

]
≤ 4γ.

We can plug the above inequality back into (B.1) to derive
σ

2
E
[
‖A(S)−w∗‖2

]
≤ E

[
RS(w

∗) + r(w∗)−RS(A(S))− r(A(S))
]

≤ E
[
RS(w

∗) + r(w∗)−R(A(S))− r(A(S))
]
+ 4γ

= E
[
R(w∗) + r(w∗)−R(A(S))− r(A(S))

]
+ 4γ ≤ 4γ,

where the last inequality holds since w∗ minimizes F = R+ r. The stated inequality then follows
and finishes the proof.

To prove Theorem 3, we introduce some lemmas.
Lemma B.1. For any S ∈ Zn, define A as A(S) = argminw∈W FS(w). For any k ∈ [n], let Sk
be defined by (A.2). Then

FS(A(Sk))− FS(A(S)) ≤
1

n(n− 1)

∑
i∈[n]:i 6=k

((
`(A(Sk); zi, zk)− `(A(S); zi, zk)

)
+
(
`(A(Sk); zk, zi)− `(A(S); zk, zi)

)
+
(
`(A(S); zi, z

′
k)− `(A(Sk); zi, z′k)

)
+
(
`(A(S); z′k, zi)− `(A(Sk); z′k, zi)

))
.

Proof. Without loss of generality, we can assume k = n. Since A(Sn) is a minimizer of FSn , we
know

FS(A(Sn))− FS(A(S))
= FS(A(Sn))− FSn(A(Sn)) + FSn(A(Sn))− FSn(A(S)) + FSn(A(S))− FS(A(S))
≤ FS(A(Sn))− FSn

(A(Sn)) + FSn
(A(S))− FS(A(S)). (B.2)

By the definition of FS and FSn
, we know

n(n− 1)
(
FS(A(Sn))− FSn(A(Sn))

)
=

∑
i,j∈[n]:i6=j

f(A(Sn); zi, zj)

−
( ∑
i,j∈[n−1]:i 6=j

f(A(Sn); zi, zj) +
∑

i∈[n−1]

f(A(Sn); zi, z
′
n) +

∑
i∈[n−1]

f(A(Sn); z
′
n, zi)

)
=

∑
i∈[n−1]

(
f(A(Sn); zi, zn) + f(A(Sn); zn, zi)− f(A(Sn); zi, z′n)− f(A(Sn); z′n, zi)

)
.

Similarly, we know

n(n− 1)
(
FSn

(A(S))− FS(A(S))
)
=∑

i∈[n−1]

(
f(A(S); zi, z

′
n) + f(A(S); z′n, zi)− f(A(S); zi, zn)− f(A(S); zn, zi)

)
.

Therefore, we can combine the above two identities to derive

n(n− 1)
(
FS(A(Sn))− FSn

(A(Sn)) + FSn
(A(S))− FS(A(S))

)
=∑

i∈[n−1]

((
f(A(Sn); zi, zn)− f(A(S); zi, zn)

)
+
(
f(A(Sn); zn, zi)− f(A(S); zn, zi)

)
+

(
f(A(S); zi, z

′
n)− f(A(Sn); zi, z′n)

)
+
(
f(A(S); z′n, zi)− f(A(Sn); z′n, zi)

))
.
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This together with the structure of f (f = `+ r with r depending only on w) implies

n(n− 1)
(
FS(A(Sn))− FSn

(A(Sn)) + FSn
(A(S))− FS(A(S))

)
=∑

i∈[n−1]

((
`(A(Sn); zi, zn)− `(A(S); zi, zn)

)
+
(
`(A(Sn); zn, zi)− `(A(S); zn, zi)

)
+

(
`(A(S); zi, z

′
n)− `(A(Sn); zi, z′n)

)
+
(
`(A(S); z′n, zi)− `(A(Sn); z′n, zi)

))
.

Plugging the above identity back into (B.2), we derive

FS(A(Sn))− FS(A(S))

≤ 1

n(n− 1)

∑
i∈[n−1]

((
`(A(Sn); zi, zn)− `(A(S); zi, zn)

)
+
(
`(A(Sn); zn, zi)− `(A(S); zn, zi)

)
+
(
`(A(S); zi, z

′
n)− `(A(Sn); zi, z′n)

)
+
(
`(A(S); z′n, zi)− `(A(Sn); z′n, zi)

))
.

The proof is complete.

The following lemma establishes the uniform stability of pairwise learning with strongly convex
objectives.

Lemma B.2. Define A as A(S) = argminw∈W FS(w). Suppose FS is σ-strongly convex w.r.t. ‖ · ‖.
Assume for all z, z̃ we have (4.3). Then A is 8L2

nσ -uniformly stable.

Proof. Let S, S′ be two sets that differ by a single example and let wS = A(S) and wS′ = A(S′).
Without loss of generality, we can assume S′ = {z1, . . . , zn−1, z′n}, i.e., S and S′ differ by the last
example.

Since wS is a minimizer of FS we know there is a subgradient F ′S(wS) = 0, which together with
the σ-strong convexity of FS , implies

FS(wS′)− FS(wS) ≥
σ

2
‖wS′ −wS‖2. (B.3)

According to (4.3) and Lemma B.1, we know

FS(wS′)− FS(wS) ≤
4(n− 1)L‖wS −wS′‖

n(n− 1)
.

which, together with (B.3), implies

‖wS −wS′‖ ≤ 8L

nσ
.

This further together with (4.3) implies the 8L2

nσ -uniform stability of A. The proof is complete.

To obtain tight control on the termR(w∗)−RS(w∗), we will need a version of Bernstein’s inequality
for U-statistics. The following theorem is attributed to [10], and can be found in [5] (inequality A.1
on page 868), and in [12] (Theorem 2). A complete proof is provided in [13] (page 4).

Lemma B.3 (Bernstein’s inequality for U-Statistic [10, 13]). Let Z1, . . . , . . . , Zn be independent
variables taking values in Z and q : Z ×Z 7→ R. Let b = supz,z̃ |q(z, z̃)| and σ2

0 be the variance of
q(Z, Z̃). Then for any δ ∈ (0, 1) with probability at least 1− δ

∣∣∣ 1

n(n− 1)

∑
i,j∈[n]:i 6=j

q(Zi, Zj)− EZ,Z̃ [q(Z, Z̃)]
∣∣∣ ≤ 2b log(1/δ)

3bn/2c
+

√
2σ2

0 log(1/δ)

bn/2c
. (B.4)

We now give the proof of Theorem 3.
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Proof of Theorem 3. According to Lemma B.2, we know that A is 8L2

nσ -uniformly stable. Using this
together with Lemma 2 we derive ES [‖w∗ −A(S)‖2] ≤ 64L2

nσ2 and therefore

ES [‖w∗ −A(S)‖] ≤
(
ES [‖w∗ −A(S)‖2]

) 1
2 ≤ 8L√

nσ
. (B.5)

For any w ∈ W and z, z̃, define
˜̀(w; z, z̃) = `(w; z, z̃)− `(w∗; z, z̃).

Then it is clear from Lemma B.2 that A is also 8L2

nσ -uniformly stable when measured by the “loss” ˜̀,
i.e., for any S, S′ differing by one example

sup
z,z̃

∣∣˜̀(A(S); z, z̃)− ˜̀(A(S′); z, z̃)
∣∣

= sup
z,z̃

∣∣`(A(S); z, z̃)− `(A(S′); z, z̃)− `(w∗; z, z̃) + `(w∗; z, z̃)
∣∣

= sup
z,z̃

∣∣`(A(S); z, z̃)− `(A(S′); z, z̃)∣∣ ≤ 8L2/(nσ).

Furthermore, by the Lipschitz continuity (4.3) and (B.5), we know the following inequality for all
z, z̃ ∈ Z ∣∣∣ES[˜̀(A(S); z, z̃)]∣∣∣ = ∣∣∣ES[`(A(S); z, z̃)− `(w∗; z, z̃)]∣∣∣

≤ LES
[
‖w∗ −A(S)‖

]
≤ 8L2

√
nσ

.

We can now apply Theorem 1, with γ = 8L2

nσ , M = 8L2/(
√
nσ) and ` replaced by ˜̀, and show the

following inequality with probability 1− δ/2∣∣∣ 1

n(n− 1)

∑
i 6=j

˜̀(A(S); zi, zj)− Ez,z̃
[
˜̀(A(S); z, z̃)

]∣∣∣ ≤ 32L2

nσ

+ e
(96√2L2

√
log(2e/δ)√

n(n− 1)σ

)
+

384
√
6L2dlog2 ne log(2e/δ)

nσ
,

from which we derive the following inequality with probability 1− δ/2∣∣RS(A(S))−R(A(S))∣∣ ≤ ∣∣∣ 1

n(n− 1)

∑
i 6=j

`(w∗; zi, zj)− Ez,z̃
[
`(w∗; z, z̃)

]∣∣∣
+

32L2

nσ

(
1 + 3

√
2n log(2e/δ)

n− 1
+ 12

√
6dlog2 ne log(2e/δ)

)
. (B.6)

By to the definition of w∗ (R′(w∗) + r′(w∗) = 0), the σ-strong convexity and Assumption 1
(0 ≤ `(0; z, z̃)), we know

σ‖w∗‖2

2
≤ R(0) + r(0)−R(w∗)− r(w∗) =⇒ ‖w∗‖ ≤

√
2(R(0) + r(0))

σ
.

It then follows from the Lipschitz continuity (4.3) that
|`(w∗; z, z̃)| =

∣∣`(w∗; z, z̃)− `(0; z, z̃) + `(0; z, z̃)
∣∣ ≤ L‖w∗‖+ sup

z,z̃
`(0; z, z̃)

≤ L
√

2(R(0) + r(0))

σ
+ sup

z,z̃
`(0; z, z̃).

According to Bernstein’s inequality (B.4), we derive the following inequality with probability 1− δ/2
that∣∣∣ 1

n(n− 1)

∑
i 6=j

`(w∗; zi, zj)− Ez,z̃[`(w∗; z, z̃)]
∣∣∣ ≤

2
(
L
√
2(R(0) + r(0))/σ + b

)
log(2/δ)

3bn/2c
+

√
2σ2

0 log(2/δ)

bn/2c
. (B.7)
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Plugging the above inequality back into (B.6), we derive the following inequality with probability at
least 1− δ

∣∣RS(A(S))−R(A(S))∣∣ ≤ 2
(
L
√

2(R(0) + r(0))/σ + b
)
log(2/δ)

3bn/2c
+

√
2σ2

0 log(2/δ)

bn/2c

+
32L2

nσ

(
1 + 3

√
2n log(2e/δ)

n− 1
+ 12

√
6dlog2 ne log(2e/δ)

)
.

The above inequality can be written as the stated bound (4.4).

We now turn to (4.5). According to the definition of R and F , we can decompose the excess risk
R(A(S))−R(w∗R) as follows

R(A(S))−R(w∗R)
= R(A(S))−RS(A(S)) +RS(w

∗
R)−R(w∗R) +RS(A(S))−RS(w∗R)

= R(A(S))−RS(A(S)) +RS(w
∗
R)−R(w∗R) + FS(A(S))− FS(w∗R) + r(w∗R)− r(A(S))

≤ R(A(S))−RS(A(S)) +RS(w
∗
R)−R(w∗R) +O(σ‖w∗R‖2)− r(A(S)), (B.8)

where we have used the inequality FS(A(S)) ≤ FS(w
∗
R) due to the definition of A(S) and the

assumption r(w) = O(σ‖w‖2) in the last step. Analogous to (B.7), one can use Bernstein’s
inequality (Lemma B.3) to show with probability at least 1− δ/2 that (under a very mild assumption
supz,z′ `(w

∗
R; z, z

′) = O(
√
n))

RS(w
∗
R)−R(w∗R) = O

( log(1/δ)√
n

+

√
σ2
0 log(1/δ)

n

)
. (B.9)

Plugging the above inequality and (4.4) back into (B.8) shows the following inequality with probabil-
ity at least 1− δ

R(A(S))−R(w∗R) = O
(
(nσ)−1 log n log(1/δ) + n−

1
2 log(1/δ)

)
+O(σ‖w∗R‖2).

The stated bound (4.5) follows with σ � n−1/2. The proof is complete.

Remark B.1. We show here that the existing stability bound (eq. (4.2) with γ = O(1/(nσ))) [1, 6,
11, 17]

|RS(A(S))−R(A(S))| = O(σ−1n−
1
2 ) (B.10)

yields at best the excess risk bound R(A(S)) − R(w∗R) = O(n−
1
4 ). Indeed, plugging (B.10) and

(B.9) back into (B.8), we derive the following inequality with high probability

R(A(S))−R(w∗R) = O(σ−1n−
1
2 ) +O(σ).

We can balance the above two terms by taking σ � n− 1
4 and get

R(A(S))−R(w∗R) = O(n−
1
4 ).

C Proof of Theorem 4

To prove Theorem 4, we first introduce some lemmas. Lemma C.1 shows the non-expansiveness of
the gradient-update operator, which plays a key role in establishing the stability of SGD. Lemma C.2
is a Chernoff’s bound for a summation of independent Bernoulli random variables [2]. In this section,
we let ‖ · ‖2 be the Euclidean norm.
Lemma C.1 ([8]). Assume for all z ∈ Z , the function w 7→ `(w; z, z′) is convex and α-smooth.
Then for all η ≤ 2/α and z, z′ ∈ Z there holds

‖w − η`′(w; z, z′)−w′ + η`′(w′; z, z′)‖2 ≤ ‖w −w′‖2.

Lemma C.2 (Chernoff’s Bound). Let X1, . . . , XT be independent random variables taking values
in {0, 1}. Let X =

∑T
t=1Xt and µ = E[X]. Then for any ε ∈ (0, 1) with probability at least

1− exp
(
− µε2/3

)
we have X ≤ (1 + ε)µ.
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We now establish the uniform stability of SGD. The randomness of SGD can be characterized by
{{(it, jt)t} : it, jt ∈ [n], it 6= jt}. Therefore, SGD can be considered as a deterministic algorithm if
{{(it, jt)t} : it, jt ∈ [n], it 6= jt} is fixed. For simplicity, we consider two datasets that differ by the
last example. However, our discussion directly extends to the general case where two datasets differ
by a single example. Notice that the Lipschitz continuity (4.3) implies ‖`′(w; z, z′)‖2 ≤ L.
Lemma C.3. Consider fixed {{(it, jt)t} : it, jt ∈ [n], it 6= jt}. Let S = {z1, . . . , zn} and
S′ = {z′1, . . . , z′n} be two datasets that differ only by the last example, i.e., zi = z′i if i ∈ [n − 1].
Suppose for all z, z′ ∈ Z the function w 7→ `(w; z, z′) is convex, α-smooth and L-Lipschitz w.r.t.
‖ · ‖2. Let {wt}, {w′t} be produced by SGD on S and S′ respectively with ηt ≤ 2/α, i.e., (3.3) with
r(w) = 0. Then SGD with t iterations is γ-uniformly stable with

γ ≤ 2L2
t∑

k=1

ηkI[ik = n or jk = n].

Proof. Let us consider two cases. We first consider the case it ∈ [n− 1] and jt ∈ [n− 1]. In this
case, according to the SGD update (3.3) with r(w) = 0 we know

wt+1 −w′t+1 = wt − ηt`′(wt; zit , zjt)−w′t + ηt`
′(w′t; z

′
it , z

′
jt)

= wt − ηt`′(wt; zit , zjt)−w′t + ηt`
′(w′t; zit , zjt).

It then follows from Lemma C.1 that

‖wt+1 −w′t+1‖2 ≤ ‖wt −w′t‖2.
We now consider the case that either it = n or jt = n. In this case, we know

‖wt+1 −w′t+1‖2 =
∥∥wt − ηt`′(wt; zit ; zjt)−w′t + ηt`

′(w′t; z
′
it , z

′
jt)
∥∥
2

≤ ‖wt −w′t‖2 +
∥∥ηt`′(w′t; z′it , z′jt)− ηt`′(wt; zit , zjt)

∥∥
2

≤ ‖wt −w′t‖2 + 2ηtL,

where we have used ‖`′(w; z, z′)‖2 ≤ L due to the L-Lipschitzness. As a combination of the above
two cases, we derive

‖wt+1 −w′t+1‖2 ≤ ‖wt −w′t‖2 + 2ηtLI[it = n or jt = n],

where I[·] is the indicator function taking 1 if the argument holds and 0 otherwise. Taking a summation
of the above inequality gives (w1 = w′1)

‖wt+1 −w′t+1‖2 ≤ 2L

t∑
k=1

ηkI[ik = n or jk = n].

This together with the Lipschitz continuity of ` implies the following inequality for all z, z′ ∈ Z∣∣`(wt+1; z, z
′)− `(w′t+1; z, z

′)
∣∣ ≤ L‖wt+1 −w′t+1‖2

≤ 2L2
t∑

k=1

ηkI[ik = n or jk = n].

The proof is complete.

We now apply the above uniform stability bounds and Theorem 1 to prove Theorem 4.

Proof of Theorem 4. We can apply Theorem 1 with A(S) = wT and the uniform stability bounds in
Lemma C.3 to show with probability at least 1− δ/2 that

∣∣RS(wT )−R(wT )
∣∣ = O

(
(log n log(1/δ))

T∑
t=1

ηI[it = n or jt = n]
)
+O(n−

1
2

√
log(1/δ)),

(C.1)
where η = c/

√
T . Let Xt = I[it = n or jt = n]. It is clear that

E[Xt] = Pr{it = n or jt = n} ≤ Pr{it = n}+ Pr{jt = n} = 2/n.
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Applying Lemma C.2 with Xt = I[it = n or jt = n] then gives with probability 1− δ/2 that

T∑
t=1

Xt ≤
(
1 +

√
3µ−1 log(1/δ)

)
µ,

where µ =
∑T
t=1 E[Xt] ≤ 2T/n. It then follows with probability 1− δ/2 that

T∑
t=1

Xt ≤
2T

n

(
1 +

√
2nT−1 log(1/δ)

)
. (C.2)

Combining (C.1) and (C.2) together, we derive the following inequality with probability 1− δ∣∣RS(wT )−R(wT )
∣∣ = O(n−

1
2

√
log(1/δ) + Tη(log n log(1/δ))n−1

+ η log n log(1/δ)
√
n−1T log(1/δ)).

The proof is complete with η = c/
√
T .

Remark C.1. We now give details on deriving excess risk bounds based on the estimation error
bounds in Theorem 4. We can decompose the excess risk into optimization errors and estimation
errors as follows (we omit log(1/δ)) [3]

R(wT )−R(w∗R) = R(wT )−RS(wT ) +RS(wT )−RS(w∗R) +RS(w
∗
R)−R(w∗R)

=
(
R(wT )−RS(wT )

)
+
(
RS(wT )−RS(w∗R)

)
+O(n−

1
2 ), (C.3)

where we have used (B.9). The first term is the estimation error and comes from the approximation
of testing errors by training errors. The second term is the optimization error which comes since
the optimization algorithm may not output the exact minimizer. Then Theorem 4 actually presents
estimation error bounds. If we further assume ‖wt‖ ≤ B for some B > 0 and all t, then it was
shown with high probability that [9]

RS(wT )−RS(w∗R) = O(T−
1
2 log T ). (C.4)

We can plug the above optimization error bounds and the estimation error bounds in Theorem 4 into
(C.3), and get with high probability

R(wT )−R(w∗R) = O
(
log n

√
T/n+ n−

1
2 log n

)
+O(T−

1
2 log T ).

One can take an optimal T � n to trade-off the optimization and estimation errors, and get

R(wT )−R(w∗R) = O(n−
1
2 log n).

Remark C.2. If we plug the uniform stability bounds in Lemma C.3 into the existing connection
between stability and generalization established in (4.2), we get with high probability that

∣∣RS(wT )−R(wT )
∣∣ = O

(√
n

T∑
t=1

ηtI[it = n or jt = n] + n−
1
2

)
.

This together with (C.2) shows the following inequality with high probability (ηt = η = O(1/
√
T ))

∣∣RS(wT )−R(wT )
∣∣ = O

( Tη√
n

(
1 +

√
n/T

)
+ n−

1
2

)
= O

(√T√
n

(
1 +

√
n/T

)
+ n−

1
2

)
.

We can plug the above estimation error bound, the optimization error bound (C.4) back into (C.3),
and derive the following excess risk bound with high probability

R(wT )−R(w∗R) = O
( log T√

T
+

√
T√
n

(
1 +

√
n/T

)
+ n−

1
2

)
= O(1).
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D Proofs on Optimistic Bounds

In this section, we prove optimistic bounds in Theorem 6 by using the smoothness of loss functions.
We first prove Theorem 5 on the connection between generalization and on-average stability.

Proof of Theorem 5. For all i, j ∈ [n], let Si,j be defined by (3.4). Due to the symmetry, we know
E[R(A(S))] = E[R(A(Si,j))] for all i, j ∈ [n] with i 6= j and therefore

E
[
R(A(S))−RS(A(S))

]
=

1

n(n− 1)

∑
i,j∈[n]:i 6=j

E
[
R(A(Si,j))−RS(A(S))

]
=

1

n(n− 1)

∑
i,j∈[n]:i 6=j

E
[
`
(
A(Si,j); zi, zj

)
− `
(
A(S); zi, zj

)]
≤ γ,

where the second identity holds since A(Si,j) is independent of zi and zj . The proof is complete.

We then introduce some basic properties of smooth functions. For a α-smooth and non-negative
function g, we have the following self-bounding property [14]

‖g′(w)‖2 ≤ 2αg(w), ∀w ∈ W (D.1)

and the following elementary inequality

g(w) ≤ g(w′) + 〈g′(w′),w −w′〉+ α‖w −w′‖2

2
, ∀w,w′ ∈ W. (D.2)

We then present a useful lemma.

Lemma D.1. Let S, S′ be defined in Definition 2. Assume for all z, z′, `(·, z, z′) is α-smooth w.r.t. a
norm. For all i ∈ [n], let Si be defined as (A.2) and ε > 0. Then

E
[
R(A(S))−RS(A(S))

]
≤ αE[RS(A(S))]

ε
+

2(ε+ α)

n

∑
i∈[n]

E
[
‖A(Si)−A(S)‖2

]
.

Proof. For all i, j ∈ [n], let Si,j be defined by (3.4). According to (D.2), the Cauchy-Schwartz
inequality and (D.1), for all i, j ∈ [n] we know

`(A(Si,j); zi, zj)− `(A(S); zi; zj) ≤ 〈`′(A(S); zi, zj), A(Si,j)−A(S)〉+
α

2
‖A(Si,j)−A(S)‖2

≤
∥∥`′(A(S); zi, zj)∥∥∥∥A(Si,j)−A(S)∥∥+ α

2
‖A(Si,j)−A(S)‖2

≤ ‖`
′(A(S); zi, zj)‖2

2ε
+
ε+ α

2
‖A(Si,j)−A(S)‖2

≤ α`(A(S); zi, zj)

ε
+
ε+ α

2
‖A(Si,j)−A(S)‖2.

We can plug the above inequality into Theorem 5 to derive

E
[
R(A(S))−RS(A(S))

]
≤ α

εn(n− 1)

∑
i 6=j

E
[
`(A(S); zi, zj)

]
+

ε+ α

2n(n− 1)

∑
i 6=j

E
[
‖A(Si,j)−A(S)‖2

]
=
αE[RS(A(S))]

ε
+

ε+ α

2n(n− 1)

∑
i 6=j

E
[
‖A(Si,j)−A(S)‖2

]
. (D.3)

By the elementary inequality (a+ b)2 ≤ 2a2 + 2b2, we get the following inequality for all i 6= j

E
[
‖A(Si,j)−A(S)‖2

]
≤ 2E

[
‖A(Si,j)−A(Si)‖2

]
+ 2E

[
‖A(Si)−A(S)‖2

]
= 2E

[
‖A(Si)−A(S)‖2

]
+ 2E

[
‖A(Sj)−A(S)‖2

]
,
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where we have used the following identity due to the symmetry between zi and z′i

E
[
‖A(Si,j)−A(Si)‖2

]
= E

[
‖A(Sj)−A(S)‖2

]
.

Plugging the above inequality back into (D.3), we know

E
[
R(A(S))−RS(A(S))

]
≤ αE[RS(A(S))]

ε

+
ε+ α

n(n− 1)

∑
i 6=j

(
E
[
‖A(Si)−A(S)‖2

]
+ E

[
‖A(Sj)−A(S)‖2

])
.

This yields the stated inequality and finishes the proof.

Proof of Theorem 6. According to Lemma B.1 and the α-smoothness of `, we know the following
inequality for any k

n(n− 1)
(
FS(A(Sk))− FS(A(S))

)
≤

∑
i∈[n]:i 6=k

(〈
`′(A(S); zi, zk) + `′(A(S); zk, zi)

− `′(A(Sk); zi, z′k)− `′(A(Sk); z′k, zi);A(Sk)−A(S)
〉
+

4α‖A(Sk)−A(S)‖2

2

)
.

It then follows from the Cauchy-Schwartz inequality that

n(n− 1)
(
FS(A(Sk))− FS(A(S))

)
≤

∑
i∈[n]:i 6=k

(∥∥`′(A(S); zi, zk)∥∥+ ∥∥`′(A(S); zk, zi)∥∥
+
∥∥`′(A(Sk); zi, z′k)∥∥+ ∥∥`′(A(Sk); z′k, zi)∥∥)‖A(Sk)−A(S)‖+ 2α(n− 1)‖A(Sk)−A(S)‖2.

This, together with (D.1) and (B.3), implies

σn(n− 1)‖A(Sk)−A(S)‖2

2
≤
√
2α

∑
i∈[n]:i 6=k

(√
`(A(S); zi, zk) +

√
`(A(S); zk, zi)

+
√
`(A(Sk); zi, z′k) +

√
`(A(Sk); z′k, zi)

)
‖A(Sk)−A(S)‖+ 2α(n− 1)‖A(Sk)−A(S)‖2

and further

σn(n− 1)‖A(Sk)−A(S)‖
2

≤
√
2α

∑
i∈[n]:i 6=k

(√
`(A(S); zi, zk) +

√
`(A(S); zk, zi)

+
√
`(A(Sk); zi, z′k) +

√
`(A(Sk); z′k, zi)

)
+ 2α(n− 1)‖A(Sk)−A(S)‖.

Since 2α ≤ σn/4, we further get

σn(n− 1)‖A(Sk)−A(S)‖
4

≤
√
2α

∑
i∈[n]:i 6=k

(√
`(A(S); zi, zk) +

√
`(A(S); zk, zi)

+
√
`(A(Sk); zi, z′k) +

√
`(A(Sk); z′k, zi)

)
.

Taking a square over both sides and using the standard inequality
(∑n−1

i=1 ai
)2 ≤ (n− 1)

∑n−1
i=1 a

2
i ,

we derive

σ2n2(n− 1)2‖A(Sk)−A(S)‖2

16
≤ 2α(n− 1)

∑
i∈[n]:i 6=k

(√
`(A(S); zi, zk) +

√
`(A(S); zk, zi)

+
√
`(A(Sk); zi, z′k) +

√
`(A(Sk); z′k, zi)

)2
.
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This, further together with the inequality (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2), implies

σ2n2(n− 1)‖A(Sk)−A(S)‖2 ≤ 128α
∑

i∈[n]:i6=k

(
`(A(S); zi, zk) + `(A(S); zk, zi)

+ `(A(Sk); zi, z
′
k) + `(A(Sk); z

′
k, zi)

)
.

Taking a summation of the above inequality from k = 1 to n, we get

σ2n2(n− 1)

n∑
k=1

‖A(Sk)−A(S)‖2 ≤ 128α
∑

i,k∈[n]:i 6=k

(
`(A(S); zi, zk) + `(A(S); zk, zi)

+ `(A(Sk); zi, z
′
k) + `(A(Sk); z

′
k, zi)

)
. (D.4)

Due to the symmetry, we know

E
[
`(A(Sk); zi, z

′
k)
]
= E

[
`(A(S); zi, zk)

]
, ∀i 6= k.

It then follows that∑
i,k∈[n]:i6=k

E
[
`(A(S); zi, zk) + `(A(S); zk, zi) + `(A(Sk); zi, z

′
k) + `(A(Sk); z

′
k, zi)

]
=

∑
i,k∈[n]:i6=k

E
[
`(A(S); zi, zk) + `(A(S); zk, zi) + `(A(S); zi, zk) + `(A(S); zk, zi)

]
= 4n(n− 1)E

[
RS(A(S))

]
.

We can plug the above inequality back into (D.4) and derive that

σ2n

n∑
k=1

E
[
‖A(Sk)−A(S)‖2

]
≤ 512αE

[
RS(A(S))

]
.

We now plug the above inequality back into Lemma D.1 and derive that the following inequality for
all ε > 0

E
[
R(A(S))−RS(A(S))

]
≤ αE[RS(A(S))]

ε
+

1024(ε+ α)α

n2σ2
E
[
RS(A(S))

]
.

We can take ε = nσ
32 to derive

E
[
R(A(S))−RS(A(S))

]
≤
(1024α2

n2σ2
+

64α

nσ

)
E
[
RS(A(S))

]
.

Furthermore, according to the definition of A(S) we know (w∗ is independent of S)

E[F (A(S))]− F (w∗) = E
[
F (A(S))− FS(A(S))

]
+ E

[
FS(A(S))− FS(w∗)

]
≤ E

[
F (A(S))− FS(A(S))

]
= E

[
R(A(S))−RS(A(S))

]
.

This finishes the proof of (4.8).

We now turn to the bound of E[R(A(S))]−R(w∗R). Analogously to (B.8), we know

E
[
R(A(S))−R(w∗R)

]
≤ E

[
R(A(S))−RS(A(S))

]
+O(σ‖w∗R‖2)

= O
( 1

nσ

)
E
[
RS(A(S))

]
+O(σ‖w∗R‖2), (D.5)

where we have used (4.8) in the last step. According to the definition of A(S), we further know

RS(A(S)) + r(A(S)) ≤ RS(w∗R) + r(w∗R) = RS(w
∗
R) +O(σ‖w∗R‖2).

Since w∗R is independent of S, we can take expectation to derive

E[RS(A(S))] = R(w∗R) +O(σ‖w∗R‖2).
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We can plug the above inequality back into (D.5), and derive

E
[
R(A(S))−R(w∗R)

]
= O

(R(w∗R)
nσ

+O
(
n−1 + σ

)
‖w∗R‖2

)
.

We can take

σ = max
{8α
n
,

√
R(w∗R)

n‖w∗R‖2
}

and derive

E
[
R(A(S))−R(w∗R)

]
= O

(√R(w∗R)‖w∗R‖√
n

+
‖w∗R‖2

n

)
.

This establishes (4.9) and finishes the proof.

E Proofs on Applications

In this section, we present proofs for applications of our general results to metric learning.

Proof of Corollary 10. It is well known that FS is 2λ-strongly convex w.r.t. ‖ · ‖. To apply Theorem
3, we require to check (4.3). For all w,w′, z, z′, we know∣∣`ψ(w; z, z′)− `ψ(w′; z, z′)

∣∣
=
∣∣∣max

{
0, 1− τ(y, y′)(1− hw(x, x′))

}
−max

{
0, 1− τ(y, y′)(1− hw′(x, x′))

}∣∣∣
≤ |τ(y, y′)|

∣∣hw(x, x′)− hw′(x, x′)
∣∣ ≤ ∣∣〈w −w′, (x− x′)(x− x′)〉

∣∣
≤ 4B2‖w −w′‖.

Therefore, (4.3) holds with L = 4B2. The proof then completes by applying Theorem 3.

Proof of Corollary 11. To apply Theorem 4, it suffices to show the smoothness of the loss function.
The gradient of `ψ w.r.t. w can be calculated by

∇`ψ(w; z, z′) = −ψ′
(
τ(y, y′)(1− hw(x, x′))

)
τ(y, y′)(x− x′)(x− x′)>.

Then, for any w and w′ ∈ W we have∥∥∇`ψ(w; z, z′)−∇`ψ(w′; z, z′)
∥∥
K

≤
∥∥τ(y, y′)(x− x′)(x− x′)>∥∥∣∣ψ′(τ(y, y′)(1− hw(x, x′))

)
− ψ′

(
τ(y, y′)(1− hw′(x, x′))

)∣∣
≤ 4B2

∣∣ψ′(τ(y, y′)(1− hw(x, x′))
)
− ψ′

(
τ(y, y′)(1− hw′(x, x′))

)∣∣
≤ 4B2|τ(y, y′)|

∣∣(1− hw(x, x′))− (1− hw′(x, x′))
∣∣

= 4B2
∣∣〈w −w′, (x− x′)(x− x′)>〉

∣∣
≤ 16B4‖w −w′‖,

where we have used the 1-smoothness of the logistic loss in the third step. That is, `ψ is (16B4)-
smooth w.r.t. the Frobenius norm. The stated bound then follows from Theorem 4.

F Minimax Optimal Excess Risk Bounds for Pairwise Learning

Here we explain that the bound O(n−
1
2 ) is minimax optimal for the excess risks in pairwise learning.

To see this, we consider pairwise loss functions which do not depend on the second example, i.e.,
`(w; z, z′) = `(w; z, z̃′) for all z′, z̃′ ∈ Z . Then it is clear that RS defined in (3.1) becomes

RS(w) =
1

n

∑
i∈[n]

1

n− 1

∑
j∈[n]:j 6=i

`(w; zi, zj) =
1

n

∑
i∈[n]

`(w; zi, z0) := R̃S(w),
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where z0 is any fixed point in Z . This is actually an objective function for pointwise learning. We
know that for any estimator we can find a pointwise learning problem such that this estimator has the
excess risk bound O(n−

1
2 ) [15]. Then, for any estimator we can build a pairwise learning problem

such that this estimator has at best the excess risk bound O(n−
1
2 ). Furthermore, we can construct

such a pairwise learning problem with the loss function independent of the second example.
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