
Escaping the Gravitational Pull of Softmax

Jincheng Mei 1 4 Chenjun Xiao 1 4 Bo Dai 4 Lihong Li 3∗

Csaba Szepesvári 2 1 Dale Schuurmans 4 1

1University of Alberta 2DeepMind 3Amazon 4Google Research, Brain Team

{jmei2,chenjun,daes}@ualberta.ca {bodai,szepi}@google.com llh@amazon.com

Abstract

The softmax is the standard transformation used in machine learning to map real-
valued vectors to categorical distributions. Unfortunately, this transform poses
serious drawbacks for gradient descent (ascent) optimization. We reveal this dif-
ficulty by establishing two negative results: (1) optimizing any expectation with
respect to the softmax must exhibit sensitivity to parameter initialization (“softmax
gravity well”), and (2) optimizing log-probabilities under the softmax must exhibit
slow convergence (“softmax damping”). Both findings are based on an analysis
of convergence rates using the Non-uniform Łojasiewicz (NŁ) inequalities. To
circumvent these shortcomings we investigate an alternative transformation, the
escort mapping, that demonstrates better optimization properties. The disadvan-
tages of the softmax and the effectiveness of the escort transformation are further
explained using the concept of NŁ coefficient. In addition to proving bounds on
convergence rates to firmly establish these results, we also provide experimental
evidence for the superiority of the escort transformation.

1 Introduction

The probability transformation plays an essential role in machine learning, used whenever the output
of a learned model needs to be mapped to a probability distribution. For example, in reinforcement
learning (RL), a probability transformation is used to parameterize policy representations that
provide a conditional distribution over a finite set of actions given an input state or observation
[18]. In supervised learning (SL), particularly classification, a probability transformation is used
to parameterize classifiers that provide a conditional distribution over a finite set of classes given
an input observation [7]. Attention models [21] also use probability transformations to provide
differentiable forms of memory addressing.

Among the myriad ways one might map vectors to probability distributions, the softmax transform
is the most common. For θ ∈ RK , the transformation πθ = softmax(θ) is defined by πθ(a) =
exp{θ(a)}/

∑
a′ exp{θ(a′)} for all a ∈ {1, ...,K}, which ensures πθ(a) > 0 and

∑
a πθ(a) = 1

[4]. The softmax transform can also be extended to continuous output spaces through the concept of
a Gibbs function [13], but for concreteness we restrict attention to finite output sets.

Despite the ubiquity of the softmax in machine learning, it is not clear why it should be the default
choice of probability transformation. Some alternative transformations have been investigated in the
literature [6, 12], but a comprehensive understanding of why one choice might be advantageous over
another remains incomplete. It is natural to ask what options might be available and what properties
are desirable. In fact, we find that the softmax is a particularly undesirable choice from the perspective
of gradient descent (ascent) optimization. Moreover, better alternatives are readily available at no

∗Work done when Lihong Li was with Google. Correspondence to: Jincheng Mei.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

computational overhead. This paper seeks to fill the gap in understanding key properties of probability
transformations in general and how they compare to the softmax.

We start by considering reinforcement learning and investigate gradient ascent optimization of
expected reward using the softmax transform, an algorithm we refer to as softmax policy gradient
(SPG) [1, 14]. In this setting, we identify an inherent disadvantage of SPG, the “softmax gravity well
(SGW)”, whereby gradient ascent trajectories are drawn toward suboptimal corners of the probability
simplex and subsequently slowed in their progress toward the optimal vertex. We establish these
facts both through theoretical analysis and empirical observation, revealing that the behavior of SPG
depends strongly on initialization. Then we propose the use of the escort transform as an alternative
to softmax for expected reward optimization. We analyze the resulting gradient ascent algorithm,
escort policy gradient (EPG), and prove that it enjoys strictly better convergence behavior than SPG,
significantly mitigating sensitivity to initialization. These findings are also verified experimentally.

Next we consider supervised learning and investigate gradient descent optimization of cross entropy
loss using the softmax transform, an algorithm we refer to as softmax cross entropy (SCE). Here,
even though the optimization landscape at the output layer is convex, we identify a detrimental
phenomenon we refer to as “softmax damping”. In particular, given deterministic (“one-hot”) true
label distributions, we show that SCE achieves a slower than linear rate of convergence. Then we
propose the use of the escort transform as an alternative to softmax for cross entropy minimization.
We analyze the resulting gradient descent algorithm, escort cross entropy (ECE), and show that it is
guaranteed to enjoy strictly faster convergence than SCE. In particular, a special choice of the escort
transform fully eliminates the softmax damping phenomenon, preserving the linear convergence rate
for cross entropy minimization.

Finally we propose a unifying concept, the Non-uniform Łojasiewicz (NŁ) coefficient, to explain
both the softmax gravity well and softmax damping, even when these might otherwise appear to be
disconnected phenomena. We show that by increasing the NŁ coefficient, EPG achieves strictly better
initialization dependence than SPG. Moreover, by making the NŁ coefficient non-vanishing, ECE
enjoys strictly faster convergence than SCE.

2 Illustrating the Softmax Gravity Wells with Softmax Policy Gradient
We begin by considering the domain of reinforcement learning (RL), where the goal is to learn
a policy that maximizes expected return. A core method in RL is policy gradient [19], where a
parameterized policy is directly optimized to maximize long-term expected reward. It is conventional
in this area to represent parametric policies using a softmax transform to produce conditional action
distributions, hence policy gradient in practice is almost always the softmax policy gradient (SPG).

Despite the fact that SPG has been a dominant RL method for decades, only recently has it been
proved to be globally convergent for general MDPs [1]. This result is far from obvious, since the
optimization objective is not concave, nevertheless it was shown that SPG converges to the optimal
policy under general conditions [1]. More recently, this result was strengthened to establish a Θ(1/t)
bound on the rate of convergence [14], with constants that depend on the problem and initialization.

Although these theoretical results are general and impressive, they seem at odds with the behavior
of policy gradient methods, which are notoriously difficult to tune in practice [17]. To reconcile
theory with empirical observation, we first demonstrate that the “constants” in these results are in fact
important, and understanding their role explains much of the real-world performance of SPG.

Illustration To illustrate the point concretely, consider a simple experiment on a single-state
Markov Decision Process (MDP) (i.e., a multi-armed bandit) with K = 6 actions. In this case,
the SPG of a policy πθ for a given reward vector r ∈ [0, 1]K reduces to the update θt+1(a) =
θt(a) + η · πθt(a) ·

[
r(a)− π>θtr

]
, ∀a ∈ [K] := {1, ...,K}, and πθt+1

= softmax(θt+1). Fig. 1
shows the result of multiple runs using SPG with full gradients. Depending on whether the last
iteration satisfies πθT (a∗) ≥ 0.99, we group the 20 runs as “good” and “bad” initializations. As shown
in Fig. 1(a) and (b), for good initializations, the sub-optimality (π∗ − πθt)

>
r quickly approaches 0,

whereas for bad initializations, the iterates get stuck near local optima. Subfigure (c) shows average
probability of optimal actions, which shows that the trajectories from bad initializations stay near
local optima, since the optimal action probabilities stay close to 0. However, we know from the
theory that from any initializations SPG must eventually converge to the optimal policy π∗, and that
is indeed the case here: Subfigure (d) shows the long-run time to convergence (boxes are 25 to 75th

2

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

6
7
8
9

10
11
12
13
14
15

Figure 1: SPG behavior on single-state MDPs with K = 6 arms, fully parameterized policy (no
approximation error), rewards randomly generated (uniform within [0, 1] for each r(a)) and policy
randomly initialized on each run, 20 runs. Full gradient SPG updates with stepsize η = 0.4 [14] for
T = 3× 104 steps. An initialization is “good” if πθT (a∗) ≥ 0.99 at the last iterate.

percentiles) for good versus bad initializations, where the y-axis is log T such that πθT (a∗) ≥ 0.99,
showing bad runs take many orders of magnitude longer.

Although these findings seem not to comport with theory, they can in fact be explained by delving
deeper into the detailed nature of the Θ(1/t) rates proved in [14].

Escape time To control the effect of initialization, consider a specialization of the previous problem
where we let r = (b+ ∆, b, . . . , b)> ∈ [0, 1]K for some b, such that ∆ > 0 is the reward gap. For a
given initialization, we say that SPG “escapes” at time t0 if for all t ≥ t0 it holds that (π∗ − πθt)

>
r <

0.9 ·∆, i.e., after t0 the sub-optimality stays “small”. Fig. 2(a) shows that as the initial probability of
the optimal action πθ1(a∗) decreases, the “escape time” t0 increases proportionally. In particular, the
slope in subfigure (a) approaches−1 as πθ1(a∗) decreases, indicating that log t0 = − log πθ1(a∗)+C,
or equivalently t0 = C ′/πθ1(a∗). Two trajectories for SPG on a single-state MDP with K = 5 is
shown in Fig. 2(b) and (c). This example reveals that every suboptimal vertex i ∈ {2, 3, 4} has the
potential to attract the iterates, while also slowing progress to render the sub-optimality plateaus in
subfigure (c). Therefore, SPG spends some “escape time” around each suboptimal corner.

-12 -10 -8 -6 -4
6

7

8

9

10

11

12

13

14

104
0 2 4 6 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2: Dependence on initialization and softmax gravity wells.

We can see as SPG follows a trajectory defined by exact gradients, it effectively encounters “Softmax
Gravity Wells (SGWs)” at the vertices (deterministic policies), each of which attracts the trajectory
and significantly slows down progress in their vicinity. To see why the attraction to suboptimal
vertices is possible, consider the SPG in detail: for a single-state MDP, ∀a ∈ [K], we have

dπ>θ r

dθ(a)
= πθ(a) ·

[
r(a)− π>θ r

]
. (1)

Note that it is possible for an optimal action, say a1, to be less attractive than a suboptimal action
a2, even when r(a1) > r(a2), since it is possible to have both r(a1) − π>θtr > r(a2) − π>θtr > 0

and πθt(a2) > πθt(a1), and yet still have πθt(a2) ·
[
r(a2)− π>θtr

]
> πθt(a1) ·

[
r(a1)− π>θtr

]
.

This configuration causes the probability on the suboptimal action to stay above the optimal action
probability, πθt+1

(a2) > πθt+1
(a1). Even though the examples and analysis above might seem

specific, they provide the foundation for a useful and informative lower bound.
Theorem 1 (Escape time lower bound). Even in a single-state MDP, for any learning rate ηt ∈ (0, 1],
there exists an initialization of the policy πθ1 and a positive constant C, such that SPG with full
gradients cannot escape a suboptimal corner before time t0 := C

∆·πθ1 (a∗) , i.e., it will hold that

(π∗ − πθt)>r ≥ 0.9 ·∆, (2)

3

for all t ≤ t0, where ∆ := r(a∗)−maxa 6=a∗ r(a) > 0 is the reward gap of r ∈ [0, 1]K .

Theorem 1 shows that for SPG with bounded learning rates (needed for monotonic improvement
[1, 14]) the time to escape suboptimal vertices is lower bounded inversely to optimal action probability
πθ(a

∗), which is necessarily small near suboptimal vertices, leading to long suboptimal plateaus.

Failure of SPG heuristics Given the insight from Theorem 1, one might wonder if simple heuristics
can compensate for the slow progress of SPG, possibly by using large learning rates or normalizing
the policy gradient. We show in the appendix that these heuristics unfortunately do not work well
even in simple bandit problems.

Existing observations of plateaus SPG plateaus have been observed in the literature. Previous
work [14] did observe this effect empirically, but did not take a deeper look into the underlying causes.
With function approximation, feature interference has also been considered to be a source of plateaus
[16]. In the multi-agent setting, it has been observed that the non-stationary nature of the environment
can also cause difficulties for SPG to adapt [8]. However, the analysis in this paper shows that SPG
still suffers from plateaus even in the simplest setting (exact gradients, no approximation, stationary
environments). In Section 4 we provide additional mathematical insight to explain why the softmax
transformation itself is the root cause, which also justifies the name SGW.

3 Escort Transform for Policy Gradient

As explained, a difficulty encountered by SPG comes from the πθ(a) factor that appears in the
gradient, Eq. (1). This creates a dependence on the current policy that potentially discounts the
signal from high-reward actions. Unfortunately, the problem is unavoidable if using SPG with
bounded learning rates to perform updates (Theorem 1). Therefore, we study the following alternative
transform, which we refer to as the “escort transform” [3, 20].
Definition 1 (Escort transform). Given θ : S ×A → R, define πθ = fp(θ) for p ≥ 1 by

πθ(a|s) =
|θ(s, a)|p∑

a′∈A |θ(s, a′)|p
, for all (s, a) ∈ S ×A. (3)

If there is only one state, the escort transform is defined as πθ(a) = |θ(a)|p/
∑
a′ |θ(a′)|p, ∀a ∈ [K].

To explain why this alternative transform might help alleviate the problems encountered by the
softmax, consider the gradient of expected reward using the escort transform, i.e., the Escort Policy
Gradient (EPG), for a single-state MDP, ∀a ∈ [K] (detailed calculations are shown in the appendix):

dπ>θ r

dθ(a)
= p · sgn{θ(a)} · |θ(a)|p−1∑

a′ |θ(a′)|p
·
[
r(a)− π>θ r

]
(4)

=
p

‖θ‖p
· sgn{θ(a)} · πθ(a)1−1/p ·

[
r(a)− π>θ r

]
. (5)

Note the key difference between SPG and EPG, in which the πθ(a) term in Eq. (1) now becomes
πθ(a)1−1/p in Eq. (5). Thus, for any p ≥ 1, we have 1− 1/p ∈ [0, 1), which implies πθ(a)1−1/p >
πθ(a) since πθ(a) ∈ [0, 1]. This change will have important implications in convergence rate.

Remark 1. πθ(a)1−1/p → πθ(a) as p→∞, which suggests that large values of p lead to similar
iteration behavior as SPG, whereas small values of p weaken the dependence on πθ(a). In particular,
if p = 1 then πθ(a)1−1/p = 1, which entirely eliminates the dependence on current policy πθ.

As is the case for the softmax transform, the expected reward objective remains non-concave over
parameter θ when using the alternative escort transform.
Proposition 1. θ 7→ π>θ r is a non-concave function over RK using the map πθ := fp(θ).

Despite the non-concavity, we manage to obtain surprisingly strong convergence results for EPG,
with proofs provided in the appendix. In particular, thanks to what we call non-uniform smoothness
and the Non-uniform Łojasiewicz (NŁ) inequality enjoyed by the objective, EPG is shown to enjoy
an upper bound on the sub-optimality for single-state MDPs that has a strictly better initialization
dependence than SPG.

4

Theorem 2. For a single-state MDP, following the escort policy gradient with any initialization such
that |θ1(a)| > 0, ∀a, we obtain the following upper bounds on the sub-optimality for all t ≥ 1: 2

(gradient ascent) for p ≥ 2, p = 1, with ηt =
2 · ‖θt‖2p

9 · p2 ·K1/p
, (π∗ − πθt)>r ≤

9 ·K1/p

c2−2/p
· 1

t
,

(gradient flow) for p ≥ 1, with ηt =
‖θt‖2p
p2

, (π∗ − πθt)>r ≤
1

c2−2/p · (t− 1) + 1
,

where c := inft≥1 πθt(a
∗) > 0 depends on the problem and initialization, but is time-independent.

As p → ∞, Theorem 2 implies an O(1/(c2 t)) convergence rate, recovering the same rate for
SPG [14], as expected (Remark 1). For p < ∞, EPG achieves the same O(1/t) rate as SPG, but
enjoys a strictly better c2−2/p > c2 dependence. In particular, for p = 1, there is no dependence on
c, which is also consistent with Remark 1. On the other hand, K1/p → K increases as p decreases,
which means it is not always good to choose small p values due to trade-off between K and c.

Similar results can in fact be obtained for EPG in general finite MDPs, denoted as M =
(S,A, r,P, γ), where S and A are finite state and action spaces, r : S × A → R is the
reward function, P : S × A → ∆(S) is the transition function, ∆(X) denotes the set of
probability distributions over any finite set X , and γ ∈ [0, 1) is the discount factor. Let
V π(ρ) := Es0∼ρ(·),at∼π(·|st),st+1∼P(·|st,at)

∑∞
t=0 γ

tr(st, at) denote the expected return (value func-
tion) achieved by policy π, where ρ ∈ ∆(S) is an initial state distribution. The goal is to maximize
the value function, i.e., to find a policy π∗ that attains the value V ∗(ρ) := maxπ:S→∆(A) V

π(ρ).

Theorem 3. Following the escort policy gradient with any initialization such that |θ1(s, a)| > 0,

∀(s, a), and ηt(s) =
(1−γ)3·‖θt(s,·)‖2p

10·p2·A2/p to get {θt}t≥1, for all t ≥ 1, the following sub-optimality
upper bounds hold for πθt ,

for p ≥ 2 and p = 1, V ∗(ρ)− V πθt (ρ) ≤ 20 ·A2/p · S
c2−2/p · (1− γ)6 · t

·

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
2

∞

·
∥∥∥∥ 1

µ

∥∥∥∥
∞
,

where c := infs∈S inft≥1 πθt(a
∗(s)|s) > 0 is problem- and initialization-dependent constant, A :=

|A| and S := |S| are the total number of actions and states, respectively, and µ ∈ ∆(S) is an initial
state distribution which provides initial states for the policy gradient method.
Remark 2. Using p = 1 in Theorem 3, the iteration complexity of EPG depends on polynomial
functions of S and A, which significantly improves the corresponding results for SPG [14, Theorem
4], where the worst case dependence can be exponential in S and A.

Finally, as for SPG, adding entropy regularization leads to linear convergence rates for EPG. Note that
SPG with entropy regularization enjoys a linear convergence rate O(1/ exp{c2t}) with dependence
on c = inft≥1 min(s,a) πθt(a|s) [14]. Our results show that EPG with entropy regularization has
strictly better dependence than SPG.
Theorem 4. For an entropy regularized MDP with finite states and actions, following the escort policy
gradient with any initialization such that |θ1(s, a)| > 0, ∀(s, a), and ηt = (1−γ)3/(10·p2 ·A1/p+cτ)
to get {θt}t≥1, for all t ≥ 1, the following sub-optimality upper bounds hold for πθt :

for p ≥ 2, Ṽ π
∗
τ (ρ)− Ṽ πθt (ρ) ≤ ‖1/µ‖∞

exp{Cτ · c′2 · t}
· 1 + τ logA

(1− γ)2
, (6)

where c′ > c := inf(s,a) inft≥1 πθt(a|s) > 0, τ is the temperature for entropy regularization, π∗τ is
the softmax optimal policy, and cτ , Cτ are problem-dependent constants.

Relationship to Mirror Descent (MD) As an additional observation, note that simply removing
πθ(a) in Eq. (1) yields an update θt+1 = θt(a) + ηt · r(a) and πθt+1

= softmax(θt+1), which can be
combined to yield an update πθt+1(a) ∝ πθt(a) · exp{ηt r(a)} that is equivalent to Mirror Descent

2Here, gradient ascent, as expected, refers to θt+1 = θt+ηt ·
dπ>θt

r

dθt
and gradient flow refers to the continuous

version when dθt
dt

= ηt ·
dπ>θt

r

dθt
.

5

(MD) with KL regularization. Given this similarity between SPG, EPG and MD, one might hope that
EPG could be reduced to a particular version of MD. However, unlike SPG and MD, the EPG gradient
does not specify a conservative vector field and cannot be recovered by MD using any regularization.

Remark 3 (EPG cannot be reduced to MD). Recall that for a (convex) potential Φ:∆→R and its
Bregman divergenceDΦ :∆×∆→R, the MD update is πt+1 =arg maxπ∈∆ π>r−(1/ηt)DΦ(π‖πt).
In particular, using Φ(π) = π> log π as the potential andDΦ(π‖π′) = DKL(π‖π′) as the divergence
one obtains πθt+1

(a) ∝ πθt(a) · exp{ηt r(a)}. Equivalently, this update can be expressed πθt+1
=

arg maxπ∈∆ π>θt+1 − Φ(π) where θt+1 = θt(a) + ηt · r(a).

Now suppose EPG is MD, i.e., there is some Φ such that fp(θt+1) = arg maxπ∈∆ π>θt+1 − Φ(π).
Then we would have to have fp(θt+1) = ∇Φ∗(θt+1) where Φ∗ is the Fenchel conjugate of Φ. Taking
the derivative w.r.t. θ yields(

dπθ
dθ

)>
=

(
dfp(θ)

dθ

)>
= p · diag(1/θ)

(
diag(πθ)− πθπ>θ

) (?)
=
d2Φ∗(θ)

dθ2
. (7)

By Schwarz’s theorem, d
2Φ∗(θ)
dθ2 must be symmetric, however diag(1/θ)

(
diag(πθ)− πθπ>θ

)
is not

symmetric. Therefore, there cannot be a regularizer Φ that makes EPG equivalent to MD.

Remark 3 implies that standard techniques for analyzing mirror descent (e.g., Bregman divergence
and convex duality) cannot be directly applied to EPG, necessitating our analysis based on the
non-uniform smoothness and NŁ inequalities for Theorems 2 to 4.

Experimental Verification To support these findings and reveal some of the practical implications
of EPG versus SPG, we conducted a simple experiment on a single-state MDP with K = 3 and
r = (0.2, 0.9, 1.0)>. Fig. 3(a) depicts the dπθ(a∗)

dt values for SPG, where the dark regions around
the corners show areas of slow progress. In particular, the region around the lower-right suboptimal
corner exhibits dπθ(a∗)

dt < 0, and πθ(a∗) will actually decrease under SPG updating in this region,
prolonging the escape time according to Theorem 1. In short, the dark regions correspond to SGWs
for SPG. Subfigure (b) further shows how SPG is attracted toward the suboptimal corner, visually
consistent with subfigure (a). By contrast, the solid lines indicate EPG methods with different p
values. As noted in Remark 1, smaller p values have better resistance against attraction to SPG
gravity wells, while larger p values behave more similarly to SPG. We also observe that MD (with
KL regularization) has similar performance to EPG with p = 2 in this case. Finally, Subfigure (c)
plots the suboptimaliy gap before (π∗ − πθt)>r ≤ 0.005 is achieved. It is clear that SPG does get
stuck on a suboptimal plateau while EPG methods do not suffer from this disadvantage. We note that
EPG curves for p ≥ 2 behave nicer than p = 1 since the escort is differentiable when p ≥ 2.

0
0.5

11
0.5

0

0.4

1

0

0.2

0.6

0.8

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 3: Empirical visualization for EPG and SPG.

4 Non-uniform Łojasiewicz Coefficient: An Underlying Explanation

Remark 1 provides an intuition for why EPG has better initialization dependence than SPG. This
intuition can be formalized using the notion of Non-uniform Łojasiewicz (NŁ) coefficient, which
plays an important role here since both SPG [14] and EPG analyses are based on NŁ inequalities.

Definition 2 (Non-uniform Łojasiewicz (NŁ) coefficient). A function f :X →R has NŁ coefficient
C(x) > 0 if it satisfies NŁ inequality with coefficient C(x), i.e., there exists ξ ∈ [0, 1] such that for
all x ∈ X , ‖∇f(x)‖2 ≥ C(x) · |f(x)− f(x∗)|1−ξ.

6

In Definition 2, ξ is called NŁ degree, which impacts the convergence rates of SPG methods [14,
Definition 1]. From a result in [14], if πθ = softmax(θ), then π>θ r has NŁ coefficient πθ(a∗); that is∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

=
∥∥(diag(πθ)− πθπ>θ

)
r
∥∥

2
≥ πθ(a∗) · (π∗ − πθ)> r. (8)

Moreover, this coefficient is not improvable and it appears in the SPG convergence rate O(1/(c2 t)),
where c := inft≥1 πθt(a

∗). Now consider EPG. If πθ = fp(θ), then we have∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

=
∥∥p · diag(1/θ)

(
diag(πθ)− πθπ>θ

)
r
∥∥

2
≥ p · πθ(a

∗)

|θ(a∗)|
· (π∗ − πθ)> r. (9)

This implies that πθ(a∗)
|θ(a∗)| = 1

‖θ‖p · πθ(a
∗)

1−1/p, where πθ(a∗)
1−1/p

> πθ(a
∗) provides strictly larger

(partial) NŁ coefficient, hence in Theorem 2 EPG obtains a strictly better result than SPG.

The improvement of NŁ coefficient explains a better dependence of EPG on initialization. It is
then natural to ask whether the escort transform can also benefit other scenarios, which is answered
affirmatively in the next section.

5 Escort Transform for Cross Entropy

We now turn to classification, where the goal is to learn a classifier that minimizes the cross-entropy
loss. As in RL, the softmax transform is the default choice for parameterizing a probabilistic classifier.
Different from RL where the objective is linear, the objective here involves log probabilities:

min
θ:A→R

− log πθ(ay) = H(y) + min
θ:A→R

DKL(y‖πθ), (10)

where πθ = softmax(θ), y ∈ {0, 1}K is a one-hot vector encoding the class label, and ay is the
true label class so that y(ay) = 1. Note that the entropy H(y) = 0 here. The objective in Eq. (10)
is smooth and convex in θ, which implies that gradient descent will achieve an O(1/t) rate [15].
Furthermore, for θ that satisfies mina πθ(a) ≥ πmin with some constant πmin > 0 (πθ is bounded
away from the simplex boundary), the objective is strongly convex, resulting in an even better, linear
rateO(e−t). Despite these nice properties, we still find that the softmax transform proves problematic
for gradient descent optimization. We refer to this new disadvantage as “softmax damping”.

Illustration Consider running gradient descent in a simple experiment where K = 10 and y a
one-hot vector. Let δt := − log πθt(ay). If one hopes for a linear convergence rate, i.e., δt = O(e−t),
then log δt = −O(t) is expected. But Fig. 4(a) shows a different picture with a flattening slope.
Subfigure (b) plots log δt as a function of log t, which shows a straight line for sufficiently large t
with a slope approaching −1. This figure verifies the convergence rate is indeed δt = O(1/t), instead
of the linear O(e−t) rate. Subfigure (c) shows the `2 measure ‖y − πθt‖22 also has a similar rate,
indicating that this is an inherent optimization phenomenon and is independent of the measurement.

0 2000 4000 6000 8000 10000
-10

-8

-6

-4

-2

0

2

0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

0 2 4 6 8 10
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 50 100 150
-40

-35

-30

-25

-20

-15

-10

-5

0

5

Figure 4: Softmax damping phenomenon and escort cross entropy.

NŁ Coefficient Explanation The NŁ coefficient can be used to explain why this rate degeneration
occurs for softmax cross entropy (SCE). Note that for πθ = softmax(θ) we obtain∥∥∥∥d{DKL(y‖πθ)}

dθ

∥∥∥∥2

2

= ‖y − πθ‖22 ≥ min
a
πθ(a) ·DKL(y‖πθ). (11)

7

Once again the mina πθ(a) term cannot be eliminated for the softmax transform, but here it has a
different consequence than before. To see the NŁ coefficient of SCE cannot be improved, consider
the example where y = (0, 1)> and π = (ε, 1− ε)>, where ε > 0 is small. Note that DKL(y‖π) =
− log (1− ε) ≥ ε and ‖y − π‖22 = 2 ε2, which means for any constant C > 0, we have C ·
DKL(y‖π) ≥ C · ε > 2 ε2 = ‖y−π‖22. Therefore, for any Łojasiewicz-type inequality, C necessarily
depends on mina πθ(a). Now for any convergent sequence πθt , i.e., such that DKL(y‖πθt)→ 0, we
necessarily have mina πθt(a)→ 0, which makes the gradient information insufficient to sustain a
linear convergence rate. That is, the fast convergence rate is “damped” in this case. The difference
between this phenomenon and the previous “softmax gravity well” is that here the vanishing NŁ
coefficients change the rates rather than the constant in the bound on the sub-optimality gap.

Escort Cross Entropy As in Section 3 for policy gradient, we propose to also use the escort
transform for cross entropy minimization. A simple calculation for πθ = fp(θ) shows∥∥∥∥d{DKL(y‖πθ)}

dθ

∥∥∥∥2

2

= ‖p · diag(1/θ)(y − πθ)‖22 ≥
p2

‖θ‖2p
·min

a
πθ(a)1−2/p ·DKL(y‖πθ). (12)

Note that the term mina πθ(a)1−2/p > mina πθ(a) is strictly better than the softmax cross entropy
when p ≥ 2. In particular, for p = 2, the escort cross entropy (ECE) has (partial) NŁ coefficient
mina πθ(a)1−2/p = 1, which fully eliminates the dependence on the current policy πθ. This leads to
our last main result, which restores the linear convergence rate.
Theorem 5. Using the escort transform with p = 2 and gradient descent on the cross entropy

objective with learning rate ηt =
‖θt‖2p

4·(3+c21)
, we obtain for all t ≥ 1,

− log πθt(ay) = DKL(y‖πθt) ≤ DKL(y‖πθ1) · exp
{
− (t− 1)

2 · (3 + c21)

}
, (13)

where 1/c21 = πθ1(ay) ∈ (0, 1] only depends on initialization.

For reference, we run gradient descent on the cross entropy objective in the same experiment above,
but with the escort transform. As shown in Fig. 4(d), log δt now becomes linear in t, or equivalently
− log πθt(ay) = C · e−c·t, verifying the theoretical finding of Theorem 5.

6 Experimental Results

We conduct several experiments to verify the effectiveness of the proposed escort transform in policy
gradient and cross entropy minimization.

First, we conduct experiments on one-state MDPs with K = 10, 50, and 100, and 20 runs for each
K value and for each algorithm. In each run, the reward r ∈ [0, 1]K and πθ1 are randomly generated.
The total iteration number T = 5× 104. As shown in Fig. 5(a), EPG with p = 2 quickly converges
to optimal policies consistently across all the K values, significantly outperforming SPG.

Second, we compare the algorithms on Four-room environment for 20 runs. There is one goal with
reward 1.0 and 4 sub-goals (“sub-goals” mean goals with lower rewards) with reward 0.7 as shown
in Fig. 5(b). At a (sub-)goal state, the agent can step away then step back to receive rewards. The
policy is parameterized by one hidden layer ReLU neural network with 64 hidden nodes. In each run,
the starting position is randomly generated. We use value iteration to calculate V ∗ and we calculate
the true gradient by closed form. As shown in Fig. 5(c), SPG is easily stuck in plateaus due to the
presence of the sub-goals, while EPG with p = 2 quickly achieves the optimal goal.

Next, we do experiments on MNIST dataset. For each (x, y), where x ∈ R784 is image data and
y ∈ {0, 1}10 is the true label, the training objective is 1− πθ(ay|x), where y(ay) = 1. We use policy
gradient methods, since the mis-classification probability minimization problem is a special case of
expected reward maximization. We use one hidden layer neural network with 512 hidden nodes and
ReLU activation to parameterize θ. The dataset is split into training set with 55000, validation set
with 5000, and testing set with 10000 data points. As shown in Fig. 6(a) and (b), for both training
objective and test error, SPG has plateaus due to SGWs, which is consistent with the observation in
[5]. At the same time, EPG with p = 4 does not have this disadvantage: it converges quickly and
achieves better results than SPG. Experiments for other p values are shown in the appendix.

8

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Figure 5: Results on one-state MDPs and Four-room.

We use mini-batch stochastic gradient descent in this experiment, and the results show that with
stochastic gradients and neural network function approximations, (1) SPG still plateaus even when
starting from nearly uniform initializations; (2) EPG outperforms SPG in terms of not suffering from
plateaus even with estimated gradients.

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100
0

200

400

600

800

1000

1200

0 20 40 60 80 100
0

20

40

60

80

100

0 20 40 60 80 100
150

200

250

Figure 6: Results on MNIST.

Finally, for SL, we compare ECE and SCE on MNIST. For each training data (x, y), the training
objective is − log πθ(ay|x), where y(ay) = 1. The neural network and dataset settings are the same
as above. As shown in Fig. 6(c) and (d), ECE with p = 2 is faster than SCE to achieve the same
training objective, which benefits generalization, providing smaller test error than SCE.

7 Conclusion and Future Work

We discovered two phenomena that arise from the use of the standard softmax probability trans-
formation in reinforcement learning and supervised learning, and proposed the escort transform to
alleviate or eliminate these disadvantages. Our findings of the softmax gravity well and softmax
damping phenomena challenge the common practice of using the softmax transformation in machine
learning. However, there are other factors to consider when assessing such transformations in machine
learning, such as the “temperature” of the softmax, or how the different transforms might impact
generalization in the learned models. An important direction for future work is to investigate whether
similar phenomena occur in other scenarios where the softmax is commonly utilized, such as attention
models and exponential exploration.

Our underlying explanation using the concept of Non-uniform Łojasiewicz (NŁ) coefficient also
provides an alternative theory to systematically study probability transforms, which goes beyond the
classic convex “matching loss” theory [2, 11] and guarantees better optimization results. We expect
further use of the NŁ coefficient to be beneficial in other problems in machine learning.

Broader Impact

This research pursues a fundamental and mostly theoretical goal of understanding how a basic
component in machine learning, the softmax transformation, impacts the convergence properties of
subsequent optimization methods. The implications of this research are very high level and broad,
since we investigate a widely used component. It is difficult to identify specific impacts, since this
research does not target any specific application area that would directly impact people or society.
If forced to make society level claims, we could attempt to claim that modifying architectures in
ways that that improve optimization efficiency would have an effect on the overall energy footprint
consumed by machine learning technologies, given how much computation is currently being
expended on training softmax classifiers and policies.

9

Acknowledgments and Disclosure of Funding

Jincheng Mei and Lihong Li would like to thank Christoph Dann for providing feedback on a draft
of this manuscript. Csaba Szepesvári gratefully acknowledges funding from the Canada CIFAR AI
Chairs Program, Amii and NSERC. Dale Schuurmans acknowledges funding from Amii and NSERC.

References
[1] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and ap-

proximation with policy gradient methods in Markov decision processes. arXiv preprint
arXiv:1908.00261, 2019.

[2] Peter Auer, Mark Herbster, and Manfred KK Warmuth. Exponentially many local minima for
single neurons. In Advances in neural information processing systems, pages 316–322, 1996.

[3] Christian Beck and Friedrich Schögl. Thermodynamics of chaotic systems: an introduction.
Number 4. Cambridge University Press, 1995.

[4] John S Bridle. Training stochastic model recognition algorithms as networks can lead to
maximum mutual information estimation of parameters. In Advances in neural information
processing systems, 1989.

[5] Minmin Chen, Ramki Gummadi, Chris Harris, and Dale Schuurmans. Surrogate objectives
for batch policy optimization in one-step decision making. In Advances in Neural Information
Processing Systems, pages 8825–8835, 2019.

[6] Alexandre de Brébisson and Pascal Vincent. An exploration of softmax alternatives belonging
to the spherical loss family. In International Conference on Learning Representations, 2015.

[7] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning.
Springer series in statistics New York, 2001.

[8] Daniel Hennes, Dustin Morrill, Shayegan Omidshafiei, Remi Munos, Julien Perolat, Marc
Lanctot, Audrunas Gruslys, Jean-Baptiste Lespiau, Paavo Parmas, Edgar Duenez-Guzman, et al.
Neural replicator dynamics. arXiv preprint arXiv:1906.00190, 2019.

[9] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In Proceedings of the Nineteenth International Conference on Machine Learning, pages 267–
274, 2002.

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[11] Jyrki Kivinen and Manfred KK Warmuth. Relative loss bounds for multidimensional regression
problems. In Advances in neural information processing systems, pages 287–293, 1998.

[12] Anirban Laha, Saneem A. Chemmengath, Priyanka Agrawal, Mitesh M. Khapra, Karthik
Sankaranarayanan, and Harish G. Ramaswamy. On controllable sparse alternatives to softmax.
In Advances in Neural Information Processing Systems, page 6423–6433, 2018.

[13] Yann LeCun, Sumit Chopra, Raia Hadsell, Marc Aurlio Ranzato, and Fu Jie Huang. A tutorial
on energy based learning. In Predicting Structured Data. MIT Press, 2006.

[14] Jincheng Mei, Chenjun Xiao, Csaba Szepesvári, and Dale Schuurmans. On the global conver-
gence rates of softmax policy gradient methods. arXiv preprint arXiv:2005.06392, 2020.

[15] Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

[16] Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan Pascanu. Ray interference: a source of
plateaus in deep reinforcement learning. arXiv preprint arXiv:1904.11455, 2019.

[17] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pages 1889–1897, 2015.

10

[18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT Press,
second edition, 2018.

[19] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in neural
information processing systems, pages 1057–1063, 2000.

[20] Constantino Tsallis, Renio S. Mendes, and Anel R. Plastino. The role of constraints within
generalized nonextensive statistics. Physica A: Statistical Mechanics and its Applications,
261(3-4):534–554, 1998.

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems, pages 5998–6008, 2017.

11

Appendix
The appendix is organized as follows.

A Policy Gradient Method 12

B Proofs for Section 2 (Softmax Gravity Well) 12

C Proofs for Section 3 (Escort Policy Gradient) 15

C.1 Escort Policy Gradient Closed Form in Bandits 15

C.2 One-state MDPs . 15

C.3 General MDPs . 22

C.3.1 An equivalent algorithm . 32

C.4 Entropy Regularized MDPs . 36

D Proofs for Section 5 (Escort Cross Entropy) 44

E Experimental Details and Additional Experiments 49

E.1 Failure of SPG Heuristics . 50

E.2 Comparing SPG, EPG, and MD . 51

A Policy Gradient Method

The policy gradient method we analyze in the main paper is the following Algorithm 1.

Algorithm 1 Policy Gradient Method
Input: Learning rate η > 0.
Initialize parameter θ1(s, a) for all (s, a) ∈ S ×A.
for t = 1 to T do
θt+1(s, a)← θt(s, a) + ηt(s) · ∂V

πθt (µ)
∂θt(s,a) for all (s, a).

end for

Note that µ ∈ ∆(S) is an initial state distribution which provides the initial states for policy gradient.
Using different parameterizations, we will have different policy gradients ∂V πθ (µ)

∂θ in Algorithm 1.

B Proofs for Section 2 (Softmax Gravity Well)

Lemma 1 (Smoothness [14]). ∀r ∈ [0, 1]
K , θ 7→ π>θ r is 5/2-smooth, i.e., for all πθ := softmax(θ)

and πθ′ := softmax(θ′), we have,∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ
, θ′ − θ

〉∣∣∣∣ ≤ 5

4
· ‖θ′ − θ‖22.

Proof. See the proof in [14, Lemma 2].

Theorem 1 (Escape time lower bound). Even in a single-state MDP, for any learning rate ηt ∈ (0, 1],
there exists an initialization of the policy πθ1 and a positive constant C, such that SPG with full

12

gradients cannot escape a suboptimal corner before time t0 := C
∆·πθ1 (a∗) , i.e., it will hold that

(π∗ − πθt)>r ≥ 0.9 ·∆, (14)

for all t ≤ t0, where ∆ := r(a∗)−maxa 6=a∗ r(a) > 0 is the reward gap of r ∈ [0, 1]K .

Proof. Consider the reward vector r = (b+ ∆, b, . . . , b)> ∈ [0, 1]K for some b, where ∆ > 0 is the
reward gap. Then we have,

π>θ r = πθ(1) · (b+ ∆) + (1− πθ(1)) · b.

Note that a∗ = 1. We have,

r(a∗)− π>θ r = b+ ∆− π>θ r
= (1− πθ(1)) ·∆. (15)

And ∀a 6= 1, we have,

r(a)− π>θ r = b− π>θ r
= −πθ(1) ·∆. (16)

Therefore, the `2 norm of softmax policy gradient can be upper bounded as

∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

=

[
πθ(a

∗)2 ·
(
r(a∗)− π>θ r

)2
+

K∑
a=2

πθ(a)2 ·
(
r(a)− π>θ r

)2] 1
2

=

[
πθ(1)2 · (1− πθ(1))

2 ·∆2 + πθ(1)2 ·∆2 ·
K∑
a=2

πθ(a)2

] 1
2

(by Eqs. (15) and (16))

= πθ(1) ·∆ ·

[
(1− πθ(1))

2
+

K∑
a=2

πθ(a)2

] 1
2

≤ πθ(1) ·∆ ·

(1− πθ(1))
2

+

(
K∑
a=2

πθ(a)

)2
 1

2

(‖x‖2 ≤ ‖x‖1)

=
√

2 · πθ(1) · (1− πθ(1)) ·∆. (17)

Let θt+1 ← θt + ηt ·
dπ>θtr

dθt
, and πθt+1

= softmax(θt+1) be the next policy after one step gradient
update. Define the following two kinds of iterations:

tgood :=
{
t ≥ 1 : πθt+1(1) > πθt(1)

}
,

tbad :=
{
t ≥ 1 : πθt+1

(1) ≤ πθt(1)
}
.

For all t ∈ tbad, we have,

1

πθt(1)
− 1

πθt+1
(1)

=
1

πθt+1
(1) · πθt(1)

·
(
πθt+1

(1)− πθt(1)
)
≤ 0. (18)

13

For all t ∈ tgood, we have,

πθt+1
(1)− πθt(1) =

[
1− 1

∆
·
(
r(a∗)− π>θt+1

r
)]
−
[
1− 1

∆
·
(
r(a∗)− π>θtr

)]
(by Eq. (15))

=
1

∆
·

[
(πθt+1 − πθt)>r −

〈dπ>θtr
dθt

, θt+1 − θt
〉

+
〈dπ>θtr
dθt

, θt+1 − θt
〉]

≤ 1

∆
·

[
5

4
· ‖θt+1 − θt‖22 +

〈dπ>θtr
dθt

, θt+1 − θt
〉]

(by Lemma 1)

=
1

∆
·
(

5η2
t

4
+ ηt

)
·

∥∥∥∥∥dπ>θtrdθt

∥∥∥∥∥
2

2

(
θt+1 = θt + ηt ·

dπ>θtr

dθt

)

≤ 1

∆
·
(

5η2
t

4
+ ηt

)
· 2 · πθt(1)2 · (1− πθt(1))

2 ·∆2 (by Eq. (17))

≤ 9

2
· πθt(1)2 · (1− πθt(1))

2 ·∆ (ηt ∈ (0, 1])

≤ 9

2
· πθt(1)2 ·∆. (πθt(1) ∈ [0, 1]) (19)

Dividing both sides of Eq. (19) with πθt+1
(1) · πθt(1), we have,

1

πθt(1)
− 1

πθt+1
(1)
≤ 9

2
· πθt(1)

πθt+1
(1)
·∆

≤ 9

2
·∆.

(
πθt+1

(1) ≥ πθt(1) > 0
)

(20)

Therefore, we have,

1

πθ1(1)
− 1

πθt(1)
=

t−1∑
s=1

[
1

πθs(1)
− 1

πθs+1
(1)

]

=

t−1∑
s=1, s∈tgood

[
1

πθs(1)
− 1

πθs+1
(1)

]
+

t−1∑
s=1, s∈tbad

[
1

πθs(1)
− 1

πθs+1
(1)

]

≤
t−1∑

s=1, s∈tgood

[
1

πθs(1)
− 1

πθs+1
(1)

]
(by Eq. (18))

≤
t−1∑

s=1, s∈tgood

[
9

2
·∆
]

(by Eq. (20))

≤ 9

2
·∆ · t. (21)

Let πθ1(1) ≤ 1
c , for some constant c ≥ 11. If t ≤ 2

9c ·
1
∆ ·

1
πθ1 (1) , then we have,

1

πθt(1)
≥ 1

πθ1(1)
− 9

2
·∆ · t (by Eq. (21))

≥ 1

πθ1(1)
·
(

1− 1

c

)
≥ c ·

(
1− 1

c

)
= c− 1 ≥ 10,

which implies πθt(1) ≤ 1
10 . Therefore, for all t ≤ 2

9c ·
1
∆ ·

1
πθ1 (1) , we have,

(π∗ − πθt)>r = (1− πθt(1)) ·∆ (by Eq. (15))
≥ 0.9 ·∆.

14

C Proofs for Section 3 (Escort Policy Gradient)

C.1 Escort Policy Gradient Closed Form in Bandits

For completeness, we show the detailed calculations for the escort policy gradient in bandits, i.e.,
Eqs. (4) and (5), which are duplicated here for convenience,

dπ>θ r

dθ(a)
= p · sgn{θ(a)} · |θ(a)|p−1∑

a′ |θ(a′)|p
·
[
r(a)− π>θ r

]
=

p

‖θ‖p
· sgn{θ(a)} · πθ(a)1−1/p ·

[
r(a)− π>θ r

]
.

According to the chain rule, we have,

dπ>θ r

dθ
=

(
dπθ
dθ

)>(
dπ>θ r

dπθ

)
=

(
dπθ
dθ

)>
r. (22)

We calculate the Jacobian of the escort transform πθ = fp(θ). We have, for all i, j ∈ [K],

dπθ(i)

dθ(j)
=

d

dθ(j)

{
|θ(i)|p∑
a′ |θ(a′)|p

}
=
δij · p · |θ(i)|p−1 · sgn{θ(i)} · (

∑
a′ |θ(a′)|p)− |θ(i)|p · p · |θ(j)|p−1 · sgn{θ(j)}

(
∑
a′ |θ(a′)|p)

2

= δij · p · sgn{θ(i)} · |θ(i)|
p−1∑

a′ |θ(a′)|p
− p · sgn{θ(j)} · |θ(j)|

p−1∑
a′ |θ(a′)|p

· πθ(i),

where

δij =

{
1, if i = j,

0, otherwise.
(23)

Then we have the Jacobian as,(
dπθ
dθ

)>
= p · diag(sgn{θ})diag(|θ|p−1)∑

a′ |θ(a′)|p
[
Id− 1π>θ

]
. (24)

Combing Eqs. (22) and (24), we have,

dπ>θ r

dθ
= p · diag(sgn{θ})diag(|θ|p−1)∑

a′ |θ(a′)|p
[
r − 1 ·

(
π>θ r

)]
,

which implies Eq. (4). Using πθ(a) = |θ(a)|p∑
a′ |θ(a′)|p

, we have, if θ(a) 6= 0,

dπ>θ r

dθ(a)
= p · sgn{θ(a)} · |θ(a)|p−1∑

a′ |θ(a′)|p
·
[
r(a)− π>θ r

]
=

p

|θ(a)|
· sgn{θ(a)} · |θ(a)|p∑

a′ |θ(a′)|p
·
[
r(a)− π>θ r

]
=

p

‖θ‖p · πθ(a)1/p
· sgn{θ(a)} · πθ(a) ·

[
r(a)− π>θ r

]
=

p

‖θ‖p
· sgn{θ(a)} · πθ(a)1−1/p ·

[
r(a)− π>θ r

]
,

which is Eq. (5). On the other hand, if θ(a) = 0, then sgn{θ(a)} = sgn{0} = 0 makes Eq. (4)
trivially equal to Eq. (5).

C.2 One-state MDPs

Proposition 1. θ 7→ π>θ r is a non-concave function over RK using the map πθ := fp(θ).

15

Proof. Consider the following example with K = 3 and p = 1: r = (1, 9/10, 1/10)>,
θ1 = (2, 2, 2)>, πθ1 = f1(θ1) = (1/3, 1/3, 1/3)>, θ2 = (5, 10, 15)>, and πθ2 = f1(θ2) =
(1/6, 1/3, 1/2)>. We have,

1

2
·
(
π>θ1r + π>θ2r

)
=

1

2
·
(

2

3
+

31

60

)
=

71

120
=

213

360
.

Denote θ̄ := 1
2 · (θ1 + θ2) = (7/2, 12/2, 17/2)

>. We have πθ̄ = f1(θ̄) = (7/36, 12/36, 17/36)
>,

π>θ̄ r =
195

360
.

Since 1
2 ·
(
π>θ1r + π>θ2r

)
> π>

θ̄
r, we see that Ea∼πθ(·) [r(a)] is a non-concave function of θ.

Lemma 2 (Non-uniform smoothness). Suppose r ∈ [0, 1]K . Let πθ := fp(θ), and πθ′ := fp(θ
′).

Denote θξ := θ + ξ · (θ′ − θ) with some ξ ∈ [0, 1]. Then, we have,

• for p ≥ 2, π>θ r is 3·p2·K1/p

‖θξ‖2p
-smooth, i.e.,

∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ
, θ′ − θ

〉∣∣∣∣ ≤ 3 · p2 ·K1/p

2 · ‖θξ‖2p
· ‖θ′ − θ‖22.

• for p = 1, π>θ r is 2·K
‖θξ‖21

-smooth, i.e.,

∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ
, θ′ − θ

〉∣∣∣∣ ≤ K

‖θξ‖21
· ‖θ′ − θ‖22.

Proof. Denote the second derivative w.r.t. θ (i.e., Hessian) as

S(r, θ) =
d

dθ

{
dπ>θ r

dθ

}
= p · d

dθ

{
diag

(πθ
θ

)
(r − π>θ r · 1)

}
.

Note that S(r, θ) ∈ RK×K , whose element at position (i, j) ∈ [K]2 is

Si,j = p ·
d{πθ(i)

θ(i) · (r(i)− π
>
θ r)}

dθ(j)

= p ·
d{πθ(i)

θ(i) }
dθ(j)

· (r(i)− π>θ r) + p · πθ(i)
θ(i)

· d{r(i)− π
>
θ r}

dθ(j)

= p ·
p
θ(j) · [δij · πθ(i)− πθ(i) · πθ(j)] · θ(i)− πθ(i) · δij

θ(i)2
· (r(i)− π>θ r)

− πθ(i)

θ(i)
· p2 · πθ(j)

θ(j)
· (r(j)− π>θ r)

= p · (p− 1) · δij ·
πθ(i)

θ(i)2
· (r(i)− π>θ r)

− p2 · πθ(i)
θ(i)

· πθ(j)
θ(j)

· (r(i)− π>θ r)− p2 · πθ(i)
θ(i)

· πθ(j)
θ(j)

· (r(j)− π>θ r),

16

where δij is defined in Eq. (23). We calculate the spectral radius of S(r, θ). For any nonzero y ∈ RK ,

∣∣y>S(r, θ)y
∣∣ =

∣∣∣∣∣∣
K∑
i=1

K∑
j=1

Si,jy(i)y(j)

∣∣∣∣∣∣
=

∣∣∣∣∣p · (p− 1)
∑
i

πθ(i)

θ(i)2
· (r(i)− π>θ r) · y(i)2

−2 · p2
∑
i

πθ(i)

θ(i)
· y(i)

∑
j

πθ(j)

θ(j)
· (r(j)− π>θ r) · y(j)

∣∣∣∣∣∣
≤ p · (p− 1) ·

∣∣∣∣∣∑
i

πθ(i)

θ(i)2
· (r(i)− π>θ r) · y(i)2

∣∣∣∣∣
+ 2 · p2 ·

∣∣∣∣∣∣
∑
i

πθ(i)

θ(i)
· y(i)

∑
j

πθ(j)

θ(j)
· (r(j)− π>θ r) · y(j)

∣∣∣∣∣∣ , (25)

where the last inequality is by triangle inequality.

First part. For p ≥ 2, the first term in Eq. (25) is upper bounded as,∣∣∣∣∣∑
i

πθ(i)

θ(i)2
· (r(i)− π>θ r) · y(i)2

∣∣∣∣∣ ≤∑
i

πθ(i)

θ(i)2
·
∣∣r(i)− π>θ r∣∣ · y(i)2 (by triangle inequality)

≤
(

max
a

πθ(a)

θ(a)2
· |r(a)− π>θ r|

)
· ‖y‖22 (by Hölder’s inequality)

≤
(

max
a

πθ(a)

θ(a)2

)
· ‖y‖22 (r(a) ∈ [0, 1], ∀a)

=
1

‖θ‖2p
·
(

max
a

πθ(a)1−2/p
)
· ‖y‖22

≤ 1

‖θ‖2p
· ‖y‖22 . (p ≥ 2) (26)

The last term in Eq. (25) is upper bounded as,∣∣∣∣∣∣
∑
i

πθ(i)

θ(i)
· y(i)

∑
j

πθ(j)

θ(j)
· (r(j)− π>θ r) · y(j)

∣∣∣∣∣∣
≤
∥∥∥πθ
θ

∥∥∥
2
· ‖y‖2 ·

∥∥∥diag
(πθ
θ

)
(r − π>θ r · 1)

∥∥∥
2
· ‖y‖2 (by Cauchy-Schwarz)

=
∥∥∥πθ
θ

∥∥∥
2
·

[∑
a

(
πθ(a)

θ(a)

)2

· (r(a)− π>θ r)2

] 1
2

· ‖y‖22

≤
∥∥∥πθ
θ

∥∥∥
2
·

[∑
a

(
πθ(a)

θ(a)

)2
] 1

2

· ‖y‖22 (r(a) ∈ [0, 1], ∀a)

=
∑
a

(
πθ(a)

θ(a)

)2

· ‖y‖22

=
1

‖θ‖2p

∑
a

(
πθ(a)1−1/p

)2

· ‖y‖22

≤ 1

‖θ‖2p
·

(∑
a

πθ(a)1−1/p

)
· ‖y‖22 .

(
πθ(a)1−1/p ∈ [0, 1]

)
(27)

17

The intermediate term is then upper bounded as,∑
a

πθ(a)1−1/p = K1/p · 1

K

∑
a

(K · πθ(a))
1−1/p

≤ K1/p ·

(∑
a

K · πθ(a)

K

)1−1/p

(by Jensen’s inequality)

= K1/p. (28)

Combining Eqs. (25) to (28), we have∣∣y>S(r, θ)y
∣∣ ≤ p · (p− 1) · 1

‖θ‖2p
· ‖y‖22 + 2 · p2 · 1

‖θ‖2p
·K1/p · ‖y‖22

≤ 3 · p2 ·K1/p

‖θ‖2p
· ‖y‖22.

(
K1/p ≥ 1

)
(29)

According to Taylor’s theorem, we have, for p ≥ 2,∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ
, θ′ − θ

〉∣∣∣∣ =
1

2
·
∣∣∣(θ′ − θ)> S(r, θξ) (θ′ − θ)

∣∣∣
≤ 3 · p2 ·K1/p

2 · ‖θξ‖2p
· ‖θ′ − θ‖22. (by Eq. (29))

Second part. For p = 1, according to Eq. (25), Eqs. (27) and (28), we have,∣∣y>S(r, θ)y
∣∣ ≤ 2 · p2 · 1

‖θ‖2p
·K1/p · ‖y‖22 =

2 ·K
‖θ‖21

· ‖y‖22. (30)

According to Taylor’s theorem, we have, for p = 1,∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ
, θ′ − θ

〉∣∣∣∣ ≤ K

‖θξ‖21
· ‖θ′ − θ‖22.

Lemma 3 (Non-uniform Łojasiewicz). Let πθ = fp(θ). For any p > 0, we have,∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥ p

‖θ‖p
· πθ(a∗)1−1/p · (π∗ − πθ)>r,

where π∗ = arg maxπ∈∆ π>r is the optimal policy.

Proof. The result follows from calculating the gradient norm,∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

=

[
K∑
a=1

(
p · πθ(a)

θ(a)
· (r(a)− π>θ r)

)2
] 1

2

≥
∣∣∣∣p · πθ(a∗)θ(a∗)

· (r(a∗)− π>θ r)
∣∣∣∣

= p · πθ(a
∗)

|θ(a∗)|
· (π∗ − πθ)>r

=
p

‖θ‖p
· πθ(a∗)1−1/p · (π∗ − πθ)>r.

(
πθ(a) =

|θ(a)|p∑
a′ |θ(a′)|p

)
Theorem 2. For a single-state MDP, following the escort policy gradient with any initialization such
that |θ1(a)| > 0, ∀a, we obtain the following upper bounds on the sub-optimality for all t ≥ 1,

• (gradient ascent) for p ≥ 2, with ηt =
2·‖θt‖2p

9·p2·K1/p , we have,

(π∗ − πθt)>r ≤
9 ·K1/p

c2−2/p
· 1

t
;

18

• (gradient ascent) for p = 1, with ηt =
2·‖θt‖21

9·K , we have,

(π∗ − πθt)>r ≤
9 ·K
t

;

• (gradient flow) for p ≥ 1, with ηt =
‖θt‖2p
p2 , we have,

(π∗ − πθt)>r ≤
1

c2−2/p · (t− 1) + 1
,

where c := inft≥1 πθt(a
∗) > 0 depends on the problem and initialization, but is time-independent.

Proof. First part. For p ≥ 2, according to Lemma 2,∣∣∣∣∣(πθt+1 − πθt)>r −
〈dπ>θtr
dθt

, θt+1 − θt
〉∣∣∣∣∣ ≤ 3 · p2 ·K1/p

2 · ‖θt,ξ‖2p
· ‖θt+1 − θt‖22, (31)

where

θt,ξ := θt + ξ · (θt+1 − θt) = θt + ξ · ηt ·
dπ>θtr

dθt
,

for some ξ ∈ [0, 1]. The `p gradient norm can be upper bounded as,∥∥∥∥dπ>θ rdθ

∥∥∥∥
p

=

[
K∑
a=1

∣∣∣∣p · πθ(a)

θ(a)
· (r(a)− π>θ r)

∣∣∣∣p
] 1
p

= p ·

[
K∑
a=1

(
πθ(a)

|θ(a)|
· |r(a)− π>θ r|

)p] 1
p

=
p

‖θ‖p
·

[
K∑
a=1

(
πθ(a)1−1/p · |r(a)− π>θ r|

)p] 1
p

≤ p

‖θ‖p
·

[
K∑
a=1

(1 · 1)
p

] 1
p

=
p ·K1/p

‖θ‖p
. (32)

According to the triangle inequality, we have,

‖θt,ξ‖p ≥ ‖θt‖p − ξ · ηt ·

∥∥∥∥∥dπ>θtrdθt

∥∥∥∥∥
p

≥ ‖θt‖p − ξ · ηt ·
p ·K1/p

‖θt‖p
. (by Eq. (32))

= ‖θt‖p ·
(

1− ξ · 2

9 · p

) (
ηt =

2 · ‖θt‖2p
9 · p2 ·K1/p

)

≥ ‖θt‖p ·
(

1− 2

9 · p

)
(ξ ∈ [0, 1])

= ‖θt‖p ·

[(
1− 2√

6

)
·

(
1− 2 · (3 +

√
6)

9 · p

)
+

2√
6

]

≥ 2√
6
· ‖θt‖p. (p ≥ 2) (33)

Combining Eqs. (31) and (33), we have,∣∣∣∣∣(πθt+1
− πθt)>r −

〈dπ>θtr
dθt

, θt+1 − θt
〉∣∣∣∣∣ ≤ 3 · p2 ·K1/p

2 · ‖θt,ξ‖2p
· ‖θt+1 − θt‖22

≤ 9 · p2 ·K1/p

4 · ‖θt‖2p
· ‖θt+1 − θt‖22,

19

which implies,

π>θtr − π
>
θt+1

r ≤ −
〈dπ>θtr
dθt

, θt+1 − θt
〉

+
9 · p2 ·K1/p

4 · ‖θt‖2p
· ‖θt+1 − θt‖22

= −ηt ·

∥∥∥∥∥dπ>θtrdθt

∥∥∥∥∥
2

2

+
9 · p2 ·K1/p

4 · ‖θt‖2p
· η2
t ·

∥∥∥∥∥dπ>θtrdθt

∥∥∥∥∥
2

2

(
θt+1 = θt + ηt ·

dπ>θtr

dθt

)

= −
‖θt‖2p

9 · p2 ·K1/p
·

∥∥∥∥∥dπ>θtrdθt

∥∥∥∥∥
2

2

(
ηt =

2 · ‖θt‖2p
9 · p2 ·K1/p

)

≤ −
HHH‖θt‖2p

9 · SSp2 ·K1/p
·
[

Ap
HHH‖θt‖p

· πθt(a∗)1−1/p · (π∗ − πθt)>r
]2

(by Lemma 3)

= −πθt(a
∗)2−2/p

9 ·K1/p
·
[
(π∗ − πθt)>r

]2
≤ − c

2−2/p
t

9 ·K1/p
·
[
(π∗ − πθt)>r

]2
, (34)

where ct := min1≤s≤t πθs(a
∗) > 0. Eq. (34) is equivalent to,

(π∗ − πθt+1)>r − (π∗ − πθt)>r ≤ −
c
2−2/p
t

9 ·K1/p
·
[
(π∗ − πθt)>r

]2
. (35)

Denote δt := (π∗ − πθt)>r. We prove δt ≤ 9·K1/p

c
2−2/p
t

· 1
t by induction. For t = 2, since c2 ∈ (0, 1),

δ2 ≤ 1 ≤ 9 ·K1/p

c
2−2/p
2

· 1

2
.

Suppose δt ≤ 9·K1/p

c
2−2/p
t

· 1
t , t ≥ 2. Consider ft : R → R, ft(x) := x − c

2−2/p
t

9·K1/p · x2. Clearly, ft is

monotonically increasing in
[
0, 9·K1/p

2·c2−2/p
t

]
. We have,

δt+1 ≤ δt −
c
2−2/p
t

9 ·K1/p
· δ2
t (by Eq. (35))

≤ 9 ·K1/p

c
2−2/p
t

· 1

t
− c

2−2/p
t

9 ·K1/p
·

(
9 ·K1/p

c
2−2/p
t

· 1

t

)2 (
δt ≤

9 ·K1/p

c
2−2/p
t

· 1

t
≤ 9 ·K1/p

2 · c2−2/p
t

, t ≥ 2

)

=
9 ·K1/p

c
2−2/p
t

·
(

1

t
− 1

t2

)
≤ 9 ·K1/p

c
2−2/p
t

· 1

t+ 1
, (36)

which completes the proof for δt ≤ 9·K1/p

c
2−2/p
t

· 1
t . Then we have, for all t ≥ 1,

(π∗ − πθt)>r ≤
9 ·K1/p

c
2−2/p
t

· 1

t
≤ 9 ·K1/p

(inft≥1 πθt(a
∗))2−2/p

· 1

t
.

Second part. For p = 1, according to Lemma 2,∣∣∣∣∣(πθt+1
− πθt)>r −

〈dπ>θtr
dθt

, θt+1 − θt
〉∣∣∣∣∣ ≤ K

‖θt,ξ‖21
· ‖θt+1 − θt‖22, (37)

where

θt,ξ := θt + ξ · (θt+1 − θt) = θt + ξ · ηt ·
dπ>θtr

dθt
,

20

for some ξ ∈ [0, 1]. The `1 norm can be upper bounded as

∥∥∥∥∥dπ>θtrdθt

∥∥∥∥∥
1

=

K∑
a=1

∣∣∣∣πθt(a)

θt(a)
·
(
r(a)− π>θ r

)∣∣∣∣
=

1

‖θt‖1

K∑
a=1

|r(a)− π>θ r|

≤ K

‖θt‖1
.

(
r ∈ [0, 1]K

)
(38)

According to triangle inequality, we have,

‖θt,ξ‖1 ≥ ‖θt‖1 − ξ · ηt ·

∥∥∥∥∥dπ>θtrdθt

∥∥∥∥∥
1

≥ ‖θt‖1 − ξ · ηt ·
K

‖θt‖1
. (by Eq. (38))

= ‖θt‖1 ·
(

1− ξ · 2

9

) (
ηt =

2 · ‖θt‖21
9 ·K

)
≥ 2

3
· ‖θt‖1. (ξ ∈ [0, 1]) (39)

Combining Eqs. (37) and (39), we have,

∣∣∣∣∣(πθt+1 − πθt)>r −
〈dπ>θtr
dθt

, θt+1 − θt
〉∣∣∣∣∣ ≤ K

‖θt,ξ‖21
· ‖θt+1 − θt‖21

≤ 9 ·K
4 · ‖θt‖21

· ‖θt+1 − θt‖21,

which implies,

π>θtr − π
>
θt+1

r ≤ −
〈dπ>θtr
dθt

, θt+1 − θt
〉

+
9 ·K

4 · ‖θt‖21
· ‖θt+1 − θt‖21

= −ηt ·

∥∥∥∥∥dπ>θtrdθt

∥∥∥∥∥
2

2

+
9 ·K

4 · ‖θt‖21
· η2
t ·

∥∥∥∥∥dπ>θtrdθt

∥∥∥∥∥
2

2

(
θt+1 = θt + ηt ·

dπ>θtr

dθt

)

= −‖θt‖
2
1

9 ·K
·

∥∥∥∥∥dπ>θtrdθt

∥∥∥∥∥
2

2

(
ηt =

2 · ‖θt‖21
9 ·K

)

≤ −
H
HH‖θt‖

2
1

9 ·K
·
[

1
HHH‖θt‖1

· (π∗ − πθt)>r
]2

(by Lemma 3)

= − 1

9 ·K
·
[
(π∗ − πθt)>r

]2
. (40)

Using a similar induction argument as in Eq. (36), we have

(π∗ − πθt)>r ≤
9 ·K
t

.

21

Third part. For the gradient flow, we have,

d{(π∗ − πθt)
>
r}

dt
= −

dπ>θtr

dt

= −
(
dθt
dt

)>(dπ>θtr
dθt

)

= −ηt ·

∥∥∥∥∥dπ>θtrdθt

∥∥∥∥∥
2

2

(
dθt
dt

= ηt ·
dπ>θtr

dθt

)

≤ −ηt ·
[

p

‖θt‖p
· πθt(a∗)1−1/p · (π∗ − πθt)>r

]2

(by Lemma 3)

= −πθt(a∗)2−2/p ·
[
(π∗ − πθt)>r

]2 (
ηt =

‖θt‖2p
p2

)
≤ −c2−2p · [(π∗ − πθt)

>
r]2,

which implies,

d

dt

{
1

(π∗ − πθt)>r

}
= − 1

[(π∗ − πθt)>r]2
· d{(π

∗ − πθt)
>
r}

dt
= c2−2p.

Taking integral, we have,

1

(π∗ − πθt)
>
r

=
1

(π∗ − πθ1)
>
r

+ c2−2p · (t− 1)

≥ 1 + c2−2p · (t− 1),
(

(π∗ − πθ1)
>
r ∈ (0, 1]

)
which is equivalent to

(π∗ − πθt)
>
r ≤ 1

c2−2p · (t− 1) + 1
.

C.3 General MDPs

Lemma 4 (Policy gradient theorem [19]). Fix a map θ 7→ πθ(a|s) that for any (s, a) is differentiable
and fix an initial distribution µ ∈ ∆(S). Then,

∂V πθ (µ)

∂θ
=

1

1− γ
E

s∼dπθµ

[∑
a

∂πθ(a|s)
∂θ

·Qπθ (s, a)

]
.

Lemma 5. The escort policy gradient w.r.t. θ is

∂V πθ (µ)

∂θ(s, a)
=

1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
·Aπθ (s, a),

where Aπθ (s, a) is the advantage function defined as

Aπθ (s, a) = Qπθ (s, a)− V πθ (s),

Qπθ (s, a) = r(s, a) + γ
∑
s′

P(s′|s, a)V πθ (s′).

Proof. According to Lemma 4, we have,

∂V πθ (µ)

∂θ
=

1

1− γ
E

s′∼dπθµ

[∑
a

∂πθ(a|s′)
∂θ

·Qπθ (s′, a)

]
.

22

For s′ 6= s, ∂πθ(a|s′)
∂θ(s,·) = 0 since πθ(a|s′) does not depend on θ(s, ·). Therefore,

∂V πθ (µ)

∂θ(s, ·)
=

1

1− γ
· dπθµ (s) ·

[∑
a

∂πθ(a|s)
∂θ(s, ·)

·Qπθ (s, a)

]

=
1

1− γ
· dπθµ (s) ·

(
dπ(·|s)
dθ(s, ·)

)>
Qπθ (s, ·)

=
1

1− γ
· dπθµ (s) · p · diag

(
π(·|s)
θ(s, ·)

)(
Id− 1π>θ

)
Qπθ (s, ·).

For each component a, we have

∂V πθ (µ)

∂θ(s, a)
=

1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
·

[
Qπθ (s, a)−

∑
a

πθ(a|s) ·Qπθ (s, a)

]

=
1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
· (Qπθ (s, a)− V πθ (s))

(
V πθ (s) =

∑
a

πθ(a|s) ·Qπθ (s, a)

)

=
1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
·Aπθ (s, a).

Lemma 6 (Non-uniform smoothness). Suppose r(s, a) ∈ [0, 1] for all (s, a). Let πθ := fp(θ), and
πθ′ := fp(θ

′). Denote θξ := θ + ξ · (θ′ − θ) with some ξ ∈ [0, 1]. Denote A := |A| as the total
number of actions. Then we have,

• for p ≥ 2, V πθ (ρ) is 8·p2·A2/p

(1−γ)3 ·
1

mins ‖θξ(s,·)‖2p
-smooth, i.e.,∣∣∣∣V πθ′ (ρ)− V πθ (ρ)−

〈∂V πθ (ρ)

∂θ
, θ′ − θ

〉∣∣∣∣ ≤ 4 · p2 ·A2/p

(1− γ)3
· ‖θ′ − θ‖22

mins ‖θξ(s, ·)‖2p
;

• for p = 1, V πθ (ρ) is 8·A2

(1−γ)3 ·
1

mins ‖θξ(s,·)‖21
-smooth, i.e.,∣∣∣∣V πθ′ (ρ)− V πθ (ρ)−

〈∂V πθ (ρ)

∂θ
, θ′ − θ

〉∣∣∣∣ ≤ 4 ·A2

(1− γ)3
· ‖θ′ − θ‖22

mins ‖θξ(s, ·)‖21
.

Proof. Denote θα = θ + αu, where α ∈ R and u ∈ RSA. For any s ∈ S,∑
a

∣∣∣∣∂πθα(a|s)
∂α

∣∣∣
α=0

∣∣∣∣ =
∑
a

∣∣∣∣〈∂πθα(a|s)
∂θα

∣∣∣
α=0

,
∂θα
∂α

〉∣∣∣∣
=
∑
a

∣∣∣∣〈∂πθ(a|s)∂θ
, u
〉∣∣∣∣.

Since ∂πθ(a|s)
∂θ(s′,·) = 0, for s′ 6= s,∑
a

∣∣∣∣∂πθα(a|s)
∂α

∣∣∣
α=0

∣∣∣∣ =
∑
a

∣∣∣∣〈∂πθ(a|s)∂θ(s, ·)
, u(s, ·)

〉∣∣∣∣
=
∑
a

p · πθ(a|s)
|θ(s, a)|

·
∣∣u(s, a)− πθ(·|s)>u(s, ·)

∣∣
=
∑
a

p

‖θ(s, ·)‖p
· πθ(a|s)1−1/p ·

∣∣u(s, a)− πθ(·|s)>u(s, ·)
∣∣

≤ p

‖θ(s, ·)‖p
·max

a

∣∣u(s, a)− πθ(·|s)>u(s, ·)
∣∣ ·∑

a

πθ(a|s)1−1/p

≤ p

‖θ(s, ·)‖p
· 2 · ‖u‖∞ ·A1/p (by Eq. (28))

≤ 2 · p ·A1/p

‖θ(s, ·)‖p
· ‖u‖2. (41)

23

Similarly, the second derivative is,

∑
a

∣∣∣∣∂2πθα(a|s)
∂α2

∣∣∣
α=0

∣∣∣∣ =
∑
a

∣∣∣∣〈 ∂

∂θα

{
∂πθα(a|s)

∂α

} ∣∣∣
α=0

,
∂θα
∂α

〉∣∣∣∣
=
∑
a

∣∣∣∣〈∂2πθα(a|s)
∂θ2
α

∣∣∣
α=0

∂θα
∂α

,
∂θα
∂α

〉∣∣∣∣
=
∑
a

∣∣∣∣〈∂2πθ(a|s)
∂θ2(s, ·)

u(s, ·), u(s, ·)
〉∣∣∣∣.

Let S(a, θ) = ∂2πθ(a|s)
∂θ2(s,·) ∈ RA×A. ∀i, j ∈ [A], the value of S(a, θ) is,

Si,j = p ·
∂{δia · πθ(a|s)

θ(s,a) − πθ(a|s) ·
πθ(i|s)
θ(s,i) }

∂θ(s, j)

= p · δia ·
p

θ(s,j) · [δjaπθ(a|s)− πθ(a|s)πθ(j|s)] · θ(s, a)− δjaπθ(a|s)
θ(s, a)2

− p2

θ(s, j)
· [δjaπθ(a|s)− πθ(a|s)πθ(j|s)] ·

πθ(i|s)
θ(s, i)

− p · πθ(a|s) ·
p

θ(s,j) · [δijπθ(i|s)− πθ(i|s)πθ(j|s)] · θ(s, i)− δijπθ(i|s)
θ(s, i)2

= δia · δja · p · (p− 1) · πθ(a|s)
θ(s, a)2

− δia · p2 · πθ(a|s)
θ(s, a)

· πθ(j|s)
θ(s, j)

− δja · p2 · πθ(a|s)
θ(s, a)

· πθ(i|s)
θ(s, i)

+ p · πθ(a|s) ·
[
2 · p · πθ(i|s)

θ(s, i)
· πθ(j|s)
θ(s, j)

− δij · (p− 1) · πθ(i|s)
θ(s, i)2

]
,

where the δ notation is as defined in Eq. (23). Then we have,

∣∣∣∣〈∂2πθ(a|s)
∂θ2(s, ·)

u(s, ·), u(s, ·)
〉∣∣∣∣ =

∣∣∣∣∣∣
A∑
i=1

A∑
j=1

Si,ju(s, i)u(s, j)

∣∣∣∣∣∣
≤ p · (p− 1) · πθ(a|s)

θ(s, a)2
· u(s, a)2 + 2 · p2 · πθ(a|s)

|θ(s, a)|
· |u(s, a)| ·

∣∣∣∣∣
(
πθ(·|s)
θ(s, ·)

)>
u(s, ·)

∣∣∣∣∣
+ πθ(a|s) ·

2 · p2 ·

∣∣∣∣∣
(
πθ(·|s)
θ(s, ·)

)>
u(s, ·)

∣∣∣∣∣
2

+ p · (p− 1) ·

∣∣∣∣∣
(
πθ(·|s)
θ(s, ·)2

)>
(u(s, ·)� u(s, ·))

∣∣∣∣∣


=
p · (p− 1)

‖θ(s, ·)‖2p
· πθ(a|s)1−2/p · u(s, a)2

+
2 · p2

‖θ(s, ·)‖2p
· πθ(a|s)1−1/p · |u(s, a)| ·

∣∣∣∣(πθ(·|s)1−1/p
)>

u(s, ·)
∣∣∣∣

+
2 · p2

‖θ(s, ·)‖2p
· πθ(a|s) ·

∣∣∣∣(πθ(·|s)1−1/p
)>

u(s, ·)
∣∣∣∣2

+
p · (p− 1)

‖θ(s, ·)‖2p
· πθ(a|s) ·

∣∣∣∣(πθ(·|s)1−2/p
)>

(u(s, ·)� u(s, ·))
∣∣∣∣ . (42)

24

First part. For p ≥ 2, according to the Cauchy-Schwarz inequality, we have,∑
a

∣∣∣∣∂2πθα(a|s)
∂α2

∣∣∣
α=0

∣∣∣∣ ≤ p · (p− 1)

‖θ(s, ·)‖2p
·
∑
a

u(s, a)2 +
2 · p2

‖θ(s, ·)‖2p
· ‖u(s, ·)‖22 · ‖πθ(·|s)1−1/p‖22

+
2 · p2

‖θ(s, ·)‖2p
· ‖u(s, ·)‖22 · ‖πθ(·|s)1−1/p‖22 +

p · (p− 1)

‖θ(s, ·)‖2p
· ‖ · ‖πθ(·|s)1−2/p‖∞ · ‖u(s, ·)� u(s, ·)‖1

≤ 2 · p · (p− 1)

‖θ(s, ·)‖2p
· ‖u(s, ·)‖22 +

4 · p2

‖θ(s, ·)‖2p
·A1/p · ‖u(s, ·)‖22 (by Eq. (28))

≤ 2 · p2 · (1 + 2 ·A1/p)

‖θ(s, ·)‖2p
· ‖u‖22. (43)

Define P (α) ∈ RS×S , where ∀(s, s′),

[P (α)](s,s′) =
∑
a

πθα(a|s) · P(s′|s, a). (44)

The derivative w.r.t. α is[
∂P (α)

∂α

∣∣∣
α=0

]
(s,s′)

=
∑
a

[
∂πθα(a|s)

∂α

∣∣∣
α=0

]
· P(s′|s, a).

For any vector x ∈ RS , we have,[
∂P (α)

∂α

∣∣∣
α=0

x

]
(s)

=
∑
s′

∑
a

[
∂πθα(a|s)

∂α

∣∣∣
α=0

]
· P(s′|s, a) · x(s′).

The `∞ norm is upper bounded as,∥∥∥∥∂P (α)

∂α

∣∣∣
α=0

x

∥∥∥∥
∞

= max
s

∣∣∣∣∣∑
s′

∑
a

[
∂πθα(a|s)

∂α

∣∣∣
α=0

]
· P(s′|s, a) · x(s′)

∣∣∣∣∣
≤ max

s

∑
a

∑
s′

P(s′|s, a) ·
∣∣∣∣∂πθα(a|s)

∂α

∣∣∣
α=0

∣∣∣∣ · ‖x‖∞
= max

s

∑
a

∣∣∣∣∂πθα(a|s)
∂α

∣∣∣
α=0

∣∣∣∣ · ‖x‖∞
≤ max

s

2 · p ·A1/p

‖θ(s, ·)‖p
· ‖u‖2 · ‖x‖∞. (by Eq. (41)) (45)

Similarly, taking second derivative w.r.t. α,[
∂2P (α)

∂α2

∣∣∣
α=0

]
(s,s′)

=
∑
a

[
∂2πθα(a|s)

∂α2

∣∣∣
α=0

]
· P(s′|s, a).

The `∞ norm is upper bounded as,∥∥∥∥∂2P (α)

∂α2

∣∣∣
α=0

x

∥∥∥∥
∞

= max
s

∣∣∣∣∣∑
s′

∑
a

[
∂2πθα(a|s)

∂α2

∣∣∣
α=0

]
· P(s′|s, a) · x(s′)

∣∣∣∣∣
≤ max

s

∑
a

∑
s′

P(s′|s, a) ·
∣∣∣∣∂2πθα(a|s)

∂α2

∣∣∣
α=0

∣∣∣∣ · ‖x‖∞
= max

s

∑
a

∣∣∣∣∂2πθα(a|s)
∂α2

∣∣∣
α=0

∣∣∣∣ · ‖x‖∞
≤ max

s

2 · p2 · (1 + 2 ·A1/p)

‖θ(s, ·)‖2p
· ‖u‖22 · ‖x‖∞. (by Eq. (43)) (46)

25

Next, consider the state value function of πθα ,

V πθα (s) =
∑
a

πθα(a|s) · r(s, a) + γ
∑
a

πθα(a|s)
∑
s′

P(s′|s, a) · V πθα (s′),

which implies,

V πθα (s) = e>s M(α)rθα , (47)

where

M(α) = (Id− γP (α))
−1
, (48)

and rθα ∈ RS for s ∈ S is given by

rθα(s) =
∑
a

πθα(a|s) · r(s, a).

Since [P (α)](s,s′) ≥ 0, ∀(s, s′), and

M(α) = (Id− γP (α))
−1

=

∞∑
t=0

γt [P (α)]
t
,

we have [M(α)](s,s′) ≥ 0, ∀(s, s′). Denote [M(α)]i,: as the i-th row vector of M(α). We have

1 =
1

1− γ
· (Id− γP (α))1 =⇒M(α)1 =

1

1− γ
· 1,

which implies, ∀i, ∥∥∥[M(α)]i,:

∥∥∥
1

=
∑
j

[M(α)](i,j) =
1

1− γ
.

Therefore, for any vector x ∈ RS ,

‖M(α)x‖∞ = max
i

∣∣∣[M(α)]
>
i,: x
∣∣∣

≤ max
i

∥∥∥[M(α)]i,:

∥∥∥
1
· ‖x‖∞

=
1

1− γ
· ‖x‖∞. (49)

Since r(s, a) ∈ [0, 1], ∀(s, a), we have,

‖rθα‖∞ = max
s
|rθα(s)| = max

s

∣∣∣∣∣∑
a

πθα(a|s) · r(s, a)

∣∣∣∣∣ ≤ 1. (50)

Since ∂πθ(a|s)
∂θ(s′,·) = 0, for s′ 6= s,∣∣∣∣∂rθα(s)

∂α

∣∣∣∣ =

∣∣∣∣∣
(
∂rθα(s)

∂θα

)>
∂θα
∂α

∣∣∣∣∣
=

∣∣∣∣∣
(
∂{πθα(·|s)>r(s, ·)}

∂θα(s, ·)

)>
u(s, ·)

∣∣∣∣∣
=
∣∣∣p · (diag(1/θα(s, ·))

(
diag(πθα(·|s))− πθα(·|s)πθα(·|s)>

)
r(s, ·)

)>
u(s, ·)

∣∣∣
≤ p ·

∥∥diag(1/θα(s, ·))
(
diag(πθα(·|s))− πθα(·|s)πθα(·|s)>

)
r(s, ·)

∥∥
1
· ‖u(s, ·)‖∞ . (51)

26

The `1 norm is upper bounded as,∥∥diag(1/θα(s, ·))
(
diag(πθα(·|s))− πθα(·|s)πθα(·|s)>

)
r(s, ·)

∥∥
1

=
∑
a

πθα(a|s)1−1/p

‖θα(s, ·)‖p
·
∣∣r(s, a)− πθα(·|s)>r(s, ·)

∣∣
≤ 1

‖θα(s, ·)‖p
·max

a

∣∣r(s, a)− πθα(·|s)>r(s, ·)
∣∣ ·∑

a

πθα(a|s)1−1/p

≤ 1

‖θα(s, ·)‖p
·
∑
a

πθα(a|s)1−1/p (r(s, a) ∈ [0, 1])

≤ A1/p

‖θα(s, ·)‖p
. (by Eq. (28)) (52)

Combining Eqs. (51) and (52), we have,∥∥∥∥∂rθα∂α

∥∥∥∥
∞

= max
s

∣∣∣∣∂rθα(s)

∂α

∣∣∣∣
≤ max

s
p ·
∥∥diag(1/θα(s, ·))

(
diag(πθα(·|s))− πθα(·|s)πθα(·|s)>

)
r(s, ·)

∥∥
1
· ‖u(s, ·)‖∞

≤ max
s

p ·A1/p

‖θα(s, ·)‖p
· ‖u‖2. (53)

Similarly, for the second derivative, we have,∥∥∥∥∂2rθα
∂α2

∥∥∥∥
∞

= max
s

∣∣∣∣∂2rθα(s)

∂α2

∣∣∣∣
= max

s

∣∣∣∣∣
(

∂

∂θα

{
∂rθα(s)

∂α

})>
∂θα
∂α

∣∣∣∣∣
= max

s

∣∣∣∣∣
(
∂2rθα(s)

∂θ2
α

∂θα
∂α

)>
∂θα
∂α

∣∣∣∣∣
= max

s

∣∣∣∣u(s, ·)> ∂
2{πθα(·|s)>r(s, ·)}

∂θα(s, ·)2
u(s, ·)

∣∣∣∣
≤ max

s

3 · p2 ·A1/p

‖θα(s, ·)‖2p
· ‖u(s, ·)‖22 (by Eq. (29))

≤ max
s

3 · p2 ·A1/p

‖θα(s, ·)‖2p
· ‖u‖22. (54)

Taking derivative w.r.t. α in Eq. (47), we have,
∂V πθα (s)

∂α
= γ · e>s M(α)

∂P (α)

∂α
M(α)rθα + e>s M(α)

∂rθα
∂α

.

Taking second derivative w.r.t. α, we have,
∂2V πθα (s)

∂α2
= 2γ2 · e>s M(α)

∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)rθα + γ · e>s M(α)

∂2P (α)

∂α2
M(α)rθα

+ 2γ · e>s M(α)
∂P (α)

∂α
M(α)

∂rθα
∂α

+ e>s M(α)
∂2rθα
∂α2

. (55)

For the last term,∣∣∣∣e>s M(α)
∂2rθα
∂α2

∣∣∣
α=0

∣∣∣∣ ≤ ‖es‖1 · ∥∥∥∥M(α)
∂2rθα
∂α2

∣∣∣
α=0

∥∥∥∥
∞

≤ 1

1− γ
·
∥∥∥∥∂2rθα
∂α2

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (49))

≤ 1

1− γ
·max

s

3 · p2 ·A1/p

‖θα(s, ·)‖2p
· ‖u‖22. (by Eq. (54)) (56)

27

For the second last term,∣∣∣∣e>s M(α)
∂P (α)

∂α
M(α)

∂rθα
∂α

∣∣∣
α=0

∣∣∣∣ ≤ ∥∥∥∥M(α)
∂P (α)

∂α
M(α)

∂rθα
∂α

∣∣∣
α=0

∥∥∥∥
∞

≤ 1

1− γ
·
∥∥∥∥∂P (α)

∂α
M(α)

∂rθα
∂α

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (49))

≤ 2 · p ·A1/p · ‖u‖2
1− γ

·max
s

1

‖θ(s, ·)‖p
·
∥∥∥∥M(α)

∂rθα
∂α

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (45))

≤ 2 · p ·A1/p · ‖u‖2
(1− γ)2

·max
s

1

‖θ(s, ·)‖p
·
∥∥∥∥∂rθα∂α

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (49))

≤ 2 · p2 ·A2/p · ‖u‖2
(1− γ)2

·max
s

1

‖θ(s, ·)‖2p
· ‖u‖2. (by Eq. (53)) (57)

For the second term,∣∣∣∣e>s M(α)
∂2P (α)

∂α2
M(α)rθα

∣∣∣
α=0

∣∣∣∣ ≤ ∥∥∥∥M(α)
∂2P (α)

∂α2
M(α)rθα

∣∣∣
α=0

∥∥∥∥
∞

≤ 1

1− γ
·
∥∥∥∥∂2P (α)

∂α2
M(α)rθα

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (49))

≤ 2 · p2 · (1 + 2 ·A1/p) · ‖u‖22
1− γ

·max
s

1

‖θ(s, ·)‖2p
·
∥∥∥M(α)rθα

∣∣∣
α=0

∥∥∥
∞

(by Eq. (46))

≤ 2 · p2 · (1 + 2 ·A1/p) · ‖u‖22
(1− γ)2

·max
s

1

‖θ(s, ·)‖2p
·
∥∥∥rθα ∣∣∣

α=0

∥∥∥
∞

(by Eq. (49))

≤ 2 · p2 · (1 + 2 ·A1/p)

(1− γ)2
·max

s

1

‖θ(s, ·)‖2p
· ‖u‖22. (by Eq. (50)) (58)

For the first term, according to Eq. (45), Eqs. (49) and (50),∣∣∣∣e>s M(α)
∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)rθα

∣∣∣
α=0

∣∣∣∣ ≤ ∥∥∥∥M(α)
∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)rθα

∣∣∣
α=0

∥∥∥∥
∞

≤ 1

1− γ
·max

s

2 · p ·A1/p

‖θ(s, ·)‖p
· ‖u‖2 ·

1

1− γ
·max

s

2 · p ·A1/p

‖θ(s, ·)‖p
· ‖u‖2 ·

1

1− γ
· 1

=
4 · p2 ·A2/p

(1− γ)3
·max

s

1

‖θ(s, ·)‖2p
· ‖u‖22. (59)

Combining Eqs. (56) to (59) with Eq. (55), we have,∣∣∣∣∂2V πθα (s)

∂α2

∣∣∣
α=0

∣∣∣∣ ≤ 2γ2 ·
∣∣∣∣e>s M(α)

∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)rθα

∣∣∣
α=0

∣∣∣∣
+ γ ·

∣∣∣∣e>s M(α)
∂2P (α)

∂α2
M(α)rθα

∣∣∣
α=0

∣∣∣∣
+ 2γ ·

∣∣∣∣e>s M(α)
∂P (α)

∂α
M(α)

∂rθα
∂α

∣∣∣
α=0

∣∣∣∣+

∣∣∣∣e>s M(α)
∂2rθα
∂α2

∣∣∣
α=0

∣∣∣∣
≤
(

8 · γ2 · p2 ·A2/p

(1− γ)3
+

2 · γ · p2 · (1 + 2 ·A1/p)

(1− γ)2
+

4 · γ · p2 ·A2/p

(1− γ)2
+

3 · p2 ·A1/p

1− γ

)
·max

s

1

‖θ(s, ·)‖2p
· ‖u‖22

≤ 8 · p2 ·A2/p

(1− γ)3
·max

s

1

‖θ(s, ·)‖2p
· ‖u‖22, (60)

28

which implies for all y ∈ RSA and θ,

∣∣∣∣y> ∂2V πθ (s)

∂θ2
y

∣∣∣∣ =

∣∣∣∣∣
(

y

‖y‖2

)>
∂2V πθ (s)

∂θ2

(
y

‖y‖2

)∣∣∣∣∣ · ‖y‖22
≤ max
‖u‖2=1

∣∣∣∣〈∂2V πθ (s)

∂θ2
u, u

〉∣∣∣∣ · ‖y‖22
= max
‖u‖2=1

∣∣∣∣〈∂2V πθα (s)

∂θ2
α

∣∣∣
α=0

∂θα
∂α

,
∂θα
∂α

〉∣∣∣∣ · ‖y‖22
= max
‖u‖2=1

∣∣∣∣〈 ∂

∂θα

{
∂V πθα (s)

∂α

} ∣∣∣
α=0

,
∂θα
∂α

〉∣∣∣∣ · ‖y‖22
= max
‖u‖2=1

∣∣∣∣∂2V πθα (s)

∂α2

∣∣∣
α=0

∣∣∣∣ · ‖y‖22
≤ 8 · p2 ·A2/p

(1− γ)3
·max

s

1

‖θ(s, ·)‖2p
· ‖y‖22. (by Eq. (60)) (61)

Denote θξ = θ + ξ(θ′ − θ), where ξ ∈ [0, 1]. According to Taylor’s theorem, ∀s, ∀θ, θ′,

∣∣∣∣V πθ′ (s)− V πθ (s)− 〈∂V πθ (s)∂θ
, θ′ − θ

〉∣∣∣∣ =
1

2
·

∣∣∣∣∣(θ′ − θ)> ∂2V πθξ (s)

∂θ2
ξ

(θ′ − θ)

∣∣∣∣∣
≤ 4 · p2 ·A2/p

(1− γ)3
·max

s

1

‖θξ(s, ·)‖2p
· ‖θ′ − θ‖22 (by Eq. (61))

=
4 · p2 ·A2/p

(1− γ)3
· 1

mins ‖θξ(s, ·)‖2p
· ‖θ′ − θ‖22. (62)

Since V πθ (s) is 8·p2·A2/p

(1−γ)3 ·
1

mins ‖θξ(s,·)‖2p
-smooth, for any state s, V πθ (ρ) = Es∼ρ [V πθ (s)] is also

8·p2·A2/p

(1−γ)3 ·
1

mins ‖θξ(s,·)‖2p
-smooth.

Second part. For p = 1, we have,∣∣∣∣〈∂2πθ(a|s)
∂θ2(s, ·)

u(s, ·), u(s, ·)
〉∣∣∣∣ ≤ 2 · p2

‖θ(s, ·)‖2p
· πθ(a|s)1−1/p · |u(s, a)| ·

∣∣∣∣(πθ(·|s)1−1/p
)>

u(s, ·)
∣∣∣∣

+
2 · p2

‖θ(s, ·)‖2p
· πθ(a|s) ·

∣∣∣∣(πθ(·|s)1−1/p
)>

u(s, ·)
∣∣∣∣2 . (by Eq. (42))

Therefore we have,

∑
a

∣∣∣∣∂2πθα(a|s)
∂α2

∣∣∣
α=0

∣∣∣∣ ≤ 4 · p2

‖θ(s, ·)‖2p
· ‖u(s, ·)‖22 · ‖πθ(·|s)1−1/p‖22

≤ 4 · p2 ·A
‖θ(s, ·)‖2p

· ‖u‖22. (63)

Similar to Eq. (46), we have,∥∥∥∥∂2P (α)

∂α2

∣∣∣
α=0

x

∥∥∥∥
∞
≤ max

s

∑
a

∣∣∣∣∂2πθα(a|s)
∂α2

∣∣∣
α=0

∣∣∣∣ · ‖x‖∞
≤ max

s

4 · p2 ·A
‖θ(s, ·)‖2p

· ‖u‖22 · ‖x‖∞. (by Eq. (63)) (64)

29

Similar to Eq. (54), for the second derivative, we have,∥∥∥∥∂2rθα
∂α2

∥∥∥∥
∞

= max
s

∣∣∣∣u(s, ·)> ∂
2{πθα(·|s)>r(s, ·)}

∂θα(s, ·)2
u(s, ·)

∣∣∣∣
≤ max

s

2 · p2 ·A1/p

‖θα(s, ·)‖2p
· ‖u(s, ·)‖22 (by Eq. (30))

≤ max
s

2 · p2 ·A1/p

‖θα(s, ·)‖2p
· ‖u‖22. (65)

Similar to Eq. (56), we have,∣∣∣∣e>s M(α)
∂2rθα
∂α2

∣∣∣
α=0

∣∣∣∣ ≤ ‖es‖1 · ∥∥∥∥M(α)
∂2rθα
∂α2

∣∣∣
α=0

∥∥∥∥
∞

≤ 1

1− γ
·
∥∥∥∥∂2rθα
∂α2

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (49))

≤ 1

1− γ
·max

s

2 · p2 ·A1/p

‖θα(s, ·)‖2p
· ‖u‖22. (by Eq. (65)) (66)

Similar to Eq. (58), we have,∣∣∣∣e>s M(α)
∂2P (α)

∂α2
M(α)rθα

∣∣∣
α=0

∣∣∣∣ ≤ 1

1− γ
·
∥∥∥∥∂2P (α)

∂α2
M(α)rθα

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (49))

≤ 4 · p2 ·A · ‖u‖22
1− γ

·max
s

1

‖θ(s, ·)‖2p
·
∥∥∥M(α)rθα

∣∣∣
α=0

∥∥∥
∞

(by Eq. (64))

≤ 4 · p2 ·A · ‖u‖22
(1− γ)2

·max
s

1

‖θ(s, ·)‖2p
·
∥∥∥rθα ∣∣∣

α=0

∥∥∥
∞

(by Eq. (49))

≤ 4 · p2 ·A
(1− γ)2

·max
s

1

‖θ(s, ·)‖2p
· ‖u‖22. (by Eq. (50)) (67)

Combining Eqs. (57) and (59), Eqs. (66) and (67) with Eq. (55), we have,∣∣∣∣∂2V πθα (s)

∂α2

∣∣∣
α=0

∣∣∣∣ ≤ 2γ2 ·
∣∣∣∣e>s M(α)

∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)rθα

∣∣∣
α=0

∣∣∣∣
+ γ ·

∣∣∣∣e>s M(α)
∂2P (α)

∂α2
M(α)rθα

∣∣∣
α=0

∣∣∣∣
+ 2γ ·

∣∣∣∣e>s M(α)
∂P (α)

∂α
M(α)

∂rθα
∂α

∣∣∣
α=0

∣∣∣∣+

∣∣∣∣e>s M(α)
∂2rθα
∂α2

∣∣∣
α=0

∣∣∣∣
≤
(

8 · γ2 · p2 ·A2/p

(1− γ)3
+

4 · γ · p2 ·A
(1− γ)2

+
4 · γ · p2 ·A2/p

(1− γ)2
+

2 · p2 ·A1/p

1− γ

)
·max

s

1

‖θ(s, ·)‖2p
· ‖u‖22

≤ 8 ·A2

(1− γ)3
·max

s

1

‖θ(s, ·)‖21
· ‖u‖22. (p = 1) (68)

Similar to Eq. (61), Eq. (68) implies for all y ∈ RSA and θ,∣∣∣∣y> ∂2V πθ (s)

∂θ2
y

∣∣∣∣ ≤ max
‖u‖2=1

∣∣∣∣∂2V πθα (s)

∂α2

∣∣∣
α=0

∣∣∣∣ · ‖y‖22
≤ 8 ·A2

(1− γ)3
·max

s

1

‖θ(s, ·)‖21
· ‖y‖22. (Eq. (68)) (69)

Similar to Eq. (62), we have, ∀s, ∀θ, θ′,∣∣∣∣V πθ′ (s)− V πθ (s)− 〈∂V πθ (s)∂θ
, θ′ − θ

〉∣∣∣∣ ≤ 4 ·A2

(1− γ)3
·max

s

‖θ′ − θ‖22
‖θξ(s, ·)‖21

(Eq. (69))

=
4 ·A2

(1− γ)3
· ‖θ′ − θ‖22

mins ‖θξ(s, ·)‖21
.

30

Since V πθ (s) is 8·A2

(1−γ)3 ·
1

mins ‖θξ(s,·)‖21
-smooth, for any state s, V πθ (ρ) = Es∼ρ [V πθ (s)] is also

8·A2

(1−γ)3 ·
1

mins ‖θξ(s,·)‖21
-smooth.

Lemma 7 (Non-uniform Łojasiewicz). Suppose µ(s) > 0 for all state s and πθ := fp(θ). Then,∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

≥ p√
S
·

∥∥∥∥∥dπ
∗

ρ

dπθµ

∥∥∥∥∥
−1

∞

· mins πθ(a
∗(s)|s)1−1/p

maxs ‖θ(s, ·)‖p
· [V ∗(ρ)− V πθ (ρ)] ,

where a∗(s) := arg maxa π
∗(a|s), ∀s ∈ S, is the action that the optimal policy π∗ takes under s.

Proof. Note that a∗(s) is the action that optimal policy π∗ selects under state s.

∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

=

[∑
s,a

(
∂V πθ (µ)

∂θ(s, a)

)2
] 1

2

≥

[∑
s

(
∂V πθ (µ)

∂θ(s, a∗(s))

)2
] 1

2

≥ 1√
S

∑
s

∣∣∣∣ ∂V πθ (µ)

∂θ(s, a∗(s))

∣∣∣∣ (by Cauchy-Schwarz, ‖x‖1 = |〈1, |x|〉| ≤ ‖1‖2 · ‖x‖2)

=
1

1− γ
· 1√

S

∑
s

∣∣∣∣dπθµ (s) · p · πθ(a
∗(s)|s)

θ(s, a∗(s))
·Aπθ (s, a∗(s))

∣∣∣∣ (by Lemma 5)

=
1

1− γ
· 1√

S

∑
s

dπθµ (s) · p · πθ(a
∗(s)|s)

|θ(s, a∗(s))|
· |Aπθ (s, a∗(s))| .

(
dπθµ (s) ≥ 0, πθ(a

∗(s)|s) ≥ 0
)

Define the distribution mismatch coefficient as
∥∥∥∥dπ∗ρdπθµ

∥∥∥∥
∞

:= maxs
dπ
∗
ρ (s)

d
πθ
µ (s)

. We have,

∥∥∥∥∂V πθ (µ)

∂θ

∥∥∥∥
2

≥ 1

1− γ
· 1√

S

∑
s

dπθµ (s)

dπ∗ρ (s)
· dπ

∗

ρ (s) · p · πθ(a
∗(s)|s)

|θ(s, a∗(s))|
· |Aπθ (s, a∗(s))|

=
1

1− γ
· 1√

S

∑
s

dπθµ (s)

dπ∗ρ (s)
· dπ

∗

ρ (s) · p · 1

‖θ(s, ·)‖p
· (πθ(a∗(s)|s))1−1/p · |Aπθ (s, a∗(s))|

≥ 1

1− γ
· 1√

S
·

∥∥∥∥∥dπ
∗

ρ

dπθµ

∥∥∥∥∥
−1

∞

· p ·min
s

1

‖θ(s, ·)‖p
·min

s
πθ(a

∗(s)|s)1−1/p ·
∑
s

dπ
∗

ρ (s) · |Aπθ (s, a∗(s))|

≥ 1

1− γ
· 1√

S
·

∥∥∥∥∥dπ
∗

ρ

dπθµ

∥∥∥∥∥
−1

∞

· p ·min
s

1

‖θ(s, ·)‖p
·min

s
πθ(a

∗(s)|s)1−1/p ·
∑
s

dπ
∗

ρ (s) ·Aπθ (s, a∗(s))

=
p√
S
·

∥∥∥∥∥dπ
∗

ρ

dπθµ

∥∥∥∥∥
−1

∞

· mins πθ(a
∗(s)|s)1−1/p

maxs ‖θ(s, ·)‖p
· 1

1− γ
∑
s

dπ
∗

ρ (s)
∑
a

π∗(a|s) ·Aπθ (s, a)

=
p√
S
·

∥∥∥∥∥dπ
∗

ρ

dπθµ

∥∥∥∥∥
−1

∞

· mins πθ(a
∗(s)|s)1−1/p

maxs ‖θ(s, ·)‖p
· [V ∗(ρ)− V πθ (ρ)] ,

where the last equation is according to the performance difference lemma of Lemma 8.

Lemma 8 (Performance difference lemma [9]). For any policies π and π′,

V π(ρ)− V π
′
(ρ) =

1

1− γ
∑
s

dπρ (s)
∑
a

π(a|s) ·Aπ
′
(s, a).

31

Algorithm 2 Escort Policy Gradient Method with Parameter Normalization
Input: Learning rate η > 0.
Output: Policies πθt = fp(θt).
Initialize parameter θ1(s, a) for all (s, a) ∈ S ×A.
Normalize parameter θ̃1(s, a)← θ1(s,a)

‖θ1(s,·)‖p for all (s, a) ∈ S ×A.
for t = 1 to T do
ζ̃t+1(s, a)← θ̃t(s, a) + η · ∂V

π
θ̃t (µ)

∂θ̃t(s,a)
for all (s, a).

θ̃t+1(s, a)← ζ̃t+1(s,a)

‖ζ̃t+1(s,·)‖p
for all (s, a).

end for

C.3.1 An equivalent algorithm

For convenience of analysis, we introduce Algorithm 2, which is equivalent to Algorithm 1 as shown
in Lemma 9.
Lemma 9. Using the escort transform πθ = fp(θ), Algorithm 2 with constant learning rate η and
Algorithm 1 with learning rate ηt(s) = η · ‖θt(s, ·)‖2p are equivalent, i.e., for all (s, a),

θ̃t(s, a) =
θt(s, a)

‖θt(s, ·)‖p
, and

πθ̃t(a|s) = πθt(a|s).

Proof. For t = 1, according to Algorithm 2, we have, for all (s, a), θ̃1(s, a) = θ1(s,a)
‖θ1(s,·)‖p , and,

πθ̃1(a|s) =
|θ̃1(s, a)|p∑
a′ |θ̃1(s, a′)|p

=
|θ1(s, a)|p∑
a′ |θ1(s, a′)|p

· 1
XXXXX‖θ1(s, ·)‖pp

·XXXXX‖θ1(s, ·)‖pp = πθ1(a|s). (70)

Suppose θ̃t(s, a) = θt(s,a)
‖θt(s,·)‖p for some t ≥ 1. Using similar calculation as in Eq. (70), we have, for

all (s, a), πθ̃t(a|s) = πθt(a|s), and,

ζ̃t+1(s, a)← θ̃t(s, a) + η · ∂V
πθ̃t (µ)

∂θ̃t(s, a)
(Algorithm 2)

=
θt(s, a)

‖θt(s, ·)‖p
+ η · ‖θt(s, ·)‖p ·

∂V πθt (µ)

∂θt(s, a)

(
induction hypothesis and πθ̃t = πθt

)
=

θt(s, a)

‖θt(s, ·)‖p
+ ηt(s) ·

1

‖θt(s, ·)‖p
· ∂V

πθt (µ)

∂θt(s, a)

(
ηt(s) = η · ‖θt(s, ·)‖2p

)
=

1

‖θt(s, ·)‖p
·
(
θt(s, a) + ηt(s) ·

∂V πθt (µ)

∂θt(s, a)

)
=

1

‖θt(s, ·)‖p
· θt+1(s, a). (Algorithm 1) (71)

Therefore we have,

θ̃t+1(s, a)← ζ̃t+1(s, a)

‖ζ̃t+1(s, ·)‖p
(Algorithm 2)

=
1

XXXXX‖θt(s, ·)‖p
· θt+1(s, a) ·

XXXXX‖θt(s, ·)‖p
‖θt+1(s, ·)‖p

(by Eq. (71))

=
θt+1(s, a)

‖θt+1(s, ·)‖p
.

Using similar calculation as in Eq. (70), we have, for all (s, a), πθ̃t+1
(a|s) = πθt+1

(a|s).

Theorem 3. Following the escort policy gradient Algorithm 1 with any initialization such that

|θ1(s, a)| > 0, ∀(s, a), and ηt(s) =
(1−γ)3·‖θt(s,·)‖2p

10·p2·A2/p to get {θt}t≥1, for all t ≥ 1, the following
sub-optimality upper bounds hold for πθt ,

32

• for p ≥ 2, we have,

V ∗(ρ)− V πθt (ρ) ≤ 20 ·A2/p · S
c2−2/p · (1− γ)6 · t

·

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
2

∞

·
∥∥∥∥ 1

µ

∥∥∥∥
∞

;

• for p = 1, we have,

V ∗(µ)− V πθt (µ) ≤ 20 ·A2 · S
(1− γ)6 · t

·

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
2

∞

·
∥∥∥∥ 1

µ

∥∥∥∥
∞
,

where c := infs∈S inft≥1 πθt(a
∗(s)|s) > 0 is problem- and initialization-dependent constant, A :=

|A| and S := |S| are the total number of actions and states, respectively, and µ ∈ ∆(S) is an initial
state distribution which provides initial states for the policy gradient Algorithm 1.

Proof. Note that for any θ and µ,

dπθµ (s) = E
s0∼µ

[
dπθµ (s)

]
= E
s0∼µ

[
(1− γ)

∞∑
t=0

γt Pr(st = s|s0, πθ,P)

]
≥ E
s0∼µ

[(1− γ) Pr(s0 = s|s0)]

= (1− γ) · µ(s) . (72)

According to the value sub-optimality lemma of Lemma 10,

V ∗(ρ)− V πθ (ρ) =
1

1− γ
∑
s

dπθρ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a)

=
1

1− γ
∑
s

dπθρ (s)

dπθµ (s)
· dπθµ (s)

∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a)

≤ 1

1− γ
·
∥∥∥∥ 1

dπθµ

∥∥∥∥
∞

∑
s

dπθµ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a)

≤ 1

(1− γ)2
·
∥∥∥∥ 1

µ

∥∥∥∥
∞

∑
s

dπθµ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a)
(

by Eq. (72) and min
s
µ(s) > 0

)
=

1

1− γ
·
∥∥∥∥ 1

µ

∥∥∥∥
∞
· [V ∗(µ)− V πθ (µ)] , (73)

where the first inequality is because of∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) ≥ 0,

and the last equation is again by Lemma 10.

For p ≥ 2 and p = 1, according to Lemma 6, V πθ (µ) is β-smooth with β = 8·p2·A2/p

(1−γ)3 ·
1

mins ‖θξ(s,·)‖2p
,

i.e., we have, in Algorithm 2,∣∣∣∣V πζ̃t+1 (µ)− V πθ̃t (µ)−
〈∂V πθ̃t (µ)

∂θ̃t
, ζ̃t+1 − θ̃t

〉∣∣∣∣ ≤ 4 · p2 ·A2/p

(1− γ)3
· ‖ζ̃t+1 − θ̃t‖22

mins ‖θ̃t,ξ(s, ·)‖2p
, (74)

where

θ̃t,ξ := θ̃t + ξ · (ζ̃t+1 − θ̃t)

= θ̃t + ξ · η · ∂V
πθ̃t (µ)

∂θ̃t
, (Algorithm 2)

33

for some ξ ∈ [0, 1]. Denote sξ := arg mins ‖θ̃t,ξ(s, ·)‖2p. We have,

‖θ̃t,ξ(sξ, ·)‖p ≥ ‖θ̃t(sξ, ·)‖p − ξ · η ·

∥∥∥∥∥∂V πθ̃t (µ)

∂θ̃t(sξ, ·)

∥∥∥∥∥
p

(triangle inequality)

≥ min
s
‖θ̃t(s, ·)‖p − ξ · η ·

∥∥∥∥∥∂V πθ̃t (µ)

∂θ̃t(sξ, ·)

∥∥∥∥∥
p

. (75)

The `p gradient norm can be upper bounded as,

∥∥∥∥∂V πθ (µ)

∂θ(s, ·)

∥∥∥∥
p

=

[∑
a

∣∣∣∣ 1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
·Aπθ (s, a)

∣∣∣∣p
] 1
p

(by Lemma 5)

≤ p

1− γ
·

[∑
a

∣∣∣∣πθ(a|s)θ(s, a)
·Aπθ (s, a)

∣∣∣∣p
] 1
p

=
p

1− γ
· 1

‖θ(s, ·)‖p
·

[∑
a

(
πθ(a|s)1−1/p · |Aπθ (s, a)|

)p] 1
p

≤ p

1− γ
· 1

‖θ(s, ·)‖p
·

[∑
a

(
1 · 1

1− γ

)p] 1
p

≤ p ·A1/p

(1− γ)2
·max

s

1

‖θ(s, ·)‖p
. (76)

Combining Eqs. (75) and (76), we have,

min
s
‖θ̃t,ξ(s, ·)‖p ≥ min

s
‖θ̃t(s, ·)‖p − ξ · η ·

p ·A1/p

(1− γ)2
· 1

mins ‖θ̃t(s, ·)‖p

= 1− ξ · η · p ·A
1/p

(1− γ)2
.

(
‖θ̃t(s, ·)‖p = 1, for all s, Algorithm 2

)
= 1− ξ · 1− γ

10 · p ·A1/p

(
η =

(1− γ)3

10 · p2 ·A2/p
, by Lemma 9

)
≥ 1− 1− γ

10 · p ·A1/p
(ξ ∈ [0, 1])

=

(
1− 2√

5

)
·

(
1− 5 + 2

√
5

10
· 1− γ
p ·A1/p

)
+

2√
5

≥ 2√
5
.

(
p ≥ 2, A1/p ≥ 1, 1− γ ∈ (0, 1]

)
(77)

Combining Eqs. (74) and (77), we have,

∣∣∣∣V πζ̃t+1 (µ)− V πθ̃t (µ)−
〈∂V πθ̃t (µ)

∂θ̃t
, ζ̃t+1 − θ̃t

〉∣∣∣∣ ≤ 4 · p2 ·A2/p

(1− γ)3
· ‖ζ̃t+1 − θ̃t‖22

mins ‖θ̃t,ξ(s, ·)‖2p

≤ 5 · p2 ·A2/p

(1− γ)3
· ‖ζ̃t+1 − θ̃t‖22, (78)

34

which implies,

V πθ̃t (µ)− V πθ̃t+1 (µ) = V πθ̃t (µ)− V πζ̃t+1 (µ)

(
θ̃t+1(s, a) =

ζ̃t+1(s, a)

‖ζ̃t+1(s, ·)‖p
, Algorithm 2

)

≤ −
〈∂V πθ̃t (µ)

∂θ̃t
, ζ̃t+1 − θ̃t

〉
+

5 · p2 ·A2/p

(1− γ)3
· ‖ζ̃t+1 − θ̃t‖22 (Eq. (78))

= −η ·
∥∥∥∥∂V πθ̃t (µ)

∂θ̃t

∥∥∥∥2

2

+
5 · p2 ·A2/p

(1− γ)3
· η2 ·

∥∥∥∥∂V πθ̃t (µ)

∂θ̃t

∥∥∥∥2

2

(
ζ̃t+1 = θ̃t + η · ∂V

πθ̃t (µ)

∂θ̃t
, Algorithm 2

)
= − (1− γ)3

20 · p2 ·A2/p
·
∥∥∥∥∂V πθ̃t (µ)

∂θ̃t

∥∥∥∥2

2

(
η =

(1− γ)3

10 · p2 ·A2/p

)

≤ − (1− γ)3

20 · SSp2 ·A2/p
·

 Ap√
S
·

∥∥∥∥∥ dπ
∗

µ

d
πθ̃t
µ

∥∥∥∥∥
−1

∞

·
mins πθ̃t(a

∗(s)|s)1−1/p

maxs ‖θ̃t(s, ·)‖p
· [V ∗(µ)− V πθ̃t (µ)]

2

(Lemma 7)

= − (1− γ)3

20 ·A2/p · S
·

∥∥∥∥∥ dπ
∗

µ

d
πθ̃t
µ

∥∥∥∥∥
−2

∞

·min
s
πθ̃t(a

∗(s)|s)2−2/p · [V ∗(µ)− V πθ̃t (µ)]
2

(
‖θ̃t(s, ·)‖p = 1, for all s

)

≤ − (1− γ)5

20 ·A2/p · S
·

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
−2

∞

·min
s
πθ̃t(a

∗(s)|s)2−2/p · [V ∗(µ)− V πθ̃t (µ)]
2
, (79)

where the last inequality is by Eq. (72). Then we have,

V πθt (µ)− V πθt+1 (µ) = V πθ̃t (µ)− V πθ̃t+1 (µ) (by Lemma 9)

≤ − (1− γ)5

20 ·A2/p · S
·

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
−2

∞

·min
s
πθt(a

∗(s)|s)2−2/p · [V ∗(µ)− V πθt (µ)]
2
, (by Eq. (79) and Lemma 9)

≤ − (1− γ)5

20 ·A2/p · S
·

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
−2

∞

· c2−2/p · [V ∗(µ)− V πθt (µ)]
2
,

which is equivalent to,

δt+1 − δt ≤ −
(1− γ)5

20 ·A2/p · S
·

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
−2

∞

· c2−2/p · δ2
t ,

where δt = V ∗(µ)− V πθt (µ). Using the similar induction argument as in Eq. (36), we have,

V ∗(µ)− V πθt (µ) ≤ 20 ·A2/p · S
(1− γ)5 · t

· 1

c2−2/p
·

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
2

∞

,

which leads to the final result,

V ∗(ρ)− V πθt (ρ) ≤ 1

1− γ
·
∥∥∥∥ 1

µ

∥∥∥∥
∞
· [V ∗(µ)− V πθt (µ)] (by Eq. (73))

≤ 20 ·A2/p · S
c2−2/p · (1− γ)6 · t

·

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
2

∞

·
∥∥∥∥ 1

µ

∥∥∥∥
∞
.

Lemma 10 (Value sub-optimality lemma [14]). For any policy π,

V ∗(ρ)− V π(ρ) =
1

1− γ
∑
s

dπρ (s)
∑
a

(π∗(a|s)− π(a|s)) ·Q∗(s, a).

Proof. See the proof in [14, Lemma 21].

35

C.4 Entropy Regularized MDPs

The objective for the entropy regularized policy gradient method is,
Ṽ π(ρ) := V π(ρ) + τ ·H(ρ, π) , (80)

where H(ρ, π) is the “discounted entropy”, defined as

H(ρ, π) := E
s0∼ρ,at∼π(·|st),
st+1∼P(·|st,at)

[∞∑
t=0

−γt log π(at|st)

]
, (81)

and τ ≥ 0 is “temperature” of the regularization.
Lemma 11. The entropy regularized escort policy gradient w.r.t. θ is
∂Ṽ πθ (µ)

∂θ(s, a)
=

1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
· Ãπθ (s, a),

∂Ṽ πθ (µ)

∂θ(s, ·)
=

1

1− γ
· dπθµ (s) · p · diag

(
πθ(·|s)
θ(s, ·)

)(
Id− 1πθ(·|s)>

) [
Q̃πθ (s, ·)− τ log πθ(·|s)

]
.

where Ãπθ (s, a) is the soft advantage function defined as

Ãπθ (s, a) = Q̃πθ (s, a)− τ log πθ(a|s)− Ṽ πθ (s)

Q̃πθ (s, a) = r(s, a) + γ
∑
s′

P(s′|s, a)Ṽ πθ (s′).

Proof. According to the definition of Ṽ πθ ,

Ṽ πθ (µ) = E
s∼µ

∑
a

πθ(a|s) ·
[
Q̃πθ (s, a)− τ log πθ(a|s)

]
.

Taking derivative w.r.t. θ,
∂Ṽ πθ (µ)

∂θ
= E
s∼µ

∑
a

∂πθ(a|s)
∂θ

·
[
Q̃πθ (s, a)− τ log πθ(a|s)

]
+ E
s∼µ

∑
a

πθ(a|s) ·

[
∂Q̃πθ (s, a)

∂θ
− τ 1

πθ(a|s)
∂πθ(a|s)
∂θ

]

= E
s∼µ

∑
a

∂πθ(a|s)
∂θ

·
[
Q̃πθ (s, a)− τ log πθ(a|s)

]
+ E
s∼µ

∑
a

πθ(a|s) ·
∂Q̃πθ (s, a)

∂θ

= E
s∼µ

∑
a

∂πθ(a|s)
∂θ

·
[
Q̃πθ (s, a)− τ log πθ(a|s)

]
+ γ · E

s∼µ

∑
a

πθ(a|s)
∑
s′

P(s′|s, a) · ∂Ṽ
πθ (s′)

∂θ

=
1

1− γ
∑
s

dπθµ (s)
∑
a

∂πθ(a|s)
∂θ

·
[
Q̃πθ (s, a)− τ log πθ(a|s)

]
,

where the second equation is because of∑
a

πθ(a|s) ·
[

1

πθ(a|s)
∂πθ(a|s)
∂θ

]
=
∑
a

∂πθ(a|s)
∂θ

=
∂

∂θ

∑
a

πθ(a|s) =
∂1

∂θ
= 0.

Using similar arguments as in the proof for Lemma 5, i.e., for s′ 6= s, ∂πθ(a|s)
∂θ(s′,·) = 0,

∂Ṽ πθ (µ)

∂θ(s, ·)
=

1

1− γ
· dπθµ (s) ·

[∑
a

∂πθ(a|s)
∂θ(s, ·)

·
[
Q̃πθ (s, a)− τ log πθ(a|s)

]]

=
1

1− γ
· dπθµ (s) ·

(
dπθ(·|s)
dθ(s, ·)

)> [
Q̃πθ (s, ·)− τ log πθ(·|s)

]
=

1

1− γ
· dπθµ (s) · p · diag

(
πθ(·|s)
θ(s, ·)

)(
Id− 1πθ(·|s)>

) [
Q̃πθ (s, ·)− τ log πθ(·|s)

]
.

36

For each component a, we have

∂Ṽ πθ (µ)

∂θ(s, a)
=

1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
·
[
Q̃πθ (s, a)− τ log πθ(a|s)

−
∑
a

πθ(a|s) ·
[
Q̃πθ (s, a)− τ log πθ(a|s)

]]
=

1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
·
[
Q̃πθ (s, a)− τ log πθ(a|s)− Ṽ πθ (s)

]
=

1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
· Ãπθ (s, a).

Lemma 12 (Non-uniform Łojasiewicz). Suppose µ(s) > 0 for all s ∈ S and πθ = fp(θ). Then,

∥∥∥∥∥∂Ṽ πθ (µ)

∂θ

∥∥∥∥∥
2

≥
√

2τ√
S
·min

s

√
µ(s) · p

maxs ‖θ(s, ·)‖p
·min
s,a

πθ(a|s)1−1/p ·

∥∥∥∥∥d
π∗τ
ρ

dπθµ

∥∥∥∥∥
− 1

2

∞

·
[
Ṽ π
∗
τ (ρ)− Ṽ πθ (ρ)

] 1
2

.

Proof. According to the definition of soft value functions,

Ṽ π
∗
τ (ρ)− Ṽ πθ (ρ) = E

s0∼ρ,at∼π∗τ (·|st),
st+1∼P(·|st,at)

[∞∑
t=0

γt(r(st, at)− τ log π∗τ (at|st))

]
− Ṽ πθ (ρ)

= E
s0∼ρ,at∼π∗τ (·|st),
st+1∼P(·|st,at)

[∞∑
t=0

γt(r(st, at)− τ log π∗τ (at|st) + Ṽ πθ (st)− Ṽ πθ (st))

]
− Ṽ πθ (ρ)

= E
s0∼ρ,at∼π∗τ (·|st),
st+1∼P(·|st,at)

[∞∑
t=0

γt(r(st, at)− τ log π∗τ (at|st) + γṼ πθ (st+1)− Ṽ πθ (st))

]

=
1

1− γ
∑
s

d
π∗τ
ρ (s) ·

[∑
a

π∗τ (a|s) ·

(
r(s, a)− τ log π∗τ (a|s) + γ

∑
s′

P(s′|s, a)Ṽ πθ (s′)− Ṽ πθ (s)

)]

=
1

1− γ
∑
s

d
π∗τ
ρ (s) ·

[∑
a

π∗τ (a|s) ·
[
Q̃πθ (s, a)− τ log π∗τ (a|s)

]
− Ṽ πθ (s)

]
. (82)

Next, define the “soft greedy policy" π̄θ(·|s) = softmax(Q̃πθ (s, ·)/τ), ∀s, i.e.,

π̄θ(a|s) =
exp

{
Q̃πθ (s, a)/τ

}
∑
a′ exp

{
Q̃πθ (s, a′)/τ

} , ∀a. (83)

We have, ∀s,∑
a

π∗τ (a|s) ·
[
Q̃πθ (s, a)− τ log π∗τ (a|s)

]
≤ max
π(·|s)

∑
a

π(a|s) ·
[
Q̃πθ (s, a)− τ log π(a|s)

]
=
∑
a

π̄θ(a|s) ·
[
Q̃πθ (s, a)− τ log π̄θ(a|s)

]
= τ log

∑
a

exp
{
Q̃πθ (s, a)/τ

}
. (84)

37

Also note that,

Ṽ πθ (s) =
∑
a

πθ(a|s) ·
[
Q̃πθ (s, a)− τ log πθ(a|s)

]
=
∑
a

πθ(a|s) ·
[
Q̃πθ (s, a)− τ log π̄θ(a|s) + τ log π̄θ(a|s)− τ log πθ(a|s)

]
=
∑
a

πθ(a|s) ·
[
Q̃πθ (s, a)− τ log π̄θ(a|s)

]
− τDKL(πθ(·|s)‖π̄θ(·|s))

= τ log
∑
a

exp
{
Q̃πθ (s, a)/τ

}
− τ ·DKL(πθ(·|s)‖π̄θ(·|s)). (85)

Combining Eq. (82), Eqs. (84) and (85), we have,

Ṽ π
∗
τ (ρ)− Ṽ πθ (ρ) =

1

1− γ
∑
s

d
π∗τ
ρ (s) ·

[∑
a

π∗τ (a|s) ·
[
Q̃πθ (s, a)− τ log π∗τ (a|s)

]
− Ṽ πθ (s)

]

≤ 1

1− γ
∑
s

d
π∗τ
ρ (s) ·

[
τ log

∑
a

exp
{
Q̃πθ (s, a)/τ

}
− Ṽ πθ (s)

]

=
1

1− γ
∑
s

d
π∗τ
ρ (s) · τ ·DKL(πθ(·|s)‖π̄θ(·|s))

≤ 1

1− γ
∑
s

d
π∗τ
ρ (s) · τ

2
·

∥∥∥∥∥ Q̃πθ (s, ·)τ
− log πθ(s, ·)−

cθ(s)

τ
· 1

∥∥∥∥∥
2

∞

(by Lemma 13)

=
1

1− γ
∑
s

d
π∗τ
ρ (s) · 1

2τ
·
∥∥∥Q̃πθ (s, ·)− τ log πθ(s, ·)− cθ(s) · 1

∥∥∥2

∞
, (86)

where cθ(s) =
(Q̃πθ (s,·)−τ log πθ(s,·))

>
1

A . Taking square root of Eq. (86), we have,

[
Ṽ π
∗
τ (ρ)− Ṽ πθ (ρ)

] 1
2 ≤ 1√

1− γ
·

[∑
s

d
π∗τ
ρ (s) · 1

2τ
·
∥∥∥Q̃πθ (s, ·)− τ log πθ(s, ·)− cθ(s) · 1

∥∥∥2

∞

] 1
2

=
1√

1− γ
·

[∑
s

(√
d
π∗τ
ρ (s) · 1√

2τ
·
∥∥∥Q̃πθ (s, ·)− τ log πθ(s, ·)− cθ(s) · 1

∥∥∥
∞

)2
] 1

2

≤ 1√
1− γ

·
∑
s

√
d
π∗τ
ρ (s) · 1√

2τ
·
∥∥∥Q̃πθ (s, ·)− τ log πθ(s, ·)− cθ(s) · 1

∥∥∥
∞

(‖x‖2 ≤ ‖x‖1)

≤ 1√
1− γ

· 1√
2τ
·

∥∥∥∥∥d
π∗τ
ρ

dπθµ

∥∥∥∥∥
1
2

∞

∑
s

√
dπθµ (s) ·

∥∥∥Q̃πθ (s, ·)− τ log πθ(s, ·)− cθ(s) · 1
∥∥∥
∞
.

(87)

38

On the other hand, the entropy regularized policy gradient norm is lower bounded as∥∥∥∥∥∂Ṽ πθ (µ)

∂θ

∥∥∥∥∥
2

=

∑
s

∥∥∥∥∥∂Ṽ πθ (µ)

∂θ(s, ·)

∥∥∥∥∥
2

2

 1
2

≥ 1√
S

∑
s

∥∥∥∥∥∂Ṽ πθ (µ)

∂θ(s, ·)

∥∥∥∥∥
2

, (by Cauchy-Schwarz , ‖x‖1 = |〈1, |x|〉| ≤ ‖1‖2 · ‖x‖2)

≥ 1√
S
· 1

1− γ
∑
s

dπθµ (s)

·
∥∥∥∥p · diag

(
πθ(·|s)
θ(s, ·)

)(
Id− 1πθ(·|s)>

) [
Q̃πθ (s, ·)− τ log πθ(s, ·)− cθ(s) · 1

]∥∥∥∥
2

(by Lemma 11)

=
1√
S
· 1

1− γ
∑
s

dπθµ (s) · p

‖θ(s, ·)‖p

·
∥∥∥diag

(
πθ(·|s)1−1/p

) (
Id− 1πθ(·|s)>

) [
Q̃πθ (s, ·)− τ log πθ(s, ·)− cθ(s) · 1

]∥∥∥
2

≥ 1√
S
· 1

1− γ
∑
s

dπθµ (s) · p

‖θ(s, ·)‖p
·min

a
πθ(a|s)1−1/p ·

∥∥∥Q̃πθ (s, ·)− τ log πθ(s, ·)− cθ(s) · 1
∥∥∥

2
. (by Lemma 14)

Denote ζθ(s) = Q̃πθ (s, ·)− τ log πθ(s, ·)− cθ(s) · 1. We have,∥∥∥∥∥∂Ṽ πθ (µ)

∂θ

∥∥∥∥∥
2

≥ 1√
S
· 1

1− γ
∑
s

dπθµ (s) · p

‖θ(s, ·)‖p
·min

a
πθ(a|s)1−1/p · ‖ζθ(s)‖2

≥ 1√
S
· 1

1− γ
∑
s

dπθµ (s) · p

‖θ(s, ·)‖p
·min

a
πθ(a|s)1−1/p · ‖ζθ(s)‖∞

≥ 1√
S
· 1√

1− γ
·min

s

√
dπθµ (s) ·min

s

p

‖θ(s, ·)‖p
·min
s,a

πθ(a|s)1−1/p ·
√

2τ ·

∥∥∥∥∥d
π∗τ
ρ

dπθµ

∥∥∥∥∥
− 1

2

∞

·

 1√
1− γ

· 1√
2τ
·

∥∥∥∥∥d
π∗τ
ρ

dπθµ

∥∥∥∥∥
1
2

∞

∑
s

√
dπθµ (s) · ‖ζθ(s)‖∞


≥ 1√

S
· 1√

1− γ
·min

s

√
dπθµ (s) ·min

s

p

‖θ(s, ·)‖p
·min
s,a

πθ(a|s)1−1/p ·
√

2τ ·

∥∥∥∥∥d
π∗τ
ρ

dπθµ

∥∥∥∥∥
− 1

2

∞

·
[
Ṽ π
∗
τ (ρ)− Ṽ πθ (ρ)

] 1
2

(by Eq. (87))

≥
√

2τ√
S
·min

s

√
µ(s) ·min

s

p

‖θ(s, ·)‖p
·min
s,a

πθ(a|s)1−1/p ·

∥∥∥∥∥d
π∗τ
ρ

dπθµ

∥∥∥∥∥
− 1

2

∞

·
[
Ṽ π
∗
τ (ρ)− Ṽ πθ (ρ)

] 1
2

,

where the last inequality is by dπθµ (s) ≥ (1−γ)·µ(s) (cf. Eq. (72)). Note that mins,a πθ(a|s)1−1/p ≥
mins,a πθ(a|s), which is a better dependence than [14, Lemma 15].

Lemma 13 (KL-Logit inequality [14]). Let πθ = softmax(θ) and πθ′ = softmax(θ′). Then for any
constant c ∈ R,

DKL(πθ‖πθ′) ≤
1

2
· ‖θ′ − θ − c · 1‖2∞ .

Proof. See the proof in [14, Lemma 27].

Lemma 14. Let π ∈ ∆(A) and q ≥ 0. For any vector x ∈ RK , we have,∥∥∥∥diag(q)
(
Id− 1π>

)(
x− x>1

K
· 1
)∥∥∥∥

2

≥ min
a
q(a) ·

∥∥∥∥x− x>1

K
· 1
∥∥∥∥

2

.

39

Proof. Denote G = G(π, q) = diag(q)
(
Id− 1π>

)
∈ RK×K . Denote the eigenvalues of G>G as

λ1 ≤ λ2 ≤ · · · ≤ λK .

First, we show that λ1 = 0.

G>G1 = G>diag(q)
(
Id− 1π>

)
1

= G>diag(q) (1− 1) = 0 · 1,

which means 1 is an eigenvector of G>G with eigenvalue 0. And for any vector x ∈ RK , we have,

x>G>Gx = ‖Gx‖22 ≥ 0,

which means G>G is semi-positive definite. Therefore λ1 = 0.

Second, for any vector x ∈ RK , x can be written as linear combination of eigenvectors of G>G,

x = a1 ·
1√
K

+ a2 · v2 + · · ·+ aK · vK

=
x>1

K
· 1 + a2 · v2 + · · ·+ aK · vK .

Since G>G is symmetric,
{

1√
K
, v2, . . . , vK

}
are orthonormal. The last equation is because the

representation is unique, and

a1 = x>
1√
K

=
x>1√
K
.

Denote

x′ = x− x>1

K
· 1 = a2 · v2 + · · ·+ aK · vK .

We have,

‖x′‖22 = a2
2 + · · ·+ a2

K . (88)

Since v2, . . . , vK are eigenvectors of G>G,

G>Gx′ = a2 · λ2 · v2 + · · ·+ aK · λK · vK .

Therefore we have,

‖Gx′‖2 =
(
‖Gx′‖22

) 1
2 =

(
x′
>
G>Gx′

) 1
2

=
(
a2

2 · λ2 + · · ·+ a2
K · λK

) 1
2

≥
(
a2

2 · λ2 + · · ·+ a2
K · λ2

) 1
2

=
√
λ2 · ‖x′‖2. (by Eq. (88)) (89)

Next, we have,

λ2 =
v>2 G

>Gv2

v>2 v2
=

1

v>2 v2
· ‖Gv2‖22 =

1

v>2 v2
·
∥∥diag(q)

(
v2 − π>v2 · 1

)∥∥2

2

=
1

v>2 v2
·

[
K∑
a=1

q(a)2 ·
(
v2(a)− π>v2

)2]

≥ 1

v>2 v2
·min

a
q(a)2 ·

∥∥v2 − π>v2 · 1
∥∥2

2

= min
a
q(a)2 · v

>
2 v2 +K · (π>v2)2

v>2 v2

(
v>2 1 = 0

)
≥ min

a
q(a)2. (90)

40

Combining Eqs. (89) and (90), we have,∥∥∥∥diag(q)
(
Id− 1π>

)(
x− x>1

K
· 1
)∥∥∥∥

2

= ‖Gx′‖2

≥
√
λ2 · ‖x′‖2

≥ min
a
q(a) ·

∥∥∥∥x− x>1

K
· 1
∥∥∥∥

2

.

Theorem 4. For an entropy regularized MDP with finite states and actions, following the escort policy
gradient with any initialization such that |θ1(s, a)| > 0, ∀(s, a), and ηt = (1−γ)3/(10·p2 ·A1/p+cτ)
to get {θt}t≥1, for all t ≥ 1, the following sub-optimality upper bounds hold for πθt :

for p ≥ 2, Ṽ π
∗
τ (ρ)− Ṽ πθt (ρ) ≤ ‖1/µ‖∞

exp{Cτ · c′2 · t}
· 1 + τ logA

(1− γ)2
, (91)

where c′ > c := inf(s,a) inft≥1 πθt(a|s) > 0, τ is the temperature for entropy regularization, π∗τ is
the softmax optimal policy, and cτ , Cτ are problem-dependent constants.

Proof. According to the soft sub-optimality lemma of Lemma 15,

Ṽ π
∗
τ (ρ)− Ṽ πθt (ρ) =

1

1− γ
∑
s

[
d
πθt
ρ (s) · τ ·DKL(πθt(·|s)‖π∗τ (·|s))

]
=

1

1− γ
∑
s

d
πθt
ρ (s)

d
πθt
µ (s)

·
[
d
πθt
µ (s) · τ ·DKL(πθt(·|s)‖π∗τ (·|s))

]
≤ 1

(1− γ)2

∑
s

1

µ(s)
·
[
d
πθt
µ (s) · τ ·DKL(πθt(·|s)‖π∗τ (·|s))

]
≤ 1

(1− γ)2
·
∥∥∥∥ 1

µ

∥∥∥∥
∞

∑
s

[
d
πθt
µ (s) · τ ·DKL(πθt(·|s)‖π∗τ (·|s))

]
=

1

1− γ
·
∥∥∥∥ 1

µ

∥∥∥∥
∞
·
[
Ṽ π
∗
τ (µ)− Ṽ πθt (µ)

]
, (92)

where the last equation is again by Lemma 15, and the first inequality is according to dπθtµ (s) ≥
(1− γ) · µ(s) (cf. Eq. (72)).

According to Lemma 9, using ∂Ṽ
πθt (µ)
∂θt

in Algorithm 1 with learning rate ηt(s) = η · ‖θt(s, ·)‖2p is

equivalent to using ∂Ṽ
π
θ̃t (µ)

∂θ̃t
in Algorithm 2 with learning rate η. We have, in Algorithm 2,∣∣∣∣∣Ṽ πζ̃t+1 (µ)− Ṽ πθ̃t (µ)−
〈∂Ṽ πθ̃t (µ)

∂θ̃t
, ζ̃t+1 − θ̃t

〉∣∣∣∣∣ ≤ 4 · p2 ·A2/p + cτ
(1− γ)3

· ‖ζ̃t+1 − θ̃t‖22
mins ‖θ̃t,ξ(s, ·)‖2p

,

(93)

where

θ̃t,ξ := θ̃t + ξ · (ζ̃t+1 − θ̃t)

= θ̃t + ξ · η · ∂Ṽ
πθ̃t (µ)

∂θ̃t
, (Algorithm 2)

for some ξ ∈ [0, 1]. Denote sξ := arg mins ‖θ̃t,ξ(s, ·)‖2p. We have,

‖θ̃t,ξ(sξ, ·)‖p ≥ ‖θ̃t(sξ, ·)‖p − ξ · η ·

∥∥∥∥∥∂Ṽ πθ̃t (µ)

∂θ̃t(sξ, ·)

∥∥∥∥∥
p

(by triangle inequality)

≥ min
s
‖θ̃t(s, ·)‖p − ξ · η ·

∥∥∥∥∥∂Ṽ πθ̃t (µ)

∂θ̃t(sξ, ·)

∥∥∥∥∥
p

. (94)

41

The `p gradient norm can be upper bounded as,

∥∥∥∥∥∂Ṽ πθ (µ)

∂θ(s, ·)

∥∥∥∥∥
p

=

[∑
a

∣∣∣∣ 1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
· Ãπθ (s, a)

∣∣∣∣p
] 1
p

(by Lemma 11)

≤ p

1− γ
·

[∑
a

∣∣∣∣πθ(a|s)θ(s, a)
· Ãπθ (s, a)

∣∣∣∣p
] 1
p

=
p

1− γ
· 1

‖θ(s, ·)‖p
·

[∑
a

(
πθ(a|s)1−1/p · |Ãπθ (s, a)|

)p] 1
p

≤ p

1− γ
· 1

‖θ(s, ·)‖p
·

[∑
a

(
1 · 1 + τ logA

1− γ

)p] 1
p

≤ p ·A1/p · (1 + τ logA)

(1− γ)2
·max

s

1

‖θ(s, ·)‖p
. (95)

Combining Eqs. (94) and (95), we have,

min
s
‖θ̃t,ξ(s, ·)‖p ≥ min

s
‖θ̃t(s, ·)‖p − ξ · η ·

p ·A1/p · (1 + τ logA)

(1− γ)2
· 1

mins ‖θ̃t(s, ·)‖p

= 1− ξ · η · p ·A
1/p · (1 + τ logA)

(1− γ)2

(
‖θ̃t(s, ·)‖p = 1, for all s, Algorithm 2

)
(96)

Note that η = (1−γ)3

10·p2·A2/p·(1+τ logA)
. We have,

min
s
‖θ̃t,ξ(s, ·)‖p ≥ 1− ξ · η · p ·A

1/p · (1 + τ logA)

(1− γ)2
(by Eq. (96))

= 1− ξ · (1− γ)3

10 · p2 ·A2/p
· p ·A

1/p

(1− γ)2

≥ 1− 1− γ
10 · p ·A1/p

=

(
1− 2√

5

)
·

(
1− 5 + 2

√
5

10
· 1− γ
p ·A1/p

)
+

2√
5

≥ 2√
5
.

(
p ≥ 2, A1/p ≥ 1, 1− γ ∈ (0, 1]

)
(97)

Combining Eqs. (93) and (97), we have,

∣∣∣∣∣Ṽ πζ̃t+1 (µ)− Ṽ πθ̃t (µ)−
〈∂Ṽ πθ̃t (µ)

∂θ̃t
, ζ̃t+1 − θ̃t

〉∣∣∣∣∣ ≤ 4 · p2 ·A2/p + cτ
(1− γ)3

· ‖ζ̃t+1 − θ̃t‖22
mins ‖θ̃t,ξ(s, ·)‖2p

≤ 4 · p2 ·A2/p + cτ
(1− γ)3

· 5

4
· ‖ζ̃t+1 − θ̃t‖22

=
5 · p2 ·A2/p + cτ

(1− γ)3
· ‖ζ̃t+1 − θ̃t‖22, (98)

42

which implies,

Ṽ πθ̃t (µ)− Ṽ πθ̃t+1 (µ) = Ṽ πθ̃t (µ)− Ṽ πζ̃t+1 (µ)

(
θ̃t+1(s, a) =

ζ̃t+1(s, a)

‖ζ̃t+1(s, ·)‖p
, Algorithm 2

)

≤ −
〈∂Ṽ πθ̃t (µ)

∂θ̃t
, ζ̃t+1 − θ̃t

〉
+

5 · p2 ·A2/p + cτ
(1− γ)3

· ‖ζ̃t+1 − θ̃t‖22 (by Eq. (98))

= −η ·

∥∥∥∥∥∂Ṽ πθ̃t (µ)

∂θ̃t

∥∥∥∥∥
2

2

+
5 · p2 ·A2/p + cτ

(1− γ)3
· η2 ·

∥∥∥∥∥∂Ṽ πθ̃t (µ)

∂θ̃t

∥∥∥∥∥
2

2

(
ζ̃t+1 = θ̃t + η · ∂Ṽ

πθ̃t (µ)

∂θ̃t
, Algorithm 2

)

= − (1− γ)3

20 · p2 ·A2/p + cτ
·

∥∥∥∥∥∂Ṽ πθ̃t (µ)

∂θ̃t

∥∥∥∥∥
2

2

(
η =

(1− γ)3

10 · p2 ·A2/p + cτ

)

≤ − (1− γ)3

20 · SSp2 ·A2/p + cτ
· 2τ

S
·min

s
µ(s) ·

SSp
2 ·mins,a πθ̃t(a|s)

2−2/p

maxs ‖θ̃t(s, ·)‖2p
·

∥∥∥∥∥ d
π∗τ
µ

d
πθ̃t
µ

∥∥∥∥∥
−1

∞

·
[
Ṽ π
∗
τ (µ)− Ṽ πθ̃t (µ)

]
(Lemma 12)

= − (1− γ)3 · τ
(10 ·A2/p + cτ) · S

·

∥∥∥∥∥ dπ
∗

µ

d
πθ̃t
µ

∥∥∥∥∥
−1

∞

·min
s,a

πθ̃t(a|s)
2−2/p ·

[
Ṽ π
∗
τ (µ)− Ṽ πθ̃t (µ)

] (
‖θ̃t(s, ·)‖p = 1, for all s

)

≤ − (1− γ)4 · τ
(10 ·A2/p + cτ) · S

·

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
−1

∞

·min
s,a

πθ̃t(a|s)
2−2/p ·

[
Ṽ π
∗
τ (µ)− Ṽ πθ̃t (µ)

]
, (by Eq. (72))

(99)

which implies,

Ṽ πθt (µ)− Ṽ πθt+1 (µ) = Ṽ πθ̃t (µ)− Ṽ πθ̃t+1 (µ) (by Lemma 9)

≤ − (1− γ)4 · τ
(10 ·A2/p + cτ) · S

·

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
−1

∞

·min
s,a

πθt(a|s)2−2/p ·
[
Ṽ π
∗
τ (µ)− Ṽ πθt (µ)

]
, (by Eq. (99) and Lemma 9)

≤ − (1− γ)4 · τ
(10 ·A2/p + cτ) · S

·

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
−1

∞

· c2−2/p ·
[
Ṽ π
∗
τ (µ)− Ṽ πθt (µ)

]
,

which is equivalent to,

Ṽ π
∗
τ (µ)− Ṽ πθt (µ) ≤

1− (1− γ)4 · τ
(10 ·A2/p + cτ) · S

·

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
−1

∞

· c2−2/p

 · [Ṽ π∗τ (µ)− Ṽ πθt−1 (µ)
]

≤ exp

− (1− γ)4 · τ
(10 ·A2/p + cτ) · S

·

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
−1

∞

· c2−2/p

 · [Ṽ π∗τ (µ)− Ṽ πθt−1 (µ)
]

≤ exp

− (1− γ)4 · τ
(10 ·A2/p + cτ) · S

·

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
−1

∞

· c2−2/p · (t− 1)

 · [Ṽ π∗τ (µ)− Ṽ πθ1 (µ)
]

≤ exp

− (1− γ)4 · τ
(10 ·A2/p + cτ) · S

·

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
−1

∞

· c2−2/p · (t− 1)

 · 1 + τ logA

1− γ
,

which leads to the final result,

Ṽ π
∗
τ (ρ)− Ṽ πθt (ρ) ≤ 1

1− γ
·
∥∥∥∥ 1

µ

∥∥∥∥
∞
·
[
Ṽ π
∗
τ (µ)− Ṽ πθt (µ)

]
(by Eq. (92))

≤
∥∥∥∥ 1

µ

∥∥∥∥
∞
· exp

− (1− γ)4 · τ
(10 ·A2/p + cτ) · S

·

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
−1

∞

· c′2 · (t− 1)

 · 1 + τ logA

(1− γ)2
,

where c′ = c1−1/p ≥ c = inf(s,a) inft πθt(a|s) > 0.

43

Lemma 15 (Soft sub-optimality lemma [14]). For any policy π,

Ṽ π
∗
τ (ρ)− Ṽ π(ρ) =

1

1− γ
∑
s

[
dπρ (s) · τ ·DKL(π(·|s)‖π∗τ (·|s))

]
.

Proof. See the proof in [14, Lemma 26].

D Proofs for Section 5 (Escort Cross Entropy)

Lemma 16 (Non-uniform smoothness). Let πθ := fp(θ), and πθ′ := fp(θ
′). Denote θξ := θ + ξ ·

(θ′ − θ) with some ξ ∈ [0, 1]. Then for p = 2, we have DKL(y‖πθ) is β-smooth, i.e.,∣∣∣∣DKL(y‖πθ′)−DKL(y‖πθ)−
〈d{DKL(y‖πθ)}

dθ
, θ′ − θ

〉∣∣∣∣ ≤ β

2
· ‖θ′ − θ‖22,

with β = 6
‖θξ‖2p

+ 2 ·
(

maxi
y(i)
θ(i)2

)
.

Proof. The gradient of DKL(y‖πθ) w.r.t. θ is

d{DKL(y‖πθ)}
dθ

=
d{−y> log πθ}

dθ

=

(
dπθ
dθ

)>(
d{−y> log πθ}

dπθ

)
= p · diag

(
1

θ

)(
diag(πθ)− πθπ>θ

)
diag

(
1

πθ

)
(−y)

= p · diag
(

1

θ

)
(πθ − y).

Denote the second derivative w.r.t. θ (i.e., Hessian) as

K(y, θ) =
d

dθ

{
d{DKL(y‖πθ)}

dθ

}
= p · d

dθ

{
diag

(
1

θ

)
(πθ − y)

}
.

We have K(y, θ) ∈ RK×K , whose element at position (i, j) ∈ [K]2 is

Ki,j = p ·
d{πθ(i)−y(i)

θ(i) }
dθ(j)

= p ·
p
θ(j) · [δijπθ(j)− πθ(i)πθ(j)] · θ(i)− (πθ(i)− y(i)) · δij

θ(i)2

= p · (p− 1) · δij ·
πθ(i)

θ(i)2
− p2 · πθ(i)

θ(i)
· πθ(j)
θ(j)

+ δij · p ·
y(i)

θ(i)2
,

where the δ notation is defined in Eq. (23). For any x ∈ RK ,

∣∣x>K(y, θ)x
∣∣ =

∣∣∣∣∣∣
K∑
i=1

K∑
j=1

Ki,jx(i)x(j)

∣∣∣∣∣∣
=

∣∣∣∣∣∣p · (p− 1)
∑
i

πθ(i)

θ(i)2
· x(i)2 − p2

∑
i

πθ(i)

θ(i)
· x(i)

∑
j

πθ(j)

θ(j)
· x(j) + p

∑
i

y(i)

θ(i)2
· x(i)2

∣∣∣∣∣∣
≤ p · (p− 1) ·

[∑
i

πθ(i)

θ(i)2
· x(i)2

]
+ p2 ·

[∑
i

πθ(i)

θ(i)
· x(i)

]2

+ p
∑
i

y(i)

θ(i)2
· x(i)2, (100)

44

where the last inequality is by triangle inequality. The first term is upper bounded as,

∑
i

πθ(i)

θ(i)2
· x(i)2 =

1

‖θ‖2p

∑
i

πθ(i)
1−2/p · x(i)2

≤ 1

‖θ‖2p

∑
i

1 · x(i)2 (p = 2)

=
1

‖θ‖2p
· ‖x‖22. (101)

The second term is upper bounded as,

[∑
i

πθ(i)

θ(i)
· x(i)

]2

≤
∑
i

(
πθ(i)

θ(i)

)2

· ‖x‖22 (by Cauchy-Schwarz)

=
1

‖θ‖2p
·
∑
i

(
πθ(i)

1−1/p
)2

· ‖x‖22

≤ 1

‖θ‖2p
·

[∑
i

πθ(i)

]
· ‖x‖22 (p = 2)

=
1

‖θ‖2p
· ‖x‖22. (102)

The last term is upper bounded as,

∑
i

y(i)

θ(i)2
· x(i)2 ≤

(
max
i

y(i)

θ(i)2

)
· ‖x‖22. (103)

Combining Eqs. (100) to (103), for p = 2, for any x ∈ RK , we have,

∣∣x>K(y, θ)x
∣∣ ≤ p · (p− 1) · 1

‖θ‖2p
· ‖x‖22 + p2 · 1

‖θ‖2p
· ‖x‖22 + p ·

∥∥∥∥ y

θ � θ

∥∥∥∥
∞
· ‖x‖22

=
6

‖θ‖2p
· ‖x‖22 + 2 ·

(
max
i

y(i)

θ(i)2

)
· ‖x‖22.

According to Taylor’s theorem, we have,

∣∣∣∣DKL(y‖πθ′)−DKL(y‖πθ)−
〈d{DKL(y‖πθ)}

dθ
, θ′ − θ

〉∣∣∣∣ =
1

2
·
∣∣∣(θ′ − θ)>K(y, θξ) (θ′ − θ)

∣∣∣
≤
[

3

‖θξ‖2p
+ max

i

y(i)

θξ(i)2

]
· ‖θ′ − θ‖22.

Lemma 17 (Non-uniform Łojasiewicz). Let πθ = fp(θ). For any p ≥ 2, we have,

∥∥∥∥d{DKL(y‖πθ)}
dθ

∥∥∥∥2

2

≥ p2

‖θ‖2p
·min

a
πθ(a)

1−2/p ·DKL(y‖πθ).

45

Proof. According to the definition of KL-divergence, we have,

DKL(y‖πθ) =
∑
a

y(a) · log

(
y(a)

πθ(a)

)
≤
∑
a

y(a) ·
(
y(a)

πθ(a)
− 1

)
(log x ≤ x− 1)

=
∑
a

(y(a)− πθ(a) + πθ(a)) · y(a)− πθ(a)

πθ(a)

=
∑
a

(y(a)− πθ(a))
2

πθ(a)

=
∑
a

(y(a)− πθ(a))
2

πθ(a)2/p
· 1

πθ(a)1−2/p

=
∑
a

(y(a)− πθ(a))
2

θ(a)2
· ‖θ‖2p ·

1

πθ(a)1−2/p

(
πθ(a) =

|θ(a)|p∑
a′ |θ(a′)|p

)

≤ ‖θ‖2p ·
1

mina πθ(a)
1−2/p

·
∑
a

(y(a)− πθ(a))
2

θ(a)2

= ‖θ‖2p ·
1

mina πθ(a)1−2/p
· 1

p2
·
∥∥∥∥p · diag

(
1

θ

)
(y − πθ)

∥∥∥∥2

2

.

The proof is completed with the observation that
d{DKL(y‖πθ)}

dθ
= p · diag

(
1

θ

)
(πθ − y).

Theorem 5. Using the escort transform on the cross entropy objective, we have, for all t ≥ 1,

• (gradient flow) for p = 2, with ηt =
‖θt‖2p
p2 ,

DKL(y‖πθt) ≤ DKL(y‖πθ1) · e−(t−1);

• (gradient descent) for p = 2, with ηt =
‖θt‖2p

4·(3+c21)
,

DKL(y‖πθt) ≤ DKL(y‖πθ1) · exp
{
− (t− 1)

2 · (3 + c21)

}
,

where 1
c21

=
|θ1(ay)|2
‖θ1‖22

= πθ1(ay) ∈ (0, 1] only depends on initialization.

Proof. First part. For the gradient flow, we have the following update,
dθt
dt

= −ηt ·
d{DKL(y‖πθt)}

dθt
. (104)

Then we have,

d{DKL(y‖πθt)}
dt

=

(
dθt
dt

)>(
d{DKL(y‖πθt)}

dθt

)
= −ηt ·

∥∥∥∥d{DKL(y‖πθt)}
dθt

∥∥∥∥2

2

(by Eq. (104))

≤ −ηt ·
p2

‖θt‖2p
·min

a
πθt(a)

1−2/p ·DKL(y‖πθt) (by Lemma 17)

= −min
a
πθt(a)

1−2/p ·DKL(y‖πθt)

(
ηt =

‖θt‖2p
p2

)
= −DKL(y‖πθt), (p = 2)

46

which implies,

d {logDKL(y‖πθt)}
dt

=
1

DKL(y‖πθt)
· d{DKL(y‖πθt)}

dt
≤ −1.

Taking integral, we have,

logDKL(y‖πθt)− logDKL(y‖πθ1) ≤ −(t− 1),

which is equivalent to

DKL(y‖πθt) ≤ DKL(y‖πθ1) · e−(t−1).

Second part. For the gradient descent, according to Lemma 16, we have,

DKL(y‖πθt+1
)−DKL(y‖πθt)−

〈d{DKL(y‖πθt)}
dθt

, θt+1 − θt
〉
≤ β

2
· ‖θt+1 − θt‖22, (105)

where

β =
6

‖θt,ξ‖2p
+ 2 ·

(
max
i

y(i)

θt,ξ(i)2

)
=

6

‖θt,ξ‖2p
+

2

θt,ξ(ay)2
, (y is one-hot) (106)

and

θt,ξ := θt + ξ · (θt+1 − θt) = θt − ξ · ηt ·
d{DKL(y‖πθt)}

dθt
. (107)

The `p gradient norm is upper bounded as,∥∥∥∥d{DKL(y‖πθt)}
dθt

∥∥∥∥
p

=

[∑
a

∣∣∣∣πθt(a)− y(a)

θt(a)

∣∣∣∣p
] 1
p

=

∑
a 6=ay

∣∣∣∣πθt(a)

θt(a)

∣∣∣∣p +

∣∣∣∣πθt(ay)− 1

θt(ay)

∣∣∣∣p
 1
p

(y(ay) = 1)

≤

∑
a 6=ay

∣∣∣∣πθt(a)

θt(a)

∣∣∣∣p +
1

|θt(ay)|p

 1
p

(πθt(ay) ∈ (0, 1])

=

 1

‖θt‖pp

∑
a6=ay

πθt(a)p−1 +
1

|θt(ay)|p

 1
p

≤
[

1

‖θt‖pp
+

1

|θt(ay)|p

] 1
p

(p = 2)

≤ 1

‖θt‖p
+

1

|θt(ay)|
(√
x+ y ≤

√
x+
√
y
)

(108)

Next, we have,

θt+1(ay) = θt(ay)− ηt ·
p

θt(ay)
· (πθt(ay)− 1)

{
≥ θt(ay), if θt(ay) > 0,

≤ θt(ay), if θt(ay) < 0.

Therefore we have |θt+1(ay)| ≥ |θt(ay)|. On the other hand, for all a 6= ay , we have,

θt+1(a) = θt(a)− ηt ·
p

θt(a)
· πθt(a)

{
≤ θt(ay), if θt(ay) > 0,

≥ θt(ay), if θt(ay) < 0.

47

Therefore we have for all a 6= ay , |θt+1(a)| ≤ |θt(a)|. Denote 1
c1

=
|θ1(ay)|
‖θ1‖p . We have, for all t ≥ 1,

|θt(ay)|
‖θt‖p

=
|θt(ay)|

(
∑
a |θt(a)|p)1/p

≥ |θt(ay)|(∑
a6=ay |θ1(a)|p + |θt(ay)|p

)1/p

≥ |θ1(ay)|(∑
a6=ay |θ1(a)|p + |θ1(ay)|p

)1/p

=
|θ1(ay)|
‖θ1‖p

=
1

c1
. (109)

Combining Eqs. (108) and (109), we have,∥∥∥∥d{DKL(y‖πθt)}
dθt

∥∥∥∥
p

≤ 1

‖θt‖p
+

1

|θt(ay)|
≤ 1

‖θt‖p
· (1 + c1) . (110)

Then we have,

‖θt,ξ‖p =

∥∥∥∥θt − ξ · ηt · d{DKL(y‖πθt)}
dθt

∥∥∥∥
p

(by Eq. (107))

≥ ‖θt‖p − ξ · ηt ·
∥∥∥∥d{DKL(y‖πθt)}

dθt

∥∥∥∥
p

(by triangle inequality)

≥ ‖θt‖p − ξ · ηt ·
1

‖θt‖p
· (1 + c1) . (by Eq. (110))

= ‖θt‖p ·
[
1− ξ · 1 + c1

4 · (3 + c21)

] (
ηt =

‖θt‖2p
4 · (3 + c21)

)

≥ ‖θt‖p ·
[
1− 1 + c1

4 · (3 + c21)

]
(ξ ∈ [0, 1])

= ‖θt‖p ·

[(
1− 1√

2

)
·

(
1−
√

2 + 1

2
√

2
· 1 + c1

3 + c21

)
+

1√
2

]

≥ ‖θt‖p√
2

(1/c1 ∈ (0, 1], c1 ≥ 1) (111)

Similar to Eq. (109), we have,

β =
6

‖θt,ξ‖2p
+

2

θt,ξ(ay)2
(by Eq. (106))

≤ 1

‖θt,ξ‖2p
·
(
6 + 2 · c21

)
. (112)

Combining the results, we have,

DKL(y‖πθt+1)−DKL(y‖πθt)−
〈d{DKL(y‖πθt)}

dθt
, θt+1 − θt

〉
≤ 1

2
· 1

‖θt,ξ‖2p
·
(
6 + 2 · c21

)
· ‖θt+1 − θt‖22 (by Eqs. (105) and (112))

≤ 2

‖θt‖2p
·
(
3 + c21

)
· ‖θt+1 − θt‖22, (by Eq. (111))

48

which implies (using the update θt+1 = θt − ηt ·
d{DKL(y‖πθt)}

dθt
),

DKL(y‖πθt+1
)−DKL(y‖πθt) ≤ −ηt ·

∥∥∥∥d{DKL(y‖πθt)}
dθt

∥∥∥∥2

2

+
2 ·
(
3 + c21

)
‖θt‖2p

· η2
t ·
∥∥∥∥d{DKL(y‖πθt)}

dθt

∥∥∥∥2

2

= −
‖θt‖2p

8 · (3 + c21)
·
∥∥∥∥d{DKL(y‖πθt)}

dθt

∥∥∥∥2

2

(
ηt =

‖θt‖2p
4 · (3 + c21)

)

≤ −
HHH‖θt‖2p

8 · (3 + c21)
· p2

HHH‖θt‖2p
·min

a
πθt(a)

1−2/p ·DKL(y‖πθt) (by Lemma 17)

= − 1

2 · (3 + c21)
·DKL(y‖πθt), (p = 2)

which is equivalent to,

DKL(y‖πθt) ≤
[
1− 1

2 · (3 + c21)

]
·DKL(y‖πθt−1

)

≤ DKL(y‖πθt−1
) · exp

{
− 1

2 · (3 + c21)

}
≤ DKL(y‖πθ1) · exp

{
− (t− 1)

2 · (3 + c21)

}
,

where 1
c21

=
|θ1(ay)|2
‖θ1‖22

= πθ1(ay) ∈ (0, 1].

E Experimental Details and Additional Experiments

For the one-state MDPs, for each value of K ∈ {10, 50, 100}, the policy is parameterized by θ ∈ RK .
For SPG, πθ = softmax(θ), and for EPG πθ = fp(θ). The total number of runs for each algorithm
under each K value is 20. In each run, we randomly generate the reward r ∈ [0, 1]K , and then
randomly initialize πθ1 within the (K − 1)-dimensional probability simplex. SPG and EPG start
from the same initial policy πθ1 . The total number of iterations is T = 5 × 104. Fig. 5 shows the
results of SPG and EPG with p = 2. The learning rate of SPG is set to be η = 0.4 [14]. The learning
rate of EPG is ηt = 0.2 · ‖θt‖2p (Theorem 2).

Additional experiments Fig. 7(a)-(c) show the results of EPG for p ∈ {2, 3, 4, 5} in one-state
MDPs, where each curve is the averaged result of 20 runs.

For the Four-room environment, the policy is πθ = softmax(θ) for SPG, and πθ = fp(θ) for
EPG, and θ is the output of one hidden layer neural network with ReLU activation function and
64 hidden nodes. Fig. 5 shows the results of SPG and EPG with p = 2. The optimal value
function V ∗ is approximately calculated using value iteration with threshold of two consecutive
iterations ‖Vt − Vt+1‖22 ≤ 1× 10−10. In each iteration, the true objective is used by calculating the
stationary distribution dπθt and the state-action value Qπθt . We use Adam optimizer [10] and the
total number of iterations is 500. The total number of runs for each algorithm is 20. The p value
for EPG is searched within {1, 2, 3, 4, 5}. The learning rates for SPG and EPG are searched within
{0.001, 0.005, 0.01, 0.05, 0.1, 0.5} and 0.01 is used for both SPG and EPG.

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Figure 7: Results of EPG with different p values on one-state MDPs and Four-room.

49

Additional experiments Fig. 7(d) shows the results of EPG with p ∈ {1, 2, 3, 4, 5} on Four-room
environment, where each curve is the averaged result of 20 runs.

For the MNIST dataset, the policy is πθ = softmax(θ) for SPG and SCE, and πθ = fp(θ) for EPG
and ECE, where θ is the output of one hidden layer neural network with ReLU activation function and
512 hidden nodes. We use SGD with momentum 0.9 and the total number of epochs is 100. The total
number of runs for each algorithm is 20. Fig. 6(a) and (b) show the results of SPG and EPG with p = 4.
The learning rates for SPG and EPG are searched within {0.001, 0.005, 0.01, 0.05, 0.1, 0.5} and 0.05
is used for both SPG and EPG. The batchsize is searched within {10, 20, 50, 100, 200, 500}, and 20
is used for for SPG and 50 is used for EPG. The p value for EPG is searched within {1, 2, 3, 4, 5}.
Fig. 6(c) and (d) show the results of SCE and ECE with p = 2. The learning rate and batchsized are
searched within the same range as above, and we use the learning rate 0.01, and the batchsize 20 for
both SCE and ECE.

Additional experiments Fig. 8 shows the results of EPG with p ∈ {2, 3, 4, 5} on MNIST, where
each curve is the averaged result of 10 runs. The best result in terms of the test error is with p = 5.

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100
150

200

250

300

350

400

450

500

550

Figure 8: Results of EPG with different p values on MNIST.

E.1 Failure of SPG Heuristics

According to Theorem 1, the SGW results from the SPG progresses being upper bounded by the
small probabilities of the optimal action. Therefore, one may wonder if some simple heuristics would
fix the SGW problem. We consider the following two natural heuristics.

0 2000 4000 6000 8000 10000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

105
0 2 4 6 8 10

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

105
0 2 4 6 8 10

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 9: Sub-optimality results (π∗ − πθt)
>
r on a single-state MDP with K = 50.

SPG-L: Large learning rate Since the progress in each iteration of SPG is upper bounded by the
order of πθt(a

∗), we could possibly use a large learning rate such as ηt = 0.4/πθt(a
∗) in SPG to

compensate the slow progress around SGWs.

We run the SPG-L update on a constructed bandit problem with K = 50. Unfortunately, as shown in
Fig. 9(b), after about 1× 106 iterations, SPG-L still gets stuck on a sub-optimal plateau.

The intuitive explanation for the failure of SPG-L is that learning rate should be small enough
to guarantee monotonic improvement [1, 14] for smooth functions, which means SPG with large
(unbounded) learning rate is not even guaranteed to be asymptotically convergent.

SPG-N: Normalized policy gradient Another heuristic is to update using normalized policy
gradient. The intuition is that since the progress is upper bounded by the original SPG norm, which
has small scale, we could hope the normalized gradient would provide nicer progress. In particular,
we normalize the policy gradient by dividing its `2 norm, and then do update with η = 0.4.

We run the SPG-N update on the same problem as shown in Fig. 9(c), and it also failed. We do not
have rigorous explanations for the failure of SPG-N. A speculation is that after `2 normalization, the

50

normalized policy gradient still has small scale, since it is not necessary that the policy gradient norm
is on the same scale as πθt , which is the quantity that needs to be canceled.

EPG As shown in Fig. 9(a), EPG with p = 2 does not suffer from the plateau and works well.

E.2 Comparing SPG, EPG, and MD

As noted in Remark 3, EPG cannot be reduced to MD with any regularizer. Also as shown in Fig. 3(b),
EPG and MD with KL regularization behave similarly in the 3-action case. We conduct experiments
on bandit problems with K = 50, 100, 500 actions to compare EPG with MD. In each iteration, all
the algorithms use the same stochastic gradient to do updates. Each curve is averaged over 20 runs.

0 1000 2000 3000 4000 5000
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1000 2000 3000 4000 5000
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1000 2000 3000 4000 5000
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 10: Sub-optimality results (π∗ − πθt)
>
r on single-state MDPs using stochastic gradients.

As shown in Fig. 10, EPG and MD with KL regularization have comparable performances, signifi-
cantly outperforming SPG. However, EPG in its nature is a policy gradient method, which has cheap
update in each iteration, while MD needs to solve an optimization problem to do one update.

51

	Introduction
	Illustrating the Softmax Gravity Wells with Softmax Policy Gradient
	Escort Transform for Policy Gradient
	Non-uniform Łojasiewicz Coefficient: An Underlying Explanation
	Escort Transform for Cross Entropy
	Experimental Results
	Conclusion and Future Work
	Policy Gradient Method
	Proofs for sec:softmaxgravitywellphenomenon (Softmax Gravity Well)
	Proofs for sec:escorttransformpolicygradient (Escort Policy Gradient)
	Escort Policy Gradient Closed Form in Bandits
	One-state MDPs
	General MDPs
	An equivalent algorithm

	Entropy Regularized MDPs

	Proofs for sec:escorttransformcrossentropy (Escort Cross Entropy)
	Experimental Details and Additional Experiments
	Failure of SPG Heuristics
	Comparing SPG, EPG, and MD

