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A.1 Comparison with Existing Meta Learning-based Adversarial Attack Techniques

Meta-Self [125] is a poisoning attack model for node classification by leveraging meta-learning to
generate attacks, i.e., using meta-gradients to solve the bilevel optimization problem. It conducts ad-
versarial attacks on global node classification of a single graph. It aims to solve a bilevel optimization
problem: (1) training classification on graphs and (2) attacking graphs. It gradually improves attack
performance by using meta learning to iteratively solve the above two problems. The GMA model
utilizes meta learning to find good attack starting points in two graphs.

A.2 Supplementary Experiments on Transferability

Table 3: Experiment Datasets

Dataset Cora Citeseer Pubmed
#Nodes 2,708 3,327 19,717
#Edges 5,429 4,732 44,338

#Classes 7 6 3

In this section, we use three popular real graph datasets in network embedding and node classification
for supplementary experiments [S5, S6, S7, S8], as shown in Table 3.

Transferability study. In this paper, we also explore whether the GMA adversarial attack model can
be applied to other graph learning tasks. In this vein, we select two representative graph applications
(i.e., node classification and network embedding) with widely used target learning models: (1)
graph convolutional network (GCN) generalizes convolutional neural networks on graph data to
learn semi-supervised node classification [S2, S7]; and (2) GraphSAGE is a general framework for
inductive node embedding [S1]. We use the link prediction algorithm based on common neighbors
[S3] to predict the links between the nodes.

For the node classification task, the attacker aims to maximize the following loss LD based on the
cross-entropy loss.

LD =
∑

v̂i∈D

(
−

C∑
c=1

Yv̂ic log Ỹv̂ic + f̂(v̂i)
)

(15)

where C is the number of classes, Y is the label matrix and Ỹ = softmax(H(L)) are predictions of
GCN by passing the hidden representation in the final layer H(L) to a softmax function. f̂(v̂i) is the
kernel density estimation of node v̂i.

The attack goal of the network embedding is to minimize the similarities between connected nodes
while maximizing the similarities between isolated nodes by maximizing the following loss function.

L =
∑

v̂i∈D

( ∑
v̂j∈N(v̂i)

(
− log σ

(
E(v̂i)

T · E(v̂j)
)

+ f̂(v̂j)
)

+

K∑
k=1

Ev̂k∼p(v̂k)

(
log σ

(
E(v̂i)

T · E(v̂k)
)

+ f̂(v̂k)
)

+ f̂(v̂i)

) (16)

where E(·) represents the GraphSAGE node embedding model. E(v̂i)
T is the transpose of E(v̂i).

p(v̂k) denotes the distribution for sampling K negative nodes v̂k 6= v̂j through the negative sampling
method [S4]. σ(·) is the sigmoid function. The inner product · represents the similarity degree
between two embedding vectors. The above loss is equivalent to a cross-entropy loss with (v̂i, v̂j) as
positive samples and (v̂i, v̂k) as negative ones.

Based on the above two loss functions, we utilize our proposed MLPGD model in Section 4 to
generate adversarial nodes.
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Table 4: Accuracy (%) with 5% perturbed edges
Cora Citeseer Pubmed

Attack Model GCN GraphSage GCN GraphSage GCN GraphSage
Clean 81.5 83.2 70.9 84.5 79.6 88.1
Random 78.3 81.6 69.6 83.5 78.7 85.2
RL-S2V 75.0 82.2 66.0 83.1 74.0 84.4
Meta-Self 77.3 78.1 68.8 82.3 77.6 82.3
CW-PGD 72.2 75.5 62.9 77.6 72.8 82.0
GF-Attack 72.6 74.1 64.7 77.1 73.0 79.5
CD-ATTACK 76.8 76.3 67.7 80.7 75.5 83.0
GMA 72.4 72.8 60.7 74.2 68.8 74.6

For the classification experiments, by following the setting in [126, 5] , we split the graph into labeled
(20%) and unlabeled nodes (80%). Further, the labeled nodes are splitted into equal parts for training
and validation. The attack performance is evaluated by the decrease of node classification accuracy.
In the link prediction tests, we randomly hide 10% of the edges in the original graph as the positive
samples. We also include equal number of randomly selected disconnected links that servers as
negative samples. We use both positive and negative examples for evaluation. Accuracy is used
to quantify the quality of both node classification and link prediction. As we can see from Table 4,
while all the attacking methods are effective, the GMA method achieves the best performance in most
experiments. It validates the generalization ability of the GMA on other graph learning models.

A.3 Supplementary Experiments on Graph Matching

Validate attack performance under defenses. We test two recent defense methods on generated
attacks by the GMA model: [7] uses min-max adversarial training for defense and [8] vaccinates
attack with low-rank approximations. As shown in Table 1, even with the defense, the GMA model
can still achieve very high mismatching rate.

Table 5: Mismatching rate (%) with 5% perturbed edges
AS SNS DBLP

Attack Model SNNA CrossMNA DGMC SNNA CrossMNA DGMC SNNA CrossMNA DGMC
Clean 53.9 46.6 34.7 45.2 50.4 41.6 56.1 51.9 63.2
GMA+Robust Training [86] 62.6 58.5 53.0 56.2 66.5 51.8 71.8 71.0 77.3
Vaccinated GMA [19] 62.1 59.9 53.2 58.7 67.6 54.6 70.4 68.6 74.9
GMA 64.2 62.9 54.9 61.2 69.6 55.7 74.2 74.3 80.7

In the following experiments, unless otherwise explicitly stated, we use the DMGC model as the
graph matching method in this section.
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Figure 7: Precision with varying parameters

Impact of meta step size β. Figure 7 (a) shows the impact of β in our MLPGD model over three
groups of datasets by varying b0 from 0.01 to 0.5. We have witnessed the similar trend to Figure 6
(b). The performance curves initially raise and then drop quickly when β continuously increases.
This demonstrates that there must exist the optimal β that makes the meta learning be maximally
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optimized. We have observed that the Precision scores oscillate within the range of 47.0%, 33.8%,
and 53.0% on AS, SNS, DBLP respectively.

Sensitivity of number of samples N . Figure 7 (b) exhibits the sensitivity of N in our MLPGD
model with N between 1 and 15. In this paper, we estimate the gradient of the adversarial attack
module a in Algorithm 4 by perturbing a at a given point along Gaussian directions and averaging
the evaluations. The performance curves continuously increase with increasing N . This is consistent
with the fact that increasing the sample size can reduce the bias in the gradient estimation as well as
increase the diversity, so as to increase the probability of the estimator being close to the population
gradient.

Impact of initial bandwidth b0. Figure 7 (c) shows the impact of b0 in the KDE model by varying
b0 from 0.5 to 2.5. the Precision values have concave curves when increasing b0. This demonstrates
that the initial bandwidth of the kernel has a strong influence on the resulting estimate. A reasonable
observation is that the density estimation is undersmoothed since it results in too many spurious data
artifacts arising by using a small b0. On the other hand, the density estimation is oversmoothed since
a large b0 obscures much of the underlying structure. Therefore, there should exist the optimal b0
that makes the estimation be optimally smoothed.

Influence of parameter s. Figure 7 (d) presents the influence of s in the KDE model with s between
0.1 and 0.9. It is observed that the performance first keeps stable or slightly increasing and then drops
sharply with increasing s. In the KDE model, the bandwidth matrix B has strong influence on the
density estimation. A good B should be as small as the data can allow. Thus, a smaller s can help
achieve a smaller B and make the KDE converge quickly. However, a too small s may laead to the
undersmoothed density estimation.
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Figure 8: Mismatching rate (in %) with increasing iterations

Convergence study. Figure 8 presents the convergence of the adversarial attack training with SNNA
and DMGC as the graph matching methods on SNS. As we can see, the mismatching rates keep
increasing when we iteratively perform the attack task. The method converges when the numbers of
iterations go beyond some thresholds. We have observed that the curves on AS and SNS converge
gracefully within 500 iterations. However, the training over DBLP needs more iterations to achieve
the convergence. This verifies the effectiveness of the GMA method based on the KDE and MLPGD
techniques.

Gaussian model on parameter estimation. The Gaussian distribution is common in nature. Many
papers assume graph representations follow Gaussian distributions, which allows to capture graph
dynamics and uncertainty [S8-S11]. We have run the Shapiro-Wilk test 1, where if the P-Value of test
> 0.05, the data is thought to follow a Gaussian distribution. In the test, the P-Values on AS and SNS
are 0.668 and 0.543, which indicate two graphs follow Gaussian distribution.

A.4 Experimental Details

Environment. The experiments were conducted on a compute server running on Red Hat Enterprise
Linux 7.2 with 2 CPUs of Intel Xeon E5-2650 v4 (at 2.66 GHz) and 8 GPUs of NVIDIA GeForce
GTX 2080 Ti (with 11GB of GDDR6 on a 352-bit memory bus and memory bandwidth in the
neighborhood of 620GB/s), 256GB of RAM, and 1TB of HDD. Overall, the experiments took about
5 days in a shared resource setting. We expect that a consumer-grade single-GPU machine (e.g., with

1https://en.wikipedia.org/wiki/Normality_test
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a 1080 Ti GPU) could complete the full set of experiments in around 10 days, if its full resources
were dedicated. The codes were implemented in Python 3.7.3 and PyTorch 1.0.14. We also employ
Numpy 1.16.4 and Scipy 1.3.0 in the implementation.

Implementation. For three deep graph matching models of SNNA 2, CrossMNA 3, and DGMC 4,
we used the open-source implementation and default parameter settings by the original authors
for the experiments. All models were trained for 500 iterations, with a batch size of 512, and a
learning rate of 0.001. For two other deep graph learning models of GCN 5 and GraphSAGE 6, we
also use the default parameters in the authors’ implementation. We used the public TensorFlow
implementation of GCN and pass the hidden representation in the final layer by the GCN to a softmax
function as the node classification results. We used the open-source TensorFlow implementation
of GraphSAGE. To run GraphSAGE, it needs to train on an example graph or set of graphs. After
training, GraphSAGE can be used to generate node embeddings for previously unseen nodes or
entirely new input graphs, as long as these graphs have the same attribute schema as the training data.
In the experiments, we use the node degree as node attributes. For five state-of-the-art graph attack
models of RL-S2V 7, Meta-Self 8, CW-PGD 9, GF-Attack 10, and CD-ATTACK 11, we also utilized
the same model architecture as the official implementation provided by the original authors and used
the same perturbation budgets to attack the deep graph learning models in all experiments.

For the GMA attack model, we performed hyperparameter selection by performing a param-
eter sweep on initial adaptation step sizes α ∈ {0.01, 0.05, 0.1, 0.2, 0.5}, meta step sizes
β ∈ {0.01, 0.05, 0.1, 0.2, 0.5}, samples numbers N ∈ {1, 2, 5, 10, 15}, initial bandwidth b0 ∈
{0.5, 1.0, 1.5, 2.0, 2.5}, and parameter s ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. We select the best parameters
over 50 iterations of training and evaluate the model at test time. In addition, two neural networks h1
and h2 in the adversarial attack module in Algorithm 4 are used to generate the good attack starting
points. Both h1 and h2 are always implemented as three-layer perceptrons (input-hidden-output).
The number of neurons in the hidden layer is set to 512. The model uses a mini-batch of size 512.
The learning rate is equal to 0.001.

Notice that ε specifies the budget of allowed perturbed edges for each attacked node. Thus, ε should
be a positive integer. In addition, most of real-world graph datasets, e.g., all datasets used in this
paper are extremely sparse, i.e., the average node degree of most datasets in this paper is 2 ∼ 5.
Thus, even if ε is very small, say 1 or 2, a large number of edges will be modified, which results in
noticeable perturbations. For example, AS v1 contains 10,900 nodes and 31,180 edges. Therefore,
we combine ε and the number limit of perturbed edges in entire graphs for actual perturbation budget.
We set ε = 1 and randomly select one target node to add or remove one edge at a time and repeat the
same process to attack other nodes until the overall edge perturbations in entire graphs are beyond
the number limit of perturbed edges, say 5%. After that, we stop to attack the rest of nodes.

A.5 Theoretical Proof

Assumption 1 Assuming that K is a product symmetric kernel that satisfies
∫
K(u)du = 1 and∫

uK(u)du = 0N1 , then ∫
uuTK(u)du = aIN1 and a <∞ (17)∫
K2(u)du = R(K) <∞ (18)

Theorem 1 Let H be the Hessian matrix of f(v1), if the kernel density estimation f̂(x) of f(x) is
defined as follows.

2https://github.com/yiweizhang526/social-network-alignment
3https://github.com/ChuXiaokai/CrossMNA
4https://github.com/rusty1s/deep-graph-matching-consensus
5https://github.com/tkipf/gcn
6http://snap.stanford.edu/graphsage/
7https://github.com/Hanjun-Dai/graph_adversarial_attack
8https://github.com/danielzuegner/gnn-meta-attack
9https://github.com/KaidiXu/GCN_ADV_Train

10https://github.com/SwiftieH/GFAttack
11https://github.com/halimiqi/CD-ATTACK
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f̂(v1) =
1

N1det(B)

N1∑
i=1

K
(
B−1(v1 − v1

i )
)

=
1

N1

N1∑
i=1

N1∏
j=1

1

bj
K
(v1

j − v1
ij

bj

)
, (19)

then

E
(
f̂(v1)

)
= f(v1) +

1

2
a
(
tr(BTHB)

)
+ oP

(
tr(BTB)

)
(20)

and

Var
(
f̂(v1)

)
=

1

N1det(B)
R(K)f(v1) + oP

( 1

N1det(B)

)
(21)

Proof.

E
(
f̂(v1)

)
= E

( 1

N1det(B)

N1∑
i=1

K
(
B−1(v1 − v1

i )
))

=
1

det(B)

∫
K
(
B−1(u− v1)

)
f(u)du

=

∫
K(u)f(v1 + Bu)du

=

∫
K(u)

(
f(v1) + uTBT∇f(v1) +

1

2
uTBTHBu + oP

(
tr(uTBTBu)

))
du

= f(v1) +
1

2
a
(
tr(BTHB)

)
+ oP

(
tr(BTB)

)

(22)

where tr(X) denotes the trace of a matrix X. Y = oP (X) means Y/‖X‖ converges in probability
to zero.

Since all v1
i s are independent and identically distributed, we have

Var
(
f̂(v1)

)
= Var

( 1

N1det(B)

N1∑
i=1

K
(
B−1(v1 − v1

i )
))

=
1

N1det(B)2
Var

(
K
(
B−1(v1 − v1

i )
))

=
1

N1det(B)2
E
(
K2(B−1(v1 − v1

i )
))
− 1

N1det(B)2
E2
(
K
(
B−1(v1 − v1

i )
))

=
1

N1det(B)2

∫ (
K
(
B−1(u− v1)

))2
f(u)du− 1

N1
E2(f̂(v1)

)
=

1

N1det(B)

∫ (
K(u)

)2
f(v1 + Bu)du− 1

N1
E2(f̂(v1)

)
=

1

N1det(B)
R(K)f(v1) + oP

( 1

N1det(B)

)

(23)

The Taylor series is utilized for expansion to generate the last equality.
Theorem 2 The kernel density estimation f̂(x) converges towards the Gaussian distribution
N (0, R(K)f(v1)), i.e.,√

N1det(B)
(
f̂(v1)−E

(
f̂(v1)

)) d−−→ N
(
0, R(K)f(v1)

)
(24)

Proof. For ease of representation, a random variable yi is used to replace
K
(
B−1(v1−v1

i )
)

det(B) . The
skewness si3 of yi is calculated as follows.

si3 = E
(
|yi −E(yi)|3

)
≤ 8E

(
|yi|3

)
= 8E

(∣∣∣K(B−1(v1 − v1
i )
)

det(B)

∣∣∣3)
=

8

det(B)2

∫ ∣∣K(u)
∣∣3f(v1 + Bu)du + +oP

( 1

det(B)2

) (25)

By using the same strategy in Eq.(23), we have
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Var(yi) =
R(K)f(v1)

det(B)
+ oP

( 1

det(B)

)
(26)

Based on the skewness si3, the Lyapunov condition at the ρth moment with ρ ≥ 3 is generated below.

(
∑N1

i=1 si3)
1
ρ(∑N1

i=1 Var(yi)
) 1
ρ

≤

(
8N1

det(B)2

∫ ∣∣K(u)
∣∣3f(v1 + Bu)du + +oP

(
N1

det(B)2

)) 1
3

(
N1R(K)f(v1)

det(B)
+ oP

(
N1

det(B)

)) 1
2

=

O
(

(N1)
1
3

det(B)
2
3

)
O
(

(N1)
1
2

det(B)
1
2

) = O
(

(N1det(B))−
1
6

) (27)

Thus, we get

lim
N1→∞

(
∑N1

i=1 si3)
1
δ(∑N1

i=1 Var(yi)
) 1
δ

= 0 (28)

In terms of the Lyapunov central limit theorem, we have

f̂(v1)−E
(
f̂(v1)

)√
Var(f̂(v1))

d−−→ N (0, 1) (29)

Based on the variance in Eq.(23), the proof is concluded.
Theorem 3 If K is a product symmetric kernel with bandwidth matrix B = diag(b1, · · · , bN1), then

µj =
∂

∂bj
E
(
f̂(v1)− f(v1)

)
= abjHjj + oP (bj) (30)

Proof.

Based on Theorem 1, we have

E
(
f̂(v1)− f(v1)

)
=

1

2
a
(
tr(BTHB)

)
+ oP

(
tr(BTB)

)
(31)

Thus, the derivative can be directly generated.

µj =
∂

∂bj
E
(
f̂(v1)− f(v1)

)
= abjHjj + oP (bj) (32)

Theorem 4 If K is a product symmetric kernel with bandwidth matrix B = diag(b1, · · · , bN1), then

(σj)
2 = Var

(∂f̂(v1)

∂bj

)
=
R(K)f(v1)

4N1(bj)2

( N1∏
l=1

1

bl

)
(1 + oP (1)) (33)

Proof. Based on Theorems 1 and 2, suppose that ϕ ∼ N (0, 1), the kernel density estimator f̂(v1) is
denoted as follows.

f̂(v1) = E
(
f̂(v1)

)
+ ϕ

√
Var(f̂(v1))

= f(v1) +
1

2
a
(
tr(BTHB)

)
+ oP

(
tr(BTB)

)
+ ϕ

√
Var(f̂(v1))

(34)

Therefore, we have

∂f̂(v1)

∂bj
=
∂f(v1)

∂bj
+

∂

∂bj

(1

2
a
(
tr(BTHB)

))
+

∂

∂bj

(
ϕ

√
Var(f̂(v1))

)
(35)

As

∂

∂bj

(√
Var(f̂(v1))

)
=

1

2

√
Var(f̂(v1))

∂

∂bj

(
Var(f̂(v1))

)

= − 1

2

√
Var(f̂(v1))

R(K)f(v1)

N1bjdet(B)

(
1 + oP

( 1

N1bjdet(B)

))

= −1

2

√
R(K)f(v1)

N1(bj)2det(B)

(
1 + oP (

√
bl)
)

(36)
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Thus,

(σj)
2 = Var

(∂f̂(v1)

∂bj

)
=
R(K)f(v1)

4N1(bj)2

( N1∏
l=1

1

bl

)
(1 + oP (1)) (37)

Theorem 5 Recall the definition in Eq.(5), ∂f̂(v1)
∂bj

= 1
N1

∑N1

i=1
∂f̂(v1

i )
∂bj

, let (υj)
2 be the sample

variance of ∂f̂(v1
i )

∂bj
(i = 1, · · · , N1), then ∂f̂(v1)

∂bj
/υj ∼ N (ω, 1) where ω = µj/σj .

Proof. Based on the Khinchin’s law, which states that the sample average converges in probability
towards the expected value when N1 →∞, we have

∂f̂(v1)

∂bj
=

1

N1

N1∑
i=1

∂f̂(v1
i )

∂bj

P−−→ µj (38)

Due to the consistency of the sample variance, we get

(υj)
2 −−→ (σj)

2 (39)

∂f̂(v1)
∂bj

and υj are sequences of random variables. According to the Slutsky’s theorem, if ∂f̂(v1)
∂bj

converges in distribution to µj and υj converges in probability to σj , then

∂f̂(v1)

∂bj
/υj

d−−→ µj/σj (40)

Therefore, the proof is concluded.

A.6 The Closed Form of the Density Estimation f(v1) with the Product Gaussian Kernel

In this work, we assume that the graph data follow the Gaussian distribution, a product Gaussian kernel
K is used to estimate the node density f̂(v1). For ease of representation, letK(·) = 1

det(B)K
(
B−1·

)
.

We propose a parametric density estimation method to estimate the closed form of f̂(v1).

f̂(v1) =

∑N1

i=1K(v1 − v1
i )f̃(v1)

N1
∫
K(v1 − u)f̃(u)du

,

where f̃(x) = N (µ,Σ), K(x) = N (0,B), B = diag(b21, . . . , b
2
N1), Σ = diag(σ2

1 , . . . , σ
2
N1)

(41)

where f̃(v1) is the multivariate Gaussian density function with the parameters of µ and Σ as its
parametric density estimator at point v1. µ and Σ are the maximum likelihood estimation of the mean
vector and covariance matrix of the Gaussian distribution. K(v1) is another multivariate Gaussian
density function with the parameters of 0 as the mean and the estimated B as the covariance in
Algorithm 1. Namely, we get

f̃(x) =
1√

2π|Σ|
exp

(
− (x− µ)TΣ−1(x− µ)

2

)
K(x) =

1√
2π|B|

exp
(
− xTB−1x

2

) (42)

Based on the convolution theorem,we know that the convolution of two Gaussian distribution functions
is still a Gaussian probability density function with mean µ+ 0 and variance Σ + B. Thus, we have

N1
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exp
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)
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Thus, we get

f̃(v1)

N1
∫
K(v1 − u)f̃(u)du

=

1√
2π|Σ|

exp
(
− (v1−µ)TΣ−1(v1−µ)

2

)
N1√

2π|B+Σ|
exp

(
− (v1−µ)T (B+Σ)−1(v1−µ)

2

)
=

1

N1

√
|B + Σ|
|Σ| exp

(
−

(v1 − µ)T
(
Σ−1 − (B + Σ)−1

)
(v1 − µ)

2

) (44)
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Finally, the closed form of f̂(v1) is derived as follows.
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where K represents a product Gaussian kernel in Eqs.(7) and (8).

A.7 The Derivative of the Kernel Density Estimation f(v1)

As B and Σ are diagonal matrices, we have√
|B + Σ|
|Σ| =

√√√√N1∏
j=1

(
1 +

(bj)2

(σj)2

)
(46)

and

Σ−1 − (B + Σ)−1 = diag
( (b1)2

(σ1)2((σ1)2 + (b1)2)
, · · · , (bN1)2

(σN1)2((σN1)2 + (bN1)2)

)
(47)

Let f̄(v1) = 1
N1

∑N1

i=1

∏N1

j=1
1
bj
K
(v1

j−v
1
ij

bj

)
be the original kernel density estimator, we have

f̂(v1) = f̄(v1)

√
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)
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) (48)

Thus, its derivative is generated as follows.
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