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Abstract

Exponential families are widely used in machine learning; they include many
distributions in continuous and discrete domains (e.g., Gaussian, Dirichlet, Poisson,
and categorical distributions via the softmax transformation). Distributions in
each of these families have fixed support. In contrast, for finite domains, there
has been recent work on sparse alternatives to softmax (e.g. sparsemax and α-
entmax), which have varying support, being able to assign zero probability to
irrelevant categories. This paper expands that work in two directions: first, we
extend α-entmax to continuous domains, revealing a link with Tsallis statistics and
deformed exponential families. Second, we introduce continuous-domain attention
mechanisms, deriving efficient gradient backpropagation algorithms for α ∈ {1, 2}.
Experiments on attention-based text classification, machine translation, and visual
question answering illustrate the use of continuous attention in 1D and 2D, showing
that it allows attending to time intervals and compact regions.

1 Introduction

Exponential families are ubiquitous in statistics and machine learning [1, 2]. They enjoy many useful
properties, such as the existence of conjugate priors (crucial in Bayesian inference) and the classical
Pitman-Koopman-Darmois theorem [3–5], which states that, among families with fixed support
(independent of the parameters), exponential families are the only having sufficient statistics of fixed
dimension for any number of i.i.d. samples.

Departing from exponential families, there has been recent work on discrete, finite-domain distribu-
tions with varying and sparse support, via the sparsemax and the entmax transformations [6–8].
Those approaches drop the link to exponential families of categorical distributions provided by the
softmax transformation, which always yields dense probability mass functions. In contrast, sparsemax
and entmax can lead to sparse distributions, whose support is not constant throughout the family. This
property has been used to design sparse attention mechanisms with improved interpretability [8, 9].

However, sparsemax and entmax are so far limited to discrete domains. Can a similar approach be
extended to continuous domains? This paper provides that extension and pinpoints a connection with
“deformed exponential families” [10–12] and Tsallis statistics [13], leading to α-sparse families (§2).
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Figure 1: 1D and 2D distributions generated by the Ωα-RPM for α ∈ {1, 2}. Left: Univariate
location-scale families, including Gaussian and truncated parabola (top) and Laplace and triangular
(bottom). Middle and right: Bivariate Gaussian N (t; 0, I) and truncated paraboloid TP(t; 0, I).

We use this construction to obtain new density families with varying support, including the truncated
parabola and paraboloid distributions (2-sparse counterpart of the Gaussian, §2.4 and Fig. 1).

Softmax and its variants are widely used in attention mechanisms, an important component of neural
networks [14]. Attention-based neural networks can “attend” to finite sets of objects and identify
relevant features. We use our extension above to devise new continuous attention mechanisms
(§3), which can attend to continuous data streams and to domains that are inherently continuous,
such as images. Unlike traditional attention mechanisms, ours are suitable for selecting compact
regions, such as 1D-segments or 2D-ellipses. We show that the Jacobian of these transformations are
generalized covariances, and we use this fact to obtain efficient backpropagation algorithms (§3.2).

As a proof of concept, we apply our models with continuous attention to text classification, machine
translation, and visual question answering tasks, with encouraging results (§4).

Notation. Let (S,A, ν) be a measure space, where S is a set, A is a σ-algebra, and ν is a measure.
We denote byM1

+(S) the set of ν-absolutely continuous probability measures. From the Radon-
Nikodym theorem [15, §31], each element ofM1

+(S) is identified (up to equivalence within measure
zero) with a probability density function p : S → R+, with

∫
S
p(t) dν(t) = 1. For convenience, we

often drop dν(t) from the integral. We denote the measure of A ∈ A as |A| = ν(A) =
∫
A

1, and the
support of a density p ∈ M1

+(S) as supp(p) = {t ∈ S | p(t) > 0}. Given φ : S → Rm, we write
expectations as Ep[φ(t)] :=

∫
S
p(t)φ(t). Finally, we define [a]+ := max{a, 0}.

2 Sparse Families

In this section, we provide background on exponential families and its generalization through Tsallis
statistics. We link these concepts, studied in statistical physics, to sparse alternatives to softmax
recently proposed in the machine learning literature [6, 8], extending the latter to continuous domains.

2.1 Regularized prediction maps (Ω-RPM)

Our starting point is the notion of Ω-regularized prediction maps, introduced by Blondel et al. [7]
for finite domains S. This is a general framework for mapping vectors in R|S| (e.g., label scores
computed by a neural network) into probability vectors in 4|S| (the simplex), with a regularizer
Ω encouraging uniform distributions. Particular choices of Ω recover argmax, softmax [16], and
sparsemax [6]. Our definition below extends this framework to arbitrary measure spacesM1

+(S),
where we assume Ω :M1

+(S)→ R is a lower semi-continuous, proper, and strictly convex function.

Definition 1. The Ω-regularized prediction map (Ω-RPM) p̂Ω : F →M1
+(S) is defined as

p̂Ω[f ] = arg max
p∈M1

+(S)

Ep[f(t)]− Ω(p), (1)

where F is the set of functions for which the maximizer above exists and is unique.
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It is often convenient to consider a “temperature parameter” τ > 0, absorbed into Ω via Ω := τ Ω̃. If
f has a unique global maximizer t?, the low-temperature limit yields limτ→0 p̂τΩ̃[f ] = δt? , a Dirac
delta distribution at the maximizer of f . For finite S, this is the argmax transformation shown in [7].
Other interesting examples of regularization functionals are shown in the next subsections.

2.2 Shannon’s negentropy and exponential families

A natural choice of regularizer is the Shannon’s negentropy, Ω(p) =
∫
S
p(t) log p(t). In this case, if

we interpret −f(t) as an energy function, the Ω-RPM corresponds to the well-known free energy
variational principle, leading to Boltzmann-Gibbs distributions ([17]; see App. A):

p̂Ω[f ](t) =
exp(f(t))∫

S
exp(f(t′))dν(t′)

= exp
(
f(t)−A(f)

)
, (2)

where A(f) := log
∫
S

exp(f(t)) is the log-partition function. If S is finite and ν is the counting
measure, the integral in (2) is a summation and we can write f as a vector [f1, . . . , f|S|] ∈ R|S|. In
this case, the Ω-RPM is the softmax transformation,

p̂Ω[f ] = softmax(f) = exp(f)∑|S|
k=1 exp(fk)

∈ 4|S|. (3)

If S = RN , ν is the Lebesgue measure, and f(t) = −1/2(t−µ)>Σ−1(t−µ) for µ ∈ RN and Σ � 0
(i.e., Σ is a positive definite matrix), we obtain a multivariate Gaussian, p̂Ω[f ](t) = N (t;µ,Σ). This
becomes a univariate Gaussian N (t;µ, σ2) if N = 1. For S = R and defining f(t) = −|t− µ|/b,
with µ ∈ R and b > 0, we get a Laplace density, p̂Ω[f ](t) = 1

2b exp (−|t− µ|/b).

Exponential families. Let fθ(t) = θ>φ(t), where φ(t) ∈ RM is a vector of statistics and θ ∈ Θ ⊆
RM is a vector of canonical parameters. A family of the form (2) parametrized by θ ∈ Θ ⊆ RM
is called an exponential family [2]. Exponential families have many appealing properties, such as
the existence of conjugate priors and sufficient statistics, and a dually flat geometric structure [18].
Many well-known distributions are exponential families, including the categorical and Gaussian
distributions above, and Laplace distributions with a fixed µ. A key property of exponential families
is that the support is constant within the same family and dictated by the base measure ν: this follows
immediately from the positiveness of the exp function in (2). We abandon this property in the sequel.

2.3 Tsallis’ entropies and α-sparse families

Motivated by applications in statistical physics, Tsallis [13] proposed a generalization of Shannon’s
negentropy. This generalization is rooted on the notions of β-logarithm, logβ : R≥0 → R (not to be
confused with base-β logarithm), and β-exponential, expβ : R→ R:

logβ(u) :=

{
u1−β−1

1−β , β 6= 1
log u, β = 1;

expβ(u) :=

{
[1 + (1− β)u]

1/(1−β)
+ , β 6= 1

expu, β = 1.
(4)

Note that limβ→1 logβ(u) = log u, limβ→1 expβ(u) = expu, and logβ(expβ(u)) = u for any β.
Another important concept is that of “β-escort distribution” [13]: this is the distribution p̃β given by

p̃β(t) :=
p(t)β

‖p‖ββ
, where ‖p‖ββ =

∫
S

p(t′)βdν(t′). (5)

Note that we have p̃1(t) = p(t).

The α-Tsallis negentropy [19, 13] is defined as:1

Ωα(p) := 1
αEp[log2−α(p(t))] =

{
1

α(α−1)

(∫
S
p(t)α − 1

)
, α 6= 1,∫

S
p(t) log p(t), α = 1.

(6)

Note that limα→1 Ωα(p) = Ω1(p), for any p ∈ M1
+(S), with Ω1(p) recovering Shannon’s negen-

tropy (proof in App. B). Another notable case is Ω2(p) = 1/2
∫
S
p(t)2 − 1/2, the negative of which is

called the Gini-Simpson index [20, 21]. We come back to the α = 2 case in §2.4.
1This entropy is normally defined up to a constant, often presented without the 1

α
factor. We use the same

definition as Blondel et al. [7, §4.3] for convenience.
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For α > 0, Ωα is strictly convex, hence it can be plugged in as the regularizer in Def. 1. The next
proposition ([10]; proof in App. B) provides an expression for Ωα-RPM using the β-exponential (4):

Proposition 1. For α > 0 and f ∈ F ,

p̂Ωα [f ](t) = exp2−α(f(t)−Aα(f)), (7)

where Aα : F → R is a normalizing function: Aα(f) =
1

1−α+
∫
S
pθ(t)2−αf(t)∫

S
pθ(t)2−α − 1

1−α .

Let us contrast (7) with Boltzmann-Gibbs distributions (2), recovered with α = 1. One key thing to
note is that the (2− α)-exponential, for α > 1, can return zero values. Therefore, the distribution
p̂Ωα [f ] in (7) may not have full support, i.e., we may have supp(p̂Ωα [f ]) ( S. We say that p̂Ωα [f ]
has sparse support if ν(S \ supp(p̂Ωα [f ])) > 0.2 This generalizes the notion of sparse vectors.

Relation to sparsemax and entmax. Blondel et al. [7] showed that, for finite S, Ω2-RPM is the
sparsemax transformation, p̂Ω[f ] = sparsemax(f) = arg minp∈4|S| ‖p − f‖2. Other values of
α were studied by Peters et al. [8], under the name α-entmax transformation. For α > 1, these
transformations have a propensity for returning sparse distributions, where several entries have zero
probability. Proposition 1 shows that similar properties can be obtained when S is continuous.

Deformed exponential families. With a linear parametrization fθ(t) = θ>φ(t), distributions with
the form (7) are called deformed exponential or q-exponential families [10–12, 24]. The geometry of
these families induced by the Tsallis q-entropy was studied by Amari [18, §4.3].3 Unlike those prior
works, we are interested in the sparse, light tail scenario (α > 1), not in heavy tails. For α > 1, we
call these α-sparse families. When α→ 1, α-sparse families become exponential families and they
cease to be “sparse”, in the sense that all distributions in the same family have the same support.

A relevant problem is that of characterizing Aα(θ). When α = 1, A1(θ) = limα→1Aα(θ) =
log
∫
S

exp(θ>φ(t)) is the log-partition function (see (2)), and its first and higher order derivatives
are equal to the moments of the sufficient statistics. The following proposition (stated as Amari and
Ohara [25, Theorem 5], and proved in our App. D) characterizes Aα(θ) for α 6= 1 in terms of an
expectation under the β-escort distribution for β = 2 − α (see (5)). This proposition will be used
later to derive the Jacobian of entmax attention mechanisms.

Proposition 2. Aα(θ) is a convex function and its gradient is given by

∇θAα(θ) = Ep̃2−α
θ

[φ(t)] =

∫
S
pθ(t)

2−αφ(t)∫
S
pθ(t)2−α . (8)

2.4 The 2-Tsallis entropy: sparsemax

In this paper, we focus on the case α = 2. For finite S, this corresponds to the sparsemax transfo-
mation proposed by Martins and Astudillo [6], which has appealing theoretical and computational
properties. In the general case, plugging α = 2 in (7) leads to the Ω2-RPM,

p̂Ω2 [f ](t) = [f(t)− λ]+, where λ = A2(f)− 1, (9)

i.e., p̂Ω2 [f ] is obtained from f by subtracting a constant (which may be negative) and truncating,
where that constant λ must be such that

∫
S

[f(t)− λ]+ = 1.

If S is continuous and ν the Lebesgue measure, we call Ω2-RPM the continuous sparsemax
transformation. Examples follow, some of which correspond to novel distributions.

2This should not be confused with sparsity-inducing distributions [22, 23].
3Unfortunately, the literature is inconsistent in defining these coefficients. Our α matches that of Blondel

et al. [7]; Tsallis’ q equals 2 − α; this family is also related to Amari’s α-divergences, but their α = 2q − 1.
Inconsistent definitions have also been proposed for q-exponential families regarding how they are normalized;
for example, the Tsallis maxent principle leads to a different definition. See App. C for a detailed discussion.
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Truncated parabola. If f(t) = − (t−µ)2

2σ2 , we obtain the continuous sparsemax counterpart of a
Gaussian, which we dub a “truncated parabola”:

p̂Ω2
[f ](t) =

[
− (t−µ)2

2σ2 − λ
]

+
=: TP(t;µ, σ2), (10)

where λ = − 1
2

(
3/(2σ)

)2/3
(see App. E.1). This function, depicted in Fig. 1 (top left), is widely

used in density estimation. For µ = 0 and σ =
√

2/3, it is known as the Epanechnikov kernel [26].

Truncated paraboloid. The previous example can be generalized to S = RN , with f(t) =
− 1

2 (t−µ)>Σ−1(t−µ), where Σ � 0, leading to a “multivariate truncated paraboloid,” the sparsemax
counterpart of the multivariate Gaussian (see middle and rightmost plots in Fig. 1):

p̂Ω2
[f ](t) =

[
−λ− 1

2 (t−µ)Σ−1(t−µ)
]
+
, where λ = −

(
Γ
(
N
2 + 2

)
/
√

det(2πΣ)
) 2

2+N

. (11)

The expression above, derived in App. E.2, reduces to (10) for N = 1. Notice that (unlike in the
Gaussian case) a diagonal Σ does not lead to a product of independent truncated parabolas.

Triangular. Setting f(t) = −|t− µ|/b, with b > 0, yields the triangular distribution

p̂Ω2
[f ](t) =

[
−λ− |t−µ|b

]
+

=: Tri(t;µ, b), (12)

where λ=−1/
√
b (see App. E.3). Fig. 1 (bottom left) depicts this distribution alongside Laplace.

Location-scale families. More generally, let fµ,σ(t) := − 1
σ g
′(|t−µ|/σ) for a location µ ∈ R and

a scale σ > 0, where g : R+ → R is convex and continuously differentiable. Then, we have
p̂Ω2 [f ](t) =

[
−λ− 1

σ g
′(|t− µ|/σ)

]
+
, (13)

where λ = −g′(a)/σ and a is the solution of the equation ag′(a) − g(a) + g(0) = 1
2 (a sufficient

condition for such solution to exist is g being strongly convex; see App. E.4 for a proof). This
example subsumes the truncated parabola (g(t) = t3/6) and the triangular distribution (g(t) = t2/2).

2-sparse families. Truncated parabola and paraboloid distributions form a 2-sparse family, with
statistics φ(t) = [t, vec(tt>)] and canonical parameters θ = [Σ−1µ, vec(− 1

2Σ−1)]. Gaussian
distributions form an exponential family with the same sufficient statistics and canonical parameters.
In 1D, truncated parabola and Gaussians are both particular cases of the so-called “q-Gaussian” [10,
§4.1], for q = 2− α. Triangular distributions with a fixed location µ and varying scale b also form a
2-sparse family (similarly to Laplace distributions with fixed location being exponential families).

3 Continuous Attention

Attention mechanisms have become a key component of neural networks [14, 27, 28]. They dynami-
cally detect and extract relevant input features (such as words in a text or regions of an image). So far,
attention has only been applied to discrete domains; we generalize it to continuous spaces.

Discrete attention. Assume an input object split in L = |S| pieces, e.g., a document with L words
or an image with L regions. A vanilla attention mechanism works as follows: each piece has a
D-dimensional representation (e.g., coming from an RNN or a CNN), yielding a matrix V ∈ RD×L.
These representations are compared against a query vector (e.g., using an additive model [14]),
leading to a score vector f = [f1, . . . , fL] ∈ RL. Intuitively, the relevant pieces that need attention
should be assigned high scores. Then, a transformation ρ : RL →4L (e.g., softmax or sparsemax) is
applied to the score vector to produce a probability vector p = ρ(f). We may see this as an Ω-RPM.
The probability vector p is then used to compute a weighted average of the input representations, via
c = V p ∈ RD. This context vector c is finally used to produce the network’s decision.

To learn via the backpropagation algorithm, the Jacobian of the transformation ρ, Jρ ∈ RL×L, is
needed. Martins and Astudillo [6] gave expressions for softmax and sparsemax,

Jsoftmax(f) = Diag(p)− pp>, Jsparsemax(f) = Diag(s)− ss>/(1>s), (14)

where p = softmax(f), and s is a binary vector whose `th entry is 1 iff ` ∈ supp(sparsemax(f)).
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Algorithm 1: Continuous softmax attention with S = RD, Ω = Ω1, and Gaussian RBFs.
Parameters: Gaussian RBFs ψ(t) = [N (t;µj ,Σj)]

N
j=1, basis functions φ(t) = [t, vec(tt>)], value

function VB(t) = Bψ(t) with B ∈ RD×N , score function fθ(t) = θ>φ(t) with θ ∈ RM

Function Forward(θ := [Σ−1µ,− 1
2
Σ−1]):

rj ← Ep̂Ω[fθ ][ψj(t)] = N (µ, µj ,Σ + Σj), ∀j ∈ [N ] // Eqs. 15, 46
return c← Br (context vector)

Function Backward( ∂L
∂c
, θ := [Σ−1µ,− 1

2
Σ−1]):

for j ← 1 to N do
s̃← N (µ, µj ,Σ + Σj), Σ̃← (Σ−1 + Σ−1

j )−1, µ̃← Σ̃(Σ−1µ+ Σ−1
j µj)

∂rj
∂θ
← covp̂Ω[fθ ](φ(t), ψj(t)) = [s̃(µ̃− µ); s̃(Σ̃ + µ̃µ̃> − Σ− µµ>)] // Eqs. 18, 47–48

return ∂L
∂θ
←

(
∂r
∂θ

)>
B> ∂L

∂c

3.1 The continuous case: score and value functions

Our extension of Ω-RPMs to arbitrary domains (Def. 1) opens the door for constructing continuous
attention mechanisms. The idea is simple: instead of splitting the input object into a finite set of
pieces, we assume an underlying continuous domain: e.g., text may be represented as a function
V : S → RD that maps points in the real line (S ⊆ R, continuous time) onto a D-dimensional vector
representation, representing the “semantics” of the text evolving over time; images may be regarded
as a smooth function in 2D (S ⊆ R2), instead of being split into regions in a grid.

Instead of scores [f1, . . . , fL], we now have a score function f : S → R, which we map to a
probability density p ∈M1

+(S). This density is used in tandem with the value mapping V : S → RD
to obtain a context vector c = Ep[V (t)] ∈ RD. SinceM1

+(S) may be infinite dimensional, we need
to parametrize f , p, and V to be able to compute in a finite-dimensional parametric space.

Building attention mechanisms. We represent f and V using basis functions, φ : S → RM and
ψ : S → RN , defining fθ(t) = θ>φ(t) and VB(t) = Bψ(t), where θ ∈ RM and B ∈ RD×N . The
score function fθ is mapped into a probability density p := p̂Ω[fθ], from which we compute the
context vector as c = Ep[VB(t)] = Br, with r = Ep[ψ(t)]. Summing up yields the following:

Definition 2. Let 〈S,Ω, φ, ψ〉 be a tuple with Ω :M1
+(S)→ R, φ : S → RM , and ψ : S → RN .

An attention mechanism is a mapping ρ : Θ ⊆ RM → RN , defined as:

ρ(θ) = Ep[ψ(t)], (15)

with p = p̂Ω[fθ] and fθ(t) = θ>φ(t). If Ω = Ωα, we call this entmax attention, denoted as ρα.
The values α = 1 and α = 2 lead to softmax and sparsemax attention, respectively.

Note that, if S = {1, ..., L} and φ(k) = ψ(k) = ek (Euclidean canonical basis), we recover the
discrete attention of Bahdanau et al. [14]. Still in the finite case, if φ(k) and ψ(k) are key and value
vectors and θ is a query vector, this recovers the key-value attention of Vaswani et al. [28].

On the other hand, for S = RD and φ(t) = [t, vec(tt>)], we obtain new attention mechanisms
(assessed experimentally for the 1D and 2D cases in §4): for α = 1, the underlying density p is
Gaussian, and for α = 2, it is a truncated paraboloid (see §2.4). In both cases, we show (App. G) that
the expectation (15) is tractable (1D) or simple to approximate numerically (2D) if ψ are Gaussian
RBFs, and we use this fact in §4 (see Alg. 1 for pseudo-code for the case α = 1).

Defining the value function VB(t). In many problems, the input is a discrete sequence of observa-
tions (e.g., text) or it was discretized (e.g., images), at locations {t`}L`=1. To turn it into a continuous
signal, we need to smooth and interpolate these observations. If we start with a discrete encoder
representing the input as a matrix H ∈ RD×L, one way of obtaining a value mapping VB : S → RD
is by “approximating” H with multivariate ridge regression. With VB(t) = Bψ(t), and packing the
basis vectors ψ(t`) as columns of matrix F ∈ RN×L, we obtain:

B? = arg min
B
‖BF −H‖2F + λ‖B‖2F = HF>(FF> + λIN )−1 = HG, (16)
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where ‖.‖F is the Frobenius norm, and the L×N matrix G = F>(FF> + λIN )−1 depends only
on the values of the basis functions at discrete time steps and can be obtained off-line for different
input lenghts L. The result is an expression for VB with ND coefficients, cheaper than H if N � L.

3.2 Gradient backpropagation with continuous attention

The next proposition, based on Proposition 2 and proved in App. F, allows backpropagating over
continuous entmax attention mechanisms. We define, for β ≥ 0, a generalized β-covariance,

covp,β [φ(t), ψ(t)] = ‖p‖ββ ×
(
Ep̃β

[
φ(t)ψ(t)>

]
− Ep̃β [φ(t)]Ep̃β [ψ(t)]>

)
, (17)

where p̃β is the β-escort distribution in (5). For β = 1, we have the usual covariance; for β = 0, we
get a covariance taken w.r.t. a uniform density on the support of p, scaled by |supp(p)|.

Proposition 3. Let p = p̂Ωα [fθ] with fθ(t) = θ>φ(t). The Jacobian of the α-entmax is:

Jρα(θ) =
∂ρα(θ)

∂θ
= covp,2−α(φ(t), ψ(t)). (18)

Note that in the finite case, (18) reduces to the expressions in (14) for softmax and sparsemax.

Example: Gaussian RBFs. As before, let S = RD, φ(t) = [t, vec(tt>)], and ψj(t) =
N (t;µj ,Σj). For α = 1, we obtain closed-form expressions for the expectation (15) and the
Jacobian (18), for any D ∈ N: p̂Ω[fθ] is a Gaussian, the expectation (15) is the integral of a product
of Gaussians, and the covariance (18) involves first- and second-order Gaussian moments. Pseudo-
code for the case α = 1 is shown as Alg. 1. For α = 2, p̂Ω[fθ] is a truncated paraboloid. In the 1D
case, both (15) and (18) can be expressed in closed form in terms of the erf function. In the 2D case,
we can reduce the problem to 1D integration using the change of variable formula and working with
polar coordinates. See App. G for details.

We use the facts above in the experimental section (§4), where we experiment with continuous
variants of softmax and sparsemax attentions in natural language processing and vision applications.

4 Experiments

As proof of concept, we test our continuous attention mechanisms on three tasks: document classifi-
cation, machine translation, and visual question answering (more experimental details in App. H).

Document classification. Although textual data is fundamentally discrete, modeling long docu-
ments as a continuous signal may be advantageous, due to smoothness and independence of length.
To test this hypothesis, we use the IMDB movie review dataset [29], whose inputs are documents (280
words on average) and outputs are sentiment labels (positive/negative). Our baseline is a biLSTM
with discrete attention. For our continuous attention models, we normalize the document length L into
the unit interval [0, 1], and use f(t)= − (t− µ)2/2σ2 as the score function, leading to a 1D Gaussian
(α = 1) or truncated parabola (α = 2) as the attention density. We compare three attention variants:
discrete attention with softmax [14] and sparsemax [6]; continuous attention, where a CNN and
max-pooling yield a document representation v from which we compute µ = sigmoid(w>1 v) and
σ2 = softplus(w>2 v); and combined attention, which obtains p ∈ 4L from discrete attention,
computes µ = Ep[`/L] and σ2 = Ep[(`/L)2]− µ2, applies the continuous attention, and sums the
two context vectors (this model has the same number of parameters as the discrete attention baseline).

Table 1 shows accuracies for different numbersN of Gaussian RBFs. The accuracies of the individual
models are similar, suggesting that continuous attention is as effective as its discrete counterpart,
despite having fewer basis functions than words, i.e., N � L. Among the continuous variants, the
sparsemax outperforms the softmax, except forN = 64. We also see that a largeN is not necessary to
obtain good results, which is encouraging for tasks with long sequences. Finally, combining discrete
and continuous sparsemax produced the best results, without increasing the number of parameters.

Machine translation. We use the De→En IWSLT 2017 dataset [30], and a biLSTM model with
discrete softmax attention as a baseline. For the continuous attention models, we use the combined

7



Table 1: Results on IMDB in terms of accuracy (%). For the continuous attentions, we used
N ∈ {32, 64, 128} Gaussian RBFs N (t, µ̃, σ̃2), with µ̃ linearly spaced in [0, 1] and σ̃ ∈ {.1, .5}.

ATTENTION L̄ ≈ 280

Discrete softmax 90.78
Discrete sparsemax 90.58

ATTENTION N = 32 N = 64 N = 128

Continuous softmax 90.20 90.68 90.52
Continuous sparsemax 90.52 89.63 90.90
Disc. + Cont. softmax 90.98 90.69 89.62
Disc. + Cont. sparsemax 91.10 91.18 90.98
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Figure 2: Attention maps in machine translation: discrete (left), continuous softmax (middle), and
continuous sparsemax (right), for a sentence in the De-En IWSLT17 validation set. In the rightmost
plot, the selected words are the ones with positive density. In the test set, these models attained BLEU
scores of 23.92 (discrete), 24.00 (continuous softmax), and 24.25 (continuous sparsemax).

attention setting described above, with 30 Gaussian RBFs and µ̃ linearly spaced in [0, 1] and σ̃ ∈
{.03, .1, .3}. The results (caption of Fig. 2) show a slight benefit in the combined attention over
discrete attention only, without any additional parameters. Fig. 2 shows heatmaps for the different
attention mechanisms on a De→En sentence. The continuous mechanism tends to have attention
means close to the diagonal, adjusting the variances based on alignment confidence or when a larger
context is needed (e.g., a peaked density for the target word “sea”, and a flat one for “of”).

Visual QA. Finally, we report experiments with 2D continuous attention on visual question an-
swering, using the VQA-v2 dataset [31] and a modular co-attention network as a baseline [32].4
The discrete attention model attends over a 14×14 grid.5 For continuous attention, we normalize
the image size into the unit square [0, 1]2. We fit a 2D Gaussian (α = 1) or truncated paraboloid
(α = 2) as the attention density; both correspond to f(t) = − 1

2 (t−µ)>Σ−1(t−µ), with Σ � 0. We
use the mean and variance according to the discrete attention probabilities and obtain µ and Σ with
moment matching. We use N = 100� 142 Gaussian RBFs, with µ̃ linearly spaced in [0, 1]2 and
Σ̃ = 0.001 · I. Overall, the number of neural network parameters is the same as in discrete attention.

The results in Table 2 show similar accuracies for all attention models, with a slight advantage for
continuous softmax. Figure 3 shows an example (see App. H for more examples and some failure
cases): in the baseline model, the discrete attention is too scattered, possibly mistaking the lamp with
a TV screen. The continuous attention models focus on the right region and answer the question
correctly, with continuous sparsemax enclosing all the relevant information in its supporting ellipse.

5 Related Work

Relation to the Tsallis maxent principle. Our paper unifies two lines of work: deformed expo-
nential families from statistical physics [13, 10, 25], and sparse alternatives to softmax recently
proposed in the machine learning literature [6, 8, 7], herein extended to continuous domains. This link
may be fruitful for future research in both fields. While most prior work is focused on heavy-tailed

4Software code is available at https://github.com/deep-spin/mcan-vqa-continuous-attention.
5An alternative would be bounding box features from an external object detector [33]. We opted for grid

regions to check if continuous attention has the ability to detect relevant objects on its own. However, our method
can handle bounding boxes too, if the {t`}L`=1 coordinates in the regression (16) are placed on those regions.
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Figure 3: Attention maps for an example in VQA-v2: original image, discrete attention, continuous
softmax, and continuous sparsemax. The latter encloses all probability mass within the outer ellipse.

Table 2: Accuracies of different models on the test-dev and test-standard splits of VQA-v2.

ATTENTION Test-Dev Test-Standard
Yes/No Number Other Overall Yes/No Number Other Overall

Discrete softmax 83.40 43.59 55.91 65.83 83.47 42.99 56.33 66.13

2D continuous softmax 83.40 44.80 55.88 65.96 83.79 44.33 56.04 66.27
2D continuous sparsemax 83.10 44.12 55.95 65.79 83.38 43.91 56.14 66.10

distributions (α < 1), we focus instead on light-tailed, sparse distributions, the other side of the
spectrum (α > 1). See App. C for the relation to the Tsallis maxent principle.

Continuity in other architectures and dimensions. In our paper, we consider attention networks
exhibiting temporal/spatial continuity in the input data, be it text (1D) or images (2D). Recent work
propose continuous-domain CNNs for 3D structures like point clouds and molecules [34, 35]. The
dynamics of continuous-time RNNs have been studied in [36], and similar ideas have been applied to
irregularly sampled time series [37]. Other recently proposed frameworks produce continuous variants
in other dimensions, such as network depth [38], or in the target domain for machine translation tasks
[39]. Our continuous attention networks can be used in tandem with these frameworks.

Gaussian attention probabilities. Cordonnier et al. [40] analyze the relationship between (dis-
crete) attention and convolutional layers, and consider spherical Gaussian attention probabilities as
relative positional encodings. By contrast, our approach removes the need for positional encodings:
by converting the input to a function on a predefined continuous space, positions are encoded im-
plicitly, not requiring explicit positional encoding. Gaussian attention has also been hard-coded as
input-agnostic self-attention layers in transformers for machine translation tasks by You et al. [41].
Finally, in their DRAW architecture for image generation, Gregor et al. [42, §3.1] propose a selective
attention component which is parametrized by a spherical Gaussian distribution.

6 Conclusions and Future Work

We proposed extensions to regularized prediction maps, originally defined on finite domains, to
arbitrary measure spaces (§2). With Tsallis α-entropies for α > 1, we obtain sparse families, whose
members can have zero tails, such as triangular or truncated parabola distributions. We then used
these distributions to construct continuous attention mechanisms (§3). We derived their Jacobians
in terms of generalized covariances (Proposition 3), allowing for efficient forward and backward
propagation. Experiments for 1D and 2D cases were shown on attention-based text classification,
machine translation, and visual question answering (§4), with encouraging results.

There are many avenues for future work. As a first step, we considered unimodal distributions only
(Gaussian, truncated paraboloid), for which we show that the forward and backpropagation steps have
closed form or can be reduced to 1D integration. However, there are applications in which multiple
attention modes are desirable. This can be done by considering mixtures of distributions, multiple
attention heads, or sequential attention steps. Another direction concerns combining our continuous
attention models with other spatial/temporal continuous architectures for CNNs and RNNs [34–36]
or with continuity in other dimensions, such as depth [38] or output space [39].
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Broader Impact

We discuss the broader impact of our work, including ethical aspects and future societal consequences.
Given the early stage of our work and its predominantly theoretical nature, the discussion is mostly
speculative.

The continuous attention models developed in our work can be used in a very wide range of ap-
plications, including natural language processing, computer vision, and others. For many of these
applications, current state-of-the-art models use discrete softmax attention, whose interpretation
capabilities have been questioned in prior work [43–45]. Our models can potentially lead to more
interpretable decisions, since they lead to less scattered attention maps (as shown in our Figures 2–3)
and are able to select contiguous text segments or image regions. As such, they may provide better
inductive bias for interpretation.

In addition, our attention densities using Gaussian and truncated paraboloids include a variance term,
being potentially useful as a measure of confidence—for example, a large ellipse in an image may
indicate that the model had little confidence about where it should attend to answer a question, while
a small ellipse may denote high confidence on a particular object.

We also see opportunities for research connecting our work with other continuous models [34, 35, 38]
leading to end-to-end continuous models which, by avoiding discretization, have the potential to be
less susceptible to adversarial attacks via input perturbations. Outside the machine learning field, the
links drawn in §2 between sparse alternatives to softmax and models used in non-extensive (Tsallis)
statistical physics suggest a potential benefit in that field too.

Note, however, that our work is a first step into all these directions, and as such further investigation
will be needed to better understand the potential benefits. We strongly recommend carrying out user
studies before deploying any such system, to better understand the benefits and risks. Some of the
examples in App. H may help understand potential failure modes.

We should also take into account that, for any computer vision model, there are important societal
risks related to privacy-violating surveillance applications. Continuous attention holds the promise
to scale to larger and multi-resolution images, which may, in the longer term, be deployed in such
undesirable domains. Ethical concerns hold for natural language applications such as machine
translation, where biases present in data can be arbitrarily augmented or hidden by machine learning
systems. For example, our natural language processing experiments mostly use English datasets (as
a target language in machine translation, and in document classification). Further work is needed
to understand if our findings generalize to other languages. Likewise, in the vision experiments,
the VQA-v2 dataset uses COCO images, which have documented biases [46]. In line with the
fundamental scope and early stage of this line of research, we deliberately choose applications on
standard benchmark datasets, in an attempt to put as much distance as possible from malevolent
applications. Finally, although we chose the most widely used evaluation metrics for each task
(accuracy for document classification and visual question answering, BLEU for machine translation),
these metrics do not always capture performance quality—for example, BLEU in machine translation
is far from being a perfect metric.

The data, memory, and computation requirements for training systems with continuous attention do
not seem considerably higher than the ones which use discrete attention. On the other hand, for NLP
applications, our approach has the potential to better compress sequential data, by using fewer basis
functions than the sequence length (as suggested by our document classification experiments). While
there is nothing specific about our research that poses environmental concerns or that promises to
alleviate such concerns, our models share the same problematic property as other neural network
models in terms of their energy consumption to train models and tune hyperparameters [47].
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