
Statistical and Topological Properties of Sliced
Probability Divergences

SUPPLEMENTARY DOCUMENT

Kimia Nadjahi1∗, Alain Durmus2, Lénaïc Chizat3,
Soheil Kolouri4, Shahin Shahrampour5, Umut Şimşekli1,6
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S1 Postponed proofs for Section 3

S1.1 Proof of Proposition 1

Proof of Proposition 1. (i) The fact that S∆p is non-negative (or symmetric) if ∆ is, immediately
follows from the definition of S∆p (4).

(ii) Assume that ∆ satisfies the identity of indiscernibles, i.e. for µ′, ν′ ∈ P(R), ∆(µ′, ν′) = 0 if
and only if µ′ = ν′. For any µ ∈ P(Rd) and θ ∈ Sd−1, ∆(θ?]µ, θ

?
]µ) = 0, therefore S∆p(µ, µ) = 0

by its definition (4). Now, consider µ, ν ∈ P(Rd) such that S∆p(µ, ν) = 0. Then, by the definition
of S∆p (4), we have ∆(θ?]µ, θ

?
] ν) = 0 for σ-almost every (σ-a.e.) θ ∈ Sd−1, therefore θ?]µ = θ?] ν

for σ-a.e. θ ∈ Sd−1. Next, we use the same technique as in [1, Proposition 5.1.2]: for any measure
ξ ∈ P(Rs) (s ≥ 1), F [ξ] denotes the Fourier transform of ξ and is defined as, for any w ∈ Rs,

F [ξ](w) =

∫
Rs
e−i〈w,x〉dξ(x) .

Then, by using (S1) and the property of pushforward measures, we have for any t ∈ R and θ ∈ Sd−1,

F [θ?]µ](t) =

∫
R
e−itudθ?]µ(u) =

∫
Rd
e−it〈θ,x〉dµ(x) = F [µ](tθ) . (S1)

Since for σ-a.e. θ ∈ Sd−1, θ?]µ = θ?] ν thus F [θ?]µ] = F [θ?] ν], we obtain F [µ] = F [ν]. By the
injectivity of the Fourier transform, we conclude that µ = ν.

(iii) Suppose ∆ is a metric. Based on the previous results, to show that S∆p is a metric, all we need
to prove here is that it verifies the triangle inequality. Let µ, ν, ξ ∈ P(Rd). Using that ∆ satisfies the
triangle inequality and the Minkowski inequality in Lp(Sd−1,σ), we get

S∆p(µ, ν) =

{∫
Sd−1

∆p
(
θ?]µ, θ

?
] ν
)
dσ(θ)

}1/p

≤
{∫

Sd−1

[
∆
(
θ?]µ, θ

?
] ξ
)

+ ∆
(
θ?] ξ, θ

?
] ν
)]p

dσ(θ)
}1/p

≤
{∫

Sd−1

∆p
(
θ?]µ, θ

?
] ξ
)
dσ(θ)

}1/p

+

{∫
Sd−1

∆p
(
θ?] ξ, θ

?
] ν
)
dσ(θ)

}1/p

≤ S∆p(µ, ξ) + S∆p(ξ, ν) .
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S1.2 Proof of Theorem 1

We start by proving Lemma S1 below, which extends [2, Lemma S13] to the more general class of
Sliced Probability Divergences.
Lemma S1. Consider (µk)k∈N a sequence in P(Rd) satisfying limk→∞ S∆1(µk, µ) = 0, with
µ ∈ P(Rd), and assume that the convergence in ∆ implies the weak convergence in P(R). Then,
there exists an increasing function φ : N → N such that the subsequence (µφ(k))k∈N converges
weakly to µ.

Proof. We assume that limk→∞ S∆1(µk, µ) = 0, i.e.:

lim
k→∞

∫
Sd−1

∆(θ?]µk, θ
?
]µ)dσ(θ) = 0 (S2)

By [3, Theorem 2.2.5], (S2) implies that, there exists an increasing function φ : N→ N such that for
σ-a.e. θ ∈ Sd−1, limk→∞∆(θ?]µφ(k), θ

?
]µ) = 0. Since ∆ is assumed to imply weak convergence in

P(R), then, for σ-a.e. θ ∈ Sd−1, (θ?]µφ(k))k∈N converges weakly to θ?]µ. By Lévy’s characterization
[4, Theorem 4.3], we have for σ-a.e. θ ∈ Sd−1 and any s ∈ R,

lim
k→∞

Φθ?]µφ(k)(s) = Φθ?]µ(s) ,

where Φν is the characteristic function of ν ∈ P(Rs) (s ≥ 1) and is defined as: for any v ∈ Rs,
Φν(v) =

∫
Rs ei〈v,w〉dν(w). Therefore, for Lebesgue (Leb)-almost every z ∈ Rd,

lim
k→∞

Φµφ(k)(z) = Φµ(z) . (S3)

We now use (S3) to show that (µφ(k))k∈N converges weakly to µ. By [5, Problem 1.11, Chapter 1],
this boils down to proving that, for any f : Rd → R continuous with compact support,

lim
k→∞

∫
Rd
f(z)dµφ(k)(z) =

∫
Rd
f(z)dµ(z) . (S4)

Consider σ > 0 and a continuous function f : Rd → R with compact support. We introduce the
function fσ defined as: for any x ∈ Rd,

fσ(x) = (2πσ2)−d/2
∫
Rd
f(x− z) exp

(
−‖z‖2/(2σ2)

)
dz = f ∗ gσ(x) ,

where ∗ denotes the convolution product, and gσ is the density of the d-dimensional Gaussian with
zero mean and covariance matrix σ2Id. First, we prove that (S4) holds with fσ in place of f . The
characteristic function associated to a d-dimensional Gaussian random variable G with zero mean and
covariance matrix (1/σ2)Id is given by: for any z ∈ Rd, E

[
ei〈z,G〉

]
= e−‖z‖

2/(2σ2). By plugging
this in the definition of fσ and using Fubini’s theorem, we obtain for any k ∈ N,∫

Rd
fσ(z)dµφ(k)(z) =

∫
Rd

∫
Rd
f(w)gσ(z − w)dwdµφ(k)(z)

= (2πσ2)−d/2
∫
Rd

∫
Rd
f(w)

∫
Rd

ei〈z−w,x〉g1/σ(x)dxdwdµφ(k)(z)

= (2πσ2)−d/2
∫
Rd

∫
Rd
f(w)e−i〈w,x〉g1/σ(x)Φµφ(k)(x)dxdw

= (2πσ2)−d/2
∫
Rd
F [f ](x)g1/σ(x)Φµφ(k)(x)dx , (S5)

where F [f ](x) =
∫
Rd f(w)e−i〈w,x〉dw is the Fourier transform of f . Since the support of f is

assumed to be compact, F [f ] exists and is bounded by
∫
Rd |f(w)|dw < +∞, therefore, for any

k ∈ N and x ∈ Rd, ∣∣F [f ](x)g1/σ(x)Φµφ(k)(x)
∣∣ ≤ g1/σ(x)

∫
Rd
|f(w)|dw .
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We can prove with similar techniques that (S5) holds with µ in place of µφ(k), i.e.:∫
Rd
fσ(z)dµ(z) = (2πσ2)−d/2

∫
Rd
F [f ](x)g1/σ(x)Φµ(x)dx . (S6)

Using (S3), (S5), (S6) and Lebesgue’s Dominated Convergence Theorem, we obtain:

lim
k→∞

(2πσ2)−d/2
∫
Rd
F [f ](x)g1/σ(x)Φµφ(k)(x)dx = (2πσ2)−d/2

∫
Rd
F [f ](x)g1/σ(x)Φµ(x)dx ,

i.e., lim
k→∞

∫
Rd
fσ(z)dµφ(k)(z) =

∫
Rd
fσ(z)dµ(z) . (S7)

We can now prove (S4): for any σ > 0,∣∣∣∣∫
Rd
f(z)dµφ(k)(z)−

∫
Rd
f(z)dµ(z)

∣∣∣∣
≤ 2 sup

z∈Rd
|f(z)− fσ(z)|+

∣∣∣∣∫
Rd
fσ(z)dµφ(k)(z)−

∫
Rd
fσ(z)dµ(z)

∣∣∣∣ .
By (S7), we deduce that for any σ > 0,

lim sup
k→+∞

∣∣∣∣∫
Rd
f(z)dµφ(k)(z)−

∫
Rd
f(z)dµ(z)

∣∣∣∣ ≤ 2 sup
z∈Rd

|f(z)− fσ(z)| ,

and since limσ→0 supz∈Rd |f(z) − fσ(z)| = 0 [6, Theorem 8.14-b], we conclude that (µφ(k))k∈N
converges weakly to µ.

We can now prove Theorem 1.

Proof of Theorem 1. Let p ∈ [1,∞) and (µk)k∈N be a sequence of probability measures in P(Rd).

First, suppose (µk)k∈N converges weakly to µ ∈ P(Rd). By the continuous mapping theorem, since
for any θ ∈ Sd−1, θ? is a bounded linear form thus continuous, then (θ?]µk)k∈N converges weakly to
θ?]µ. Therefore, according to our assumption on ∆, for any θ ∈ Sd−1,

lim
k→∞

∆(θ?]µk, θ
?
]µ) = 0 . (S8)

Besides, ∆ is assumed to be non-negative and bounded. Hence, there exists M > 0 such that, for
any k ∈ N,

∆p(θ?]µk, θ
?
]µ) ≤M . (S9)

Using (S8), (S9) and the bounded convergence theorem, we obtain

lim
k→∞

S∆p
p(µk, µ) = lim

k→∞

∫
Sd−1

∆p(θ?]µk, θ
?
]µ)dσ(θ) =

∫
Sd−1

0p dσ(θ) = 0 . (S10)

Since the mapping t 7→ t1/p is continuous on R+ (and can be applied to S∆p
p, which is non-negative

by the non-negativity of ∆ and Proposition 1), then (S10) implies limk→∞ S∆p(µk, µ) = 0.

Now, let us prove the other implication, i.e. limk→∞ S∆p

(
µk, µ

)
= 0 implies the weak convergence

of (µk)k∈N to µ, given the assumptions on ∆. This result is a generalization of [2, Theorem 1], and
is proved analogously, using Lemma S1: consider (µk)k∈N and µ in P(Rd) such that

lim
k→∞

S∆p(µk, µ) = 0 , (S11)

and suppose (µk)k∈N does not converge weakly to µ. Therefore, limk→∞ dP(µk, µ) 6= 0, where dP
is the Lévy-Prokhorov metric, i.e. there exists ε > 0 and a subsequence (µψ(k))k∈N with ψ : N→ N
increasing, such that for any k ∈ N,

dP(µψ(k), µ) > ε . (S12)
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On the other hand, an application of Hölder’s inequality on Sd−1 gives for any µ, ν in P(Rd),

S∆1(µ, ν) ≤ S∆p(µ, ν) .

Then, by (S11), limk→∞ S∆1(µψ(k), µ) = 0. Since we assume the convergence in ∆ implies
the weak convergence in P(R), Lemma S1 gives us: there exists a subsequence (µφ(ψ(k)))k∈N
with φ : N → N increasing such that (µφ(ψ(k)))k∈N converges weakly to µ. This is equivalent to
limk→∞ dP(µφ(ψ(k)), µ) = 0, which contradicts (S12). We conclude that (S11) implies the weak
convergence of (µk)k∈N to µ.

S1.3 Proof of Theorem 2

Proof of Theorem 2. Let p ∈ [1,∞) and µ, ν ∈ P(Rd).

(Sγ F̃,p)
p(µ, ν) =

∫
Sd−1

γp
F̃
(θ?]µ, θ

?
] ν)dσ(θ)

=

∫
Sd−1

{
sup
f̃∈F̃

∣∣∣∣∫
R
f̃(t) d(θ?]µ− θ?] ν)(t)

∣∣∣∣
}p

dσ(θ)

=

∫
Sd−1

∣∣∣∣∫
R
f̃∗(t)d(θ?]µ− θ?] ν)(t)

∣∣∣∣p dσ(θ)

=

∫
Sd−1

∣∣∣∣∫
Rd
f̃∗
(
θ?(x)

)
d(µ− ν)(x)

∣∣∣∣p dσ(θ) , (S13)

with f̃∗ = argmaxf̃∈F̃

∣∣∣∫R f̃(t)dθ?]µ(t)−
∫
R f̃(t)dθ?] ν(t)

∣∣∣, which is assumed to exist. Note that
(S13) results from applying the property of pushforward measures.

By definition of F, for any θ ∈ Sd−1, there exists f∗θ ∈ F such that f∗θ = f̃∗ ◦ θ?. Therefore, we
obtain

(SγF,p)
p(µ, ν) =

∫
Sd−1

∣∣∣∣∫
Rd
f∗θ (x)d(µ− ν)(x)

∣∣∣∣p dσ(θ)

≤
∫
Sd−1

{
sup
f∈F

∣∣∣∣∫
Rd
f(x)d(µ− ν)(x)

∣∣∣∣
}p

dσ(θ)

= γpF(µ, ν)

∫
Sd−1

dσ(θ) = γpF(µ, ν) ,

which completes the proof.

Informally, the condition on the function classes in Theorem 2 requires that F and F̃ should be linked
to each other in the way that F should be large enough to contain the composition of all elements of
F̃ with all possible linear forms θ? for θ ∈ Sd−1. Let us illustrate this condition by considering the
Wasserstein distance of order 1. In this case, F is the set of 1-Lipschitz functions from Rd to R, and F̃
is the set of 1-Lipschitz functions from R to R. Then, the condition on F boils down to showing that
the composition of any f̃ ∈ F̃ with any linear projection θ? results in a 1-Lipschitz function in Rd,
which is simply true since f̃ is 1-Lipschitz and ‖θ‖ = 1 for all θ ∈ Sd−1.

In the next three corollaries, we formally prove that Theorem 2 holds for the Wasserstein distance of
order 1 W1, total variation distance TV and maximum mean discrepancy MMD. We denote by
SW1, STVp and SMMDp the respective sliced versions of these IPMs with order p ∈ [1,∞).

Corollary S1. Let p ∈ [1,∞). For any µ, ν ∈ P1(Rd), SW1(µ, ν) ≤W1(µ, ν).

Proof. Choose F̃ = {f̃ : R → R : ‖f̃‖Lip ≤ 1}, where ‖f̃‖Lip = supx,y∈Rd,x 6=y
{∣∣f̃(x) −

f̃(y)
∣∣/ ‖x− y‖}. Let f : Rd → R such that f = f̃ ◦ θ? with f̃ ∈ F̃, θ ∈ Sd−1. Then, by using the
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Cauchy-Schwarz inequality and the definition of F̃, we have for any x, y ∈ Rd,

|f(x)− f(y)| =
∣∣f̃(θ?(x)

)
− f̃

(
θ?(y)

)∣∣ ≤ ∣∣ 〈θ, x− y〉 ∣∣ ≤ ‖θ?‖ ‖x− y‖ ≤ ‖x− y‖ .
Therefore, f ∈ F = {f : Rd → R : ‖f‖Lip ≤ 1}. Corollary S1 follows from the application of
Theorem 2 along with the definition of W1.

Note that Corollary S1 is not a new result: the fact that SWp is bounded above by Wp for p ∈ [1,∞)
was established in [1, Proposition 5.1.3]. While their result is proved using the primal formulation of
the OT problem, we used the dual formulation available for p = 1 to illustrate the applicability of
Theorem 2. Our result is thus consistent with the existing results in the literature.
Corollary S2. Let p ∈ [1,∞). For any µ, ν ∈ P(Rd),

STVp(µ, ν) ≤ TV(µ, ν) .

Proof. Choose F̃ =
{
f̃ : R → R, ‖f̃‖∞ ≤ 1

}
, and let f : Rd → R such that f = f̃ ◦ θ? with

f̃ ∈ F̃, θ ∈ Sd−1. Then,

‖f‖∞ = ‖f̃ ◦ θ?‖∞ = sup
x∈Rd

∣∣f̃(θ?(x)
)∣∣ ≤ sup

t∈R

∣∣f̃(t)
∣∣ = ‖f̃‖∞ ≤ 1 ,

hence, f ∈ F =
{
f : Rd → R : ‖f‖∞ ≤ 1

}
. We obtain the final result by using Theorem 2 and the

definition of TV.

Corollary S3. Let F̃ ⊂Mb(R) be the unit ball of the RKHS with reproducing kernel k̃, and k be the
positive definite kernel such that for any xi, xj ∈ Rd,

k(xi, xj) =

∫
Sd−1

k̃
(
θ?(xi), θ

?(xj)
)
dσ(θ) .

Define F ⊂ Mb(Rd) as the unit ball of the RKHS whose reproducing kernel k̂ satisfies k − k̂ is
positive definite. Then, for any p ∈ [1,∞) and µ, ν ∈ P(Rd),

SMMDp(µ, ν; F̃) ≤MMD(µ, ν;F) ,

where MMD(·, · ; F′) and SMMDp(·, · ; F′) respectively denote the MMD and the Sliced-MMD
of order p in the RKHS whose unit ball is F′.

In particular, this property holds for

(i) Linear kernels: k̃(ti, tj) = titj for ti, tj ∈ R, and k̂(xi, xj) = x>i xj/d
′ for xi, xj ∈ R and

d′ ≥ d.

(ii) Radial basis function (RBF) kernels: let h ≥ 0, k̃(ti, tj) = e−|ti−tj |
2/h for ti, tj ∈ R, and

k̂(xi, xj) = e−‖xi−xj‖
2/h for xi, xj ∈ Rd.

Proof. Define F̃ as the unit ball of an RKHS whose reproducing kernel is denoted by k̃. Then, any
f̃ ∈ F̃ satisfies

‖f̃‖2
F̃

=

n∑
i=1

n∑
j=1

αiαj k̃(ti, tj) ≤ 1, (S14)

where n ∈ N∗, α1, . . . , αn ∈ R and t1, . . . , tn ∈ R.

Consider f : Rd → R such that f = f̃ ◦ θ∗ with f̃ ∈ F̃ and θ ∈ Sd−1. By (S14), we have
n∑
i=1

n∑
j=1

αiαj k̃
(
θ?(xi), θ

?(xj)
)
≤ 1 (S15)
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The integration of (S15) over Sd−1 give us

∫
Sd−1

n∑
i=1

n∑
j=1

αiαj k̃
(
θ?(xi), θ

?(xj)
)
dσ(θ) ≤

∫
Sd−1

1 dσ(θ)

i.e.,
n∑
i=1

n∑
j=1

αiαj

∫
Sd−1

k̃
(
θ?(xi), θ

?(xj)
)
dσ(θ) ≤ 1 . (S16)

Define k : Rd × Rd → R as k(xi, xj) =
∫
Sd−1 k̃

(
θ?(xi), θ

?(xj)
)
dσ(θ) for xi, xj ∈ Rd. Since k̃

is positive definite, so is k. By the Moore-Aronszajn theorem, there exists a unique RKHS with
reproducing kernel k. Therefore, (S16) means that f is in the unit ball of the RKHS associated with
k.

Additionally, consider a positive definite kernel k̂ : Rd ×Rd → R such that k − k̂ is positive definite
on Rd. In other words, the following holds for any n ∈ N, v1, . . . , vn ∈ R and x1, . . . , xn ∈ Rd,

n∑
i=1

n∑
j=1

vivj{k(xi, xj)− k̂(xi, xj)} ≥ 0 .

Then, by (S16), we obtain
∑n
i=1

∑n
j=1 αiαj k̂(xi, xj) ≤ 1.

Therefore, any f defined as f = f̃ ◦ θ with f̃ ∈ F̃ and θ ∈ Sd−1 is in the unit ball of the RKHS
associated with k̂, which we denote by F. By using Theorem 2 and the definition of MMD, we obtain
the desired result: for any p ∈ [1,∞) and µ, ν ∈ P(Rd),

SMMDp(µ, ν; F̃) ≤MMD(µ, ν;F) . (S17)

Next, we show that this result holds for two popular choices of kernels. First, we choose k̃ as the
linear kernel: k̃(ti, tj) = titj for ti, tj ∈ R. Define k̂ as a rescaled version of the linear kernel in
Rd: k̂(xi, xj) = x>i xj/d

′ for xi, xj ∈ Rd and d′ ≥ d. Then, for any n ∈ N, v1, . . . , vn ∈ R and
x1, . . . , xn ∈ Rd,

n∑
i=1

n∑
j=1

vivj{k(xi, xj)− k̂(xi, xj)} =

n∑
i=1

n∑
j=1

vivj

{∫
Sd−1

θ(xi)θ(xj)dσ(θ)− x>i xj/d′
}

=

n∑
i=1

n∑
j=1

vivj

{
x>i
(∫

Sd−1

θθ>dσ(θ)
)
xj − x>i xj/d′

}
=

n∑
i=1

n∑
j=1

vivjx
>
i xj

(
1/d− 1/d′

)
≥ 0 , (S18)

where (S18) results from
∑n
i=1

∑n
j=1 vivjx

>
i xj ≥ 0 (the linear kernel is positive definite) and

d′ ≥ d. We conclude that (S17) holds with F̃ defined as the unit ball of the RKHS associated with the
linear kernel k̃(ti, tj) = titj for ti, tj ∈ R, and F being the unit ball of the RKHS associated with
the rescaled linear kernel k̂(xi, xj) = x>i xj/d

′ for xi, xj ∈ Rd and d′ ≥ d.

We conclude that (S17) holds with F̃ defined as the unit ball of the RKHS associated with the linear
kernel k̃(ti, tj) = titj for ti, tj ∈ R, and F being the unit ball of the RKHS associated with the
rescaled linear kernel k̂(xi, xj) = x>i xj/d for xi, xj ∈ Rd.
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We focus now on RBF kernels: let h ≥ 0 and choose k̃(ti, tj) = e−|ti−tj |
2/h for ti, tj ∈ R, and

k̂(xi, xj) = e−‖xi−xj‖
2/h for xi, xj ∈ Rd. We have for any xi, xj ∈ Rd,

k(xi, xj) =

∫
Sd−1

k̃
(
θ(xi), θ(xj)

)
dσ(θ) =

∫
Sd−1

e−|θ
>xi−θ>xj |2/h dσ(θ)

=

∫
Sd−1

e−|θ
>(xi−xj)|2/h dσ(θ)

=

∫
Sd−1

e(−‖xi−xj‖
2/h)(θ>(xi−xj)/‖xi−xj‖)2dσ(θ)

= M

(
1

2
,
d

2
,−‖xi − xj‖

2

h

)
, (S19)

where M(a, c, κ) stands for the confluent hypergeometric function evaluated at a, c, κ ∈ R, and
appears in the normalizing constant of the multivariate Watson distribution: see [7, Section 2.3] for
more details.

M satisfies the following property

M

(
1

2
,
d

2
,−‖xi − xj‖

2

h

)
= e−‖xi−xj‖

2/h M

(
d− 1

2
,
d

2
,
‖xi − xj‖2

h

)
. (S20)

Since ‖xi − xj‖2/h ≥ 0 and κ 7→M(·, ·, κ) is increasing, we have

M

(
d− 1

2
,
d

2
,
‖xi − xj‖2

h

)
≥M

(
d− 1

2
,
d

2
, 0

)
= M

(
1

2
,
d

2
, 0

)
= 1 . (S21)

Finally, by using (S19) and (S20), we obtain: for any n ∈ N, v1, . . . , vn ∈ R and x1, . . . , xn ∈ Rd,
n∑
i=1

n∑
j=1

vivj{k(xi, xj)− k̂(xi, xj)} =

n∑
i=1

n∑
j=1

vivj

[
M

(
1

2
,
d

2
,−‖xi − xj‖

2

h

)
− e−‖xi−xj‖

2/h

]

=

n∑
i=1

n∑
j=1

vivje
−‖xi−xj‖2/h

[
M

(
d− 1

2
,
d

2
,
‖xi − xj‖2

h

)
− 1

]
≥ 0 ,

where the last line follows from (S21) and
∑n
i=1

∑n
j=1 vivje

−‖xi−xj‖2/h ≥ 0 (RBF kernels are
positive definite). We conclude that k − k̂ is positive definite, hence (S17) holds for RBF kernels.

S1.4 Proof of Theorem 3

Proof of Theorem 3. We start by upper bounding the distance between two regularized measures.
Denote by supp(ζ) the support of the function ζ. Let ϕ : R→ R∗+ be a smooth and even function
verifying supp(ϕ) ⊂ [−1, 1] and

∫
R ϕ(t)dLeb(t) = 1. Define ϕλ(x) = λ−dϕ(‖x‖ /λ)/A(Sd−1),

withA(Sd−1) denoting the surface area of the d-dimensional unit sphere: A(Sd−1) = 2πd/2/Γ(d/2),
where Γ is the gamma function. Denote by F [f ] the Fourier transform of any function f defined on
Rs (s ≥ 1), given by: for any x ∈ Rs, F [f ](x) =

∫
Rs f(w)e−i〈w,x〉dw. Let g ∈ G. By the isometry

properties of the Fourier transform and the definition of ϕλ, we have∫
Rd
g(x)d(µλ − νλ)(x) =

∫
Rd
F [g](w) {F [µ](w)−F [ν](w)}F [ϕ](λw)dw ,

where µλ = µ ∗ ϕλ and νλ = ν ∗ ϕλ. By representing w with its polar coordinates (r, θ) ∈
[0,∞)× Sd−1, we obtain∫

Rd
g(x)d(µλ − νλ)(x) =

∫
Sd−1

∫ ∞
0

F [g](rθ) {F [µ](rθ)−F [ν](rθ)}F [ϕ](λr)rd−1drdσ(θ) .
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Since g is a real function, F [g] is an even function, hence∫
Rd
g(x)d(µλ − νλ)(x)

=
1

2

∫
Sd−1

∫
R
F [g](rθ) {F [µ](rθ)−F [ν](rθ)}F [ϕ](λr) |r|d−1 drdσ(θ)

=
1

2

∫
Sd−1

∫
R
F [g](rθ)

{
F [θ?]µ](r)−F [θ?] ν](r)

}
F [ϕ](λr) |r|d−1 drdσ(θ) (S22)

=
1

2

∫
Sd−1

∫
R

∫ R

−R
F [g](rθ)e−irud(θ?]µ− θ?] ν)(u)F [ϕ](λr) |r|d−1 drdσ(θ) (S23)

=
1

2

∫
Sd−1

∫
R

∫
Rd

∫ R

−R
g(x)e−ir(u+〈θ,x〉)

{
d(θ?]µ− θ?] ν)(u)

}
F [ϕ](λr) |r|d−1 dxdrdσ(θ) ,

where (S22) follows from (S1), (S23) results from the definition of the Fourier transform and the fact
that u ∈ [−R,R], and in the last line, we used the definition of the Fourier transform and Fubini’s
theorem. By making the change of variables x→ x− uθ, we obtain∫

Rd
g(x)d(µλ − νλ)(x)

=
1

2

∫
Sd−1

∫
R

∫
Rd

∫ R

−R
g(x− uθ)e−ir〈θ,x〉d(θ?]µ− θ?] ν)(u)F [ϕ](λr) |r|d−1 dxdrdσ(θ) .

Since we assumed supp(µ), supp(ν) are included in Bd(0, R), then supp(µλ), supp(µλ) are in
Bd(0, R+ λ), and the domain of x 7→ g(x− uθ) must be contained in Bd(0, 2R+ λ). By Fubini’s
theorem and the definition of G̃, we have∣∣∣∣∣
∫
Rd
g(x)d(µλ − νλ)(x)

∣∣∣∣∣
≤ 1

2

∫
R

∫
Bd(0,2R+λ)

∫
Sd−1

∣∣∣∫ R

−R
g(x− uθ)d(θ?]µ− θ?] ν)(u)e−ir〈θ,x〉F [ϕ](λr) |r|d−1

∣∣∣dσ(θ)dxdr

≤ 1

2

∫
R

∫
Bd(0,2R+λ)

∫
Sd−1

γG̃(θ?]µ, θ
?
] ν)
∣∣∣e−ir〈θ,x〉F [ϕ](λr) |r|d−1

∣∣∣dσ(θ)dxdr

≤ C(2R+ λ)d
∫
Sd−1

γG̃(θ?]µ, θ
?
] ν)dσ(θ)

∫
R
λ−d

∣∣∣F [ϕ](r) |r|d−1
∣∣∣dr (S24)

≤ C(2R+ λ)dλ−d
(∫

Sd−1

γp
G̃
(θ?]µ, θ

?
] ν)dσ(θ)

)1/p ∫
R

∣∣∣F [ϕ](r)|r|d−1
∣∣∣dr (S25)

≤ C1(2R+ λ)dλ−dSγG̃,p(µ, ν) , (S26)

where in (S24), C > 0 and does not depend on µ and ν, (S25) results from applying Hölder’s
inequality on Sd−1 if p > 1, and in (S26), C1 = C

∫
R

∣∣∣F [ϕ](r)|r|d−1
∣∣∣dr.

By using the definition of γG and (S26), we obtain

γG(µλ, νλ) = sup
g∈G

∣∣∣∫
Rd
g(x)d(µλ − νλ)(x)

∣∣∣ ≤ C1(2R+ λ)dλ−dSγG̃,p(µ, ν) . (S27)

We now relate γG(µλ, νλ) with γG(µ, ν). We start with the following estimate∫
Rd
g(x)d(µ− ν)(x)− γG(µλ, νλ)

≤
∫
Rd
g(x)d(µ− ν)(x)−

∫
Rd
g(x)d(µλ − νλ)(x)

≤
∫
Rd

∣∣g(x)− (ϕλ ∗ g)(x)
∣∣dµ(x) +

∫
Rd

∣∣g(x)− (ϕλ ∗ g)(x)
∣∣dν(x) (S28)
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Since we assumed any g ∈ G is L-Lipschitz continuous, we can bound the integrand in (S28) as
follows: for x ∈ Rd,∣∣g(x)− (ϕλ ∗ g)(x)

∣∣ =
∣∣∣λ−d ∫

Rd

(
g(x)− g(y)

)
ϕ
(
(x− y)/λ

)
dy
∣∣∣

≤ λ−d
∫
Rd

∣∣g(x)− g(y)
∣∣ϕ((x− y)/λ

)
dy

≤ Lλ−d+1

∫
Rd
‖x− y‖λ−1ϕ

(
(x− y)/λ

)
dy

≤ Lλ−d+1

∫
Rd
‖u‖λ−1ϕ

(
u/λ

)
du ≤ Lλ

∫
‖z‖ϕ(z)dz .

Hence, by denoting by M1(ϕ) the moment of order 1 of ϕ, (S28) is bounded by∫
Rd
g(x)d(µ− ν)(x)− γG(µλ, νλ) ≤ 2LM1(ϕ)λ .

Taking the supremum of both sides over G gives us

γG(µ, ν)− γG(µλ, νλ) ≤ 2LM1(ϕ)λ .

By combining the above inequality with (S27), we get

γG(µ, ν) ≤ C1(2R+ λ)dλ−dSγG̃,p(µ, ν) + 2LM1(ϕ)λ

≤ C2λ
(

(2R+ λ)dλ−(d+1)SγG̃,p(µ, ν) + 1
)
,

with C2 satisfying C2 ≥ C1 and C2 ≥ 2LM1(ϕ). Finally, by choosing λ =
Rd/(d+1)SγG̃,p(µ, ν)1/(d+1) and using the hypothesis that SγG̃,p is bounded, we obtain

γG(µ, ν) ≤ C2R
d/(d+1)SγG̃,p(µ, ν)1/(d+1)

(
(2R+ λ)dR−d + 1

)
≤ CpSγG̃,p(µ, ν)1/(d+1),

for some Cp > 0, as desired. This concludes the proof.

As with Theorem 2, Theorem 3 assumes that the function classes G and G̃ are linked to each other
and sufficiently regular. The condition on G is verified with W1 (simply by definition) and MMD
(provided that the reproducing kernel is Lipschitz-continuous, which holds on compact spaces for
classical choices of kernels), but not with TV. On the other hand, the second condition requires G̃ to
be large enough to contain any possible slice g(x− uθ) for any g ∈ G.

S1.5 Proof of Corollary 1

Proof of Corollary 1. The desired result is obtained as a direct application of Theorems 2 and 3.

S1.6 Proof of Theorem 4

Proof of Theorem 4. Let p ∈ [1,∞) and µ, ν in P(Rd) with respective empirical measures µ̂n, ν̂n.
By using the definition of S∆p, the triangle inequality and the assumption on the sample complexity

9



of ∆p, we have

E
∣∣S∆p

p(µ, ν)− S∆p
p(µ̂n, ν̂n)

∣∣ = E
∣∣∣∣∫

Sd−1

{
∆p(θ?]µ, θ

?
] ν)−∆p(θ?] µ̂n, θ

?
] ν̂n)

}
dσ(θ)

∣∣∣∣
≤ E

{∫
Sd−1

∣∣∆p(θ?]µ, θ
?
] ν)−∆p(θ?] µ̂n, θ

?
] ν̂n)

∣∣dσ(θ)

}
≤
∫
Sd−1

E
∣∣∆p(θ?]µ, θ

?
] ν)−∆p(θ?] µ̂n, θ

?
] ν̂n)

∣∣dσ(θ)

≤
∫
Sd−1

β(p, n)dσ(θ) = β(p, n) ,

which completes the proof.

S1.7 Proof of Theorem 5

Proof of Theorem 5. Let p ∈ [1,∞) and µ ∈ P(Rd) with corresponding empirical measure µ̂n. By
using the definition of S∆p, the triangle inequality and the assumed convergence rate of empirical
measures in ∆p, we obtain the convergence rate in S∆p as follows

E
∣∣S∆p

p(µ̂n, µ)
∣∣ = E

∣∣∣∣∫
Sd−1

∆p(θ?] µ̂n, θ
?
]µ)dσ(θ)

∣∣∣∣ ≤ E
{∫

Sd−1

∣∣∆p(θ?] µ̂n, θ
?
]µ)
∣∣ dσ(θ)

}
≤
∫
Sd−1

E
∣∣∆p(θ?] µ̂n, θ

?
]µ)
∣∣ dσ(θ) ≤

∫
Sd−1

α(p, n)dσ(θ) = α(p, n) . (S29)

Additionally, if we assume that ∆ satisfies non-negativity, symmetry and the triangle inequality, then
S∆p also verifies these three properties by Proposition 1, and we can derive its sample complexity:
for any µ, ν in P(Rd) with respective empirical measures µ̂n, ν̂n, the triangle inequality give us

|S∆p(µ, ν)− S∆p(µ̂n, ν̂n)| ≤ S∆p(µ̂n, µ) + S∆p(ν̂n, ν) (S30)

By taking the expectation of (S30) with respect to µ̂n, ν̂n, we obtain
E |S∆p(µ, ν)− S∆p(µ̂n, ν̂n)| ≤ E |S∆p(µ̂n, µ)|+ E |S∆p(ν̂n, ν)|

≤
{
E
∣∣S∆p

p(µ̂n, µ)
∣∣}1/p +

{
E
∣∣S∆p

p(ν̂n, ν)
∣∣}1/p (S31)

≤ α(p, n)1/p + α(p, n)1/p = 2α(p, n)1/p , (S32)

where (S31) results from applying Hölder’s inequality on Sd−1 if p > 1, and (S32) follows from the
convergence rate result in (S29).

S1.8 Proof of Theorem 6

Proof of Theorem 6. Let p ∈ [1,∞) and µ, ν ∈ P(Rd). We recall that Ŝ∆p,L(µ, ν) denotes the
approximation of S∆p(µ, ν) obtained with a Monte Carlo scheme that uniformly picks L projection
directions on Sd−1 (cf. Equation (5) in the main document).

By using Hölder’s inequality and the results on the moments of the Monte Carlo estimation error, we
obtain

Eθ∼σ
∣∣Ŝ∆

p

p,L(µ, ν)− S∆p
p(µ, ν)

∣∣ ≤ {Eθ∼σ∣∣Ŝ∆
p

p,L(µ, ν)− S∆p
p(µ, ν)

∣∣2}1/2
≤ L−1/2

{∫
Sd−1

{
∆p(θ?]µ, θ

?
] ν)− S∆p

p(µ, ν)
}2

dσ(θ)

}1/2

,

Since S∆p
p(µ, ν) =

∫
Sd−1 ∆p(θ?]µ, θ

?
] ν)dσ(θ) by definition, the quantity∫

Sd−1

{
∆p(θ?]µ, θ

?
] ν)− S∆p

p(µ, ν)
}2

dσ(θ) is the variance of ∆p(θ?]µ, θ
?
] ν) with respect

to θ ∼ σ.
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S1.9 The overall complexity

We now leverage Theorems 4 and 6 to derive the overall complexity of sliced divergences, i.e. the
convergence rate of Ŝ∆p(µ̂n, ν̂n) to S∆p(µ, ν). This result is useful as it helps understanding the
behavior of sliced divergences in most practical applications, where S∆p(µ, ν) is approximated
using finite sets of samples drawn from µ and ν along with Monte Carlo estimates.

Corollary S4. Let p ∈ [1,∞) and µ, ν ∈ P(Rd). Denote by µ̂n (respectively, ν̂n) the empirical
distribution computed over a sequence of i.i.d. random variables X1:n = {Xk}nk=1 from µ (resp.,
Y1:n = {Yk}nk=1 from ν). Assume ∆p admits the following sample complexity: for any µ′, ν′ ∈ P(R)
and empirical instantiations µ̂′n, ν̂

′
n, E[|∆p(µ′, ν′)−∆p(µ̂′n, ν̂

′
n)|] ≤ β(p, n). Then,

E
[
|Ŝ∆

p

p,L(µ̂n, ν̂n)− S∆p
p(µ, ν)|

]
≤ β(p, n)

+ L−1/2
[∫

Sd−1

E
[(

∆p(θ?] µ̂n, θ
?
] ν̂n)− S∆p

p(µ̂n, ν̂n)
)2]

dσ(θ)

]1/2
,

where Ŝ∆
p

p,L(µ̂n, ν̂n) is defined by (5), and E is the expectation with respect to (w.r.t.) X1:n, Y1:n
and {θl}Ll=1 i.i.d. from the uniform distribution on Sd−1.

Proof of Corollary S4. Let p ∈ [1,∞), µ, ν ∈ P(Rd) and the respective empirical distributions
µ̂n, ν̂n. By the triangle inequality,

|Ŝ∆
p

p,L(µ̂n, ν̂n)−S∆p
p(µ, ν)| ≤ |Ŝ∆

p

p,L(µ̂n, ν̂n)−S∆p
p(µ̂n, ν̂n)|+ |S∆p

p(µ̂n, ν̂n)−S∆p
p(µ, ν)| .

Therefore, by linearity of expectation, we have

E
[
|Ŝ∆

p

p,L(µ̂n, ν̂n)− S∆p
p(µ, ν)|

]
≤ E

[
E[|Ŝ∆

p

p,L(µ̂n, ν̂n)− S∆p
p(µ̂n, ν̂n)|

∣∣ X1:n, Y1:n]
]

+ E
[
|S∆p

p(µ̂n, ν̂n)− S∆p
p(µ, ν)|

]
.

(S33)

We bound the left term in (S33). By Theorem 6, we have

E
[
|Ŝ∆

p

p,L(µ̂n, ν̂n)− S∆p
p(µ̂n, ν̂n)|

∣∣ X1:n, Y1:n
]

≤ L−1/2
{∫

Sd−1

{
∆p(θ?] µ̂n, θ

?
] ν̂n)− S∆p

p(µ̂n, ν̂n)
}2

dσ(θ)

}1/2

.

By taking the expectation then using Jensen’s inequality, we get

E
[
E
[
|Ŝ∆

p

p,L(µ̂n, ν̂n)− S∆p
p(µ̂n, ν̂n)|

∣∣ X1:n, Y1:n
]]

≤ L−1/2 E

[{∫
Sd−1

{
∆p(θ?] µ̂n, θ

?
] ν̂n)− S∆p

p(µ̂n, ν̂n)
}2

dσ(θ)

}1/2
]

≤ L−1/2 E1/2

[∫
Sd−1

{
∆p(θ?] µ̂n, θ

?
] ν̂n)− S∆p

p(µ̂n, ν̂n)
}2

dσ(θ)

]
. (S34)

Next, we bound the right term in (S33): by the sample complexity assumption for ∆p and Theorem 4,
we have

E
[
|S∆p

p(µ̂n, ν̂n)− S∆p
p(µ, ν)|

]
≤ β(p, n) . (S35)

Combining (S34) and (S35) in (S33) completes the proof.

Remark 1. Note that by Fubini’s theorem,
∫
Sd−1 E[(∆p(θ?] µ̂n, θ

?
] ν̂n) − S∆p

p(µ̂n, ν̂n))2]dσ(θ)

(which appears in Corollary S4) is equal to E[Var{∆p(θ?] µ̂n, θ
?
] ν̂n)|X1:n, Y1:n}], where Var is

the variance w.r.t. X1:n, Y1:n and θ (which is distributed according to the uniform distribution on
Sd−1 and independent of X1:n, Y1:n).
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S2 Postponed proofs for Section 4

S2.1 Applications of Theorem 1

As discussed in Section 4, we can use the general result in Theorem 1 to establish novel topological
properties for specific sliced probability divergences, for example the Sliced-Cramér distance (whose
definition is recalled in Definition S2) and the broader class of Sliced-IPMs. We present our results
and proofs for these examples below.
Definition S1 (Cramér distance [8]). Let p ∈ [1,∞) and µ, ν ∈ P(R). Denote by Fµ, Fν the
cumulative distribution functions of µ, ν respectively. The Cramér distance of order p between µ and
ν is defined by

Cp
p(µ, ν) =

∫
R
|Fµ(t)− Fν(t)|p dt .

Definition S2 (Sliced-Cramér distance [9]). Let p ∈ [1,∞) and µ, ν ∈ P(Rd). The Sliced-Cramér
distance of order p between µ and ν is defined by

SCp
p(µ, ν) =

∫
Sd−1

Cp
p(θ

?
]µ, θ

?
] ν)dσ(θ) .

Corollary S5. Let p ∈ [1,∞). For any sequence (µk)k∈N in P(Rd) and µ ∈ P(Rd),
limk→∞ SCp

(
µk, µ

)
= 0 implies (µk)k∈N converges weakly to µ. Besides, if (µk)k∈N and µ

are supported on a compact space K ⊂ Rd, then the converse implication holds, meaning that the
convergence under SCp is equivalent to the weak convergence in P(K).

Proof. Let p ∈ [1,∞). By Hölder’s inequality, for any µ′, ν′ ∈ P(R), we have
C1(µ′, ν′) ≤ Cp(µ

′, ν′) . (S36)

Consider a sequence (µ′k)k∈N in P(R) and µ′ ∈ P(R) such that limk→∞Cp(µ
′
k, µ
′) = 0. By

(S36), this implies limk→∞C1(µ′k, µ
′) = 0. Since the Cramér distance of order 1 is equivalent to

the Wasserstein distance of order 1, then by [10, Theorem 6.8], the convergence of (µ′k)k∈N to µ′
under Cp implies (µ′k)k∈N converges weakly to µ′ in P(R). By Theorem 1, we conclude that the
convergence under SCp implies the weak convergence in P(Rd).

We now show the second part of the statement. This result partly follows from slight modifications
of the techniques we used in the proof of Theorem 1. Consider a compact space K′ ⊂ R and a
sequence (µ′k)k∈N in P(K′). Suppose that (µ′k)k∈N converges weakly to µ′ ∈ P(K′). Since Fµ′ is
non-decreasing, it is almost everywhere continuous w.r.t. to the Lebesgue convergence, and using the
Portmanteau theorem, we get that for Leb-almost every t ∈ R, limk→∞ Fµ′k(t) = Fµ′(t). Besides,

for any k ∈ N and t ∈ K′, |Fµ′k(t)| ≤ 1, and since K′ is compact,
(∫

K′
1pdt

)1/p
< ∞. By the

dominated convergence theorem in Lp-spaces, we conclude that

lim
k→∞

{∫
K′
|Fµ′k(t)− Fµ′(t)|pdt

}1/p

= 0 , (S37)

in other words, the weak convergence of measures in P(K′), where K′ is a compact subspace of R,
implies the convergence under Cp.

Now, consider a compact space K ⊂ Rd and a sequence (µk)k∈N in P(K) which converges weakly to
µ ∈ P(K). For any θ ∈ Sd−1, define Kθ = {〈θ, x〉 : x ∈ K}, which is a compact subset of R (since
it is the image of K by a continuous function) with diam(Kθ) ≤ diam(K) (by the Cauchy-Schwarz
inequality). The sequence of pushforward measures (θ?]µk)k∈N is in P(Kθ) and, by the continuous
mapping theorem, converges weakly to θ?]µ ∈ P(Kθ). Therefore, by (S37), for any θ ∈ Sd−1,

lim
k→∞

Cp(θ
?
]µk, θ

?
]µ) = 0 . (S38)

Besides, for any µ, ν ∈ P(Rd) with support in K, and θ ∈ Sd−1,

Cp(θ
?
] ν, θ

?
]µ) =

∫
R
|Fν(t)− Fµ(t)|p dt =

∫
Kθ

|Fν(t)− Fµ(t)|p dt

≤ 2pdiam(Kθ) ≤ 2pdiam(K) .
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By (S38) and the dominated convergence theorem, we finally obtain limk→∞ SCp(µk, µ) = 0.

Corollary S6. Let p ∈ [1,∞) and F̃ ⊂Mb(R). Suppose that the space spanned by F̃ is dense in the
space of continous functions for ‖ · ‖∞. Then, the convergence under the Sliced Integral Probability
Metric of order p associated with F̃, Sγ F̃,p , implies the weak convergence in P(Rd). Besides, if γ F̃ is
bounded, the converge implication holds, i.e. the weak convergence in P(Rd) implies the convergence
under Sγ F̃,p.

Proof. By construction of F̃ and [11, Section 5.1], γ F̃ metrizes the weak convergence in P(R), i.e. the
weak convergence in P(R) is equivalent to the convergence of measures under γ F̃. The properties of
Sγ F̃,p, p ∈ [1,∞) result from the application of Theorem 1.

Remark 2. The boundedness assumption for γ F̃ is achieved if we additionally suppose that F̃ is a
uniformly bounded family of functions in M(R), which is a mild assumption.

S2.2 Proof of Corollary 2

Lemma S2. Let p ∈ [1,∞) and µ′ ∈ P(R) with empirical distribution µ̂′n. Suppose there exists
q > p such that the moment of order q of µ′, defined as Mq(µ

′) =
∫
R |t|

q
dµ′(t), is bounded above

by K <∞. Then, there exists a constant Cp,q depending on p, q such that

E
[
Wp

p(µ̂
′
n, µ
′)
]
≤ Cp,qK

 n−1/2 if q > 2p,
n−1/2 log(n) if q = 2p,
n−(q−p)/q if q ∈ (p, 2p).

Proof. This immediately results from [12, Theorem 1].

Proof of Corollary 2. We first recall that, for any ξ ∈ P(Rs) (s ≥ 1) and θ ∈ Sd−1, the moment
of order k > 0 of θ?] ξ is lower than the one associated with ξ. Indeed, by using the property of
pushforward measures, the Cauchy-Schwarz inequality, and ‖θ‖ ≤ 1, we have

Mk(θ?] ξ) =

∫
R
|t|k dθ?] ξ(t) =

∫
Rd
|〈θ, x〉|k dξ(x) ≤

∫
Rd
‖x‖k dξ(x) = Mk(ξ) . (S39)

Now, let p ∈ [1,∞) and µ ∈ Pq(Rd) (q > p) with empirical distribution µ̂n. Then, by (S39), for
any θ ∈ Sd−1, Mq(θ

?
]µ) ≤Mq(µ) <∞, and we can apply Lemma S2 and Theorem 5 to derive the

convergence rate under SWp : there exists a constant Cp,q such that,

E
[
SWp

p(µ̂n, µ)
]
≤ Cp,qMp/q

q (µ)

 n−1/2 if q > 2p,
n−1/2 log(n) if q = 2p,
n−(q−p)/q if q ∈ (p, 2p).

(S40)

Besides, since Wp is a metric, we can apply Theorem 5 to derive the sample complexity of SWp.
Consider µ, ν ∈ Pq(Rd) with q > p, with respective empirical measures µ̂n, ν̂n. Then, starting from
(S31) and using the convergence rate derived in (S40), we obtain the desired result as follows

E |SWp(µ, ν)− SWp(µ̂n, ν̂n)|

≤
{
E
∣∣SWp

p(µ̂n, µ)
∣∣}1/p +

{
E
∣∣SWp

p(ν̂n, ν)
∣∣}1/p

≤ C1/p
p,q

(
M1/q
q (µ) +M1/q

q (ν)
) n−1/(2p) if q > 2p,

n−1/(2p) log(n)1/p if q = 2p,
n−(q−p)/(pq) if q ∈ (p, 2p).
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S2.3 Proof of Theorem 7

Proof of Theorem 7. Let p ∈ [1,∞) and ε ≥ 0. We use the reformulation of Wp,ε as the maximum
of an expectation, as given in [13, Proposition 2.1],

SWp
p,ε(µ, ν) =

∫
Sd−1

Wp
p,ε(θ

?
]µ, θ

?
] ν)dσ(θ)

=

∫
Sd−1

{
max

ũ,ṽ∈C(R)
Eθ?]µ⊗θ?] ν

[
φε
(
ũ(X̃), ṽ(Ỹ ), X̃, Ỹ

)]}p
dσ(θ) , (S41)

where C(R) denotes the set of continuous real functions, and φε(t, s, x, y) = t + s −
εe(t+s−‖x−y‖

p)/ε.

Consider for any θ ∈ Sd−1, ũ?θ , ṽ?θ as the functions attaining the maximum in (S41), which exist by
[14, Theorem 4 in the supplementary document]. We obtain

SWp
p,ε(µ, ν) =

∫
Sd−1

{
Eθ?]µ⊗θ?] ν

[
φε
(
ũ?θ(X̃), ṽ?θ(Ỹ ), X̃, Ỹ

)]}p
dσ(θ)

=

∫
Sd−1

{
Eµ⊗ν

[
φε
(
ũ?θ ◦ θ?(X), ṽ?θ ◦ θ?(Y ), X, Y

)]}p
dσ(θ) . (S42)

Since for all w̃ ∈ C(R) and θ ∈ Sd−1, w̃ ◦ θ? ∈ C(Rd), we can bound (S42) as follows

SWp
p,ε(µ, ν) ≤

∫
Sd−1

{
max

u,v∈C(Rd)
Eµ⊗ν

[
φε
(
u(X), v(Y ), X, Y

)]}p
dσ(θ) = Wp

p,ε(µ, ν) .

(S43)

By Proposition 1, since Wp,ε is non-negative, so is SWp,ε, and we can apply t 7→ t1/p on both sides
of (S43) to obtain the final result.

S2.4 Proof of Theorem 8

Proposition S1. Let X̃ be a compact subset of R, and µ′, ν′ ∈ P(X̃) with respective empirical
instantiations µ̂′n, ν̂

′
n. Let p ∈ [1,∞) and ε ≥ 0. Then,

|Wp,ε(µ̂
′
n, ν̂
′
n)−Wp,ε(µ

′, ν′)| ≤ 2 diam(X̃) {W1(µ′, µ̂′n) + W1(ν′, ν̂′n)} . (S44)

Proof. Let p ∈ [1,∞), ε ≥ 0 and X̃ ⊂ R compact. Consider µ′, ν′ ∈ P(X̃) with respective empirical
distributions µ̂′n, ν̂

′
n. We first express the regularized OT cost as the maximum of an expectation [13,

Proposition 2.1]

Wp,ε(µ
′, ν′) = max

ũ,ṽ∈C(R)
Eµ′⊗ν′

[
φε
(
ũ(X̃), ṽ(Ỹ ), X̃, Ỹ

)]
(S45)

Wp,ε(µ̂
′
n, ν
′) = max

ũ,ṽ∈C(R)
Eµ̂′n⊗ν′

[
φε
(
ũ(X̃), ṽ(Ỹ ), X̃, Ỹ

)]
, (S46)

where φε(t, s, x, y) = t+ s− εe(t+s−‖x−y‖2/2)/ε. By [14, Proposition 1], the Sinkhorn potentials
(ũ, ṽ) are Lipschitz continuous with Lipschitz constant diam(X̃) <∞. Therefore, by denoting by
Lipdiam(X̃)(R) the space of diam(X̃)-Lipschitz continuous functions defined on R, (S45) and (S46)
can be rewritten with the maximization over Lipdiam(X̃)(R).

We can now use [15, Proposition 2] to bound the absolute difference of Wp,ε(µ
′, ν′) and

Wp,ε(µ̂
′
n, ν
′). We provide the detailed proof below for completeness. By [15, Proposition 6,

Appendix A], there exist smooth potentials (ũ?, ṽ?) attaining the maximum in (S45) such that, for all
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x̃, ỹ ∈ R, ∫
R
φε(ũ

?(x̃), ṽ?(ỹ), x̃, ỹ)dν′(ỹ) = 1 µ′-almost surely, (S47)∫
R
φε(ũ

?(x̃), ṽ?(ỹ), x̃, ỹ)dµ′(x̃) = 1 ν′-almost surely . (S48)

Analogously, there exist smooth optimal potentials (ũ?n, ṽ
?
n) for (S46) satisfying (S47) and (S48)

where ũ?, ṽ? and µ′ are replaced by ũ?n, ṽ?n and µ̂′n respectively.

The optimality of these potentials give us

Eµ′⊗ν′
[
φε(ũ

?
n(X̃), ṽ?n(Ỹ ), X̃, Ỹ )

]
− Eµ̂′n⊗ν′

[
φε(ũ

?
n(X̃), ṽ?n(Ỹ ), X̃, Ỹ )

]
≤ Eµ′⊗ν′

[
φε(ũ

?(X̃), ṽ?(Ỹ ), X̃, Ỹ )
]
− Eµ̂′n⊗ν′

[
φε(ũ

?
n(X̃), ṽ?n(Ỹ ), X̃, Ỹ )

]
≤ Eµ′⊗ν′

[
φε(ũ

?(X̃), ṽ?(Ỹ ), X̃, Ỹ )
]
− Eµ̂′n⊗ν′

[
φε(ũ

?(X̃), ṽ?(Ỹ ), X̃, Ỹ )
]
.

Therefore,

|Wp,ε(µ
′, ν′)−Wp,ε(µ̂

′
n, ν
′)|

=
∣∣∣Eµ′⊗ν′[φε(ũ?(X̃), ṽ?(Ỹ ), X̃, Ỹ )

]
− Eµ̂′n⊗ν′

[
φε(ũ

?
n(X̃), ṽ?n(Ỹ ), X̃, Ỹ )

]∣∣∣
≤
∣∣∣Eµ′⊗ν′[φε(ũ?(X̃), ṽ?(Ỹ ), X̃, Ỹ )

]
− Eµ̂′n⊗ν′

[
φε(ũ

?(X̃), ṽ?(Ỹ ), X̃, Ỹ )
]∣∣∣

+
∣∣∣Eµ′⊗ν′[φε(ũ?n(X̃), ṽ?n(Ỹ ), X̃, Ỹ )

]
− Eµ̂′n⊗ν′

[
φε(ũ

?
n(X̃), ṽ?n(Ỹ ), X̃, Ỹ )

]∣∣∣ . (S49)

We bound each term of the sum in (S49) as follows∣∣∣Eµ′⊗ν′[φε(ũ?(X̃), ṽ?(Ỹ ), X̃, Ỹ )
]
− Eµ̂′n⊗ν′

[
φε(ũ

?(X̃), ṽ?(Ỹ ), X̃, Ỹ )
]∣∣∣

=
∣∣∣ ∫

R
ũ?(x̃)d(µ′ − µ̂′n)(x̃)− ε

∫
R

∫
R
e(ũ

?(x̃)+ṽ?(ỹ)−|x̃−ỹ|2/2)/εdν′(ỹ)d(µ′ − µ̂′n)(x̃)
∣∣∣

=
∣∣∣ ∫

R
ũ?(x̃)d(µ′ − µ̂′n)(x̃)

∣∣∣ ≤ sup
ũ∈Lipdiam(X̃)(R)

∣∣∣ ∫
R
ũ(x̃)d(µ′ − µ̂′n)(x̃)

∣∣∣ , (S50)

where (S50) results from (S47). Since for any f ∈ LipL(R) with L > 0, f/L ∈ Lip1(R), (S50) can
be bounded as follows∣∣∣Eµ′⊗ν′[φε(ũ?(X̃), ṽ?(Ỹ ), X̃, Ỹ )

]
− Eµ̂′n⊗ν′

[
φε(ũ

?(X̃), ṽ?(Ỹ ), X̃, Ỹ )
]∣∣∣

≤ diam(X̃) sup
ũ∈Lip1(R)

∣∣∣ ∫
R
ũ(x̃)d(θ?]µ− θ?] µ̂n)(x̃)

∣∣∣ = diam(X̃)W1(µ′, µ̂′n) , (S51)

where (S51) follows from the dual formulation of the Wasserstein distance of order 1 [10, Theorem
5.10].

We show with an analogous proof that∣∣∣Eµ′⊗ν′[φε(ũ?n(X̃), ṽ?n(Ỹ ), X̃, Ỹ )
]
− Eµ̂′n⊗ν′

[
φε(ũ

?
n(X̃), ṽ?n(Ỹ ), X̃, Ỹ )

]∣∣∣ ≤ diam(X̃)W1(µ′, µ̂′n) ,

which leads to the conclusion that

|Wp,ε(µ
′, ν′)−Wp,ε(µ̂

′
n, ν
′)| ≤ 2 diam(X̃)W1(µ′, µ̂′n) . (S52)

By using the triangle inequality and (S52), we obtain the final result

|Wp,ε(µ̂
′
n, ν̂
′
n)−Wp,ε(µ

′, ν′)| ≤ |Wp,ε(µ
′, ν′)−Wp,ε(µ̂

′
n, ν
′)|+ |Wp,ε(µ̂

′
n, ν
′)−Wp,ε(µ̂

′
n, ν̂
′
n)|

≤ 2 diam(X̃) {W1(µ′, µ̂′n) + W1(ν′, ν̂′n)} .
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Corollary S7. Let X̃ be a compact subset of R, and µ′, ν′ ∈ P(X̃). Denote by µ̂′n, ν̂
′
n their respective

empirical instantiations. Let p ∈ [1,∞) and ε ≥ 0. Then,

E |Wp,ε(µ̂
′
n, ν̂
′
n)−Wp,ε(µ

′, ν′)| ≤ 2 diam(X̃)Cq
[
M1/q
q (µ′) +M1/q

q (ν′)
]
n−1/2 ,

where q > 2, Cq < ∞ is a constant that depends on q, and Mq(µ
′),Mq(ν

′) are the moments of
order q of µ′, ν′ respectively.

Proof. We apply Proposition S1 and take the expectation of (S44) with respect to X̃1:n ∼ µ̂′n and
Ỹ1:n ∼ ν̂′n

E |Wp,ε(µ̂
′
n, ν̂
′
n)−Wp,ε(µ

′, ν′)| ≤ 2 diam(X̃)E {W1(µ′, µ̂′n) + W1(ν′, ν̂′n)} . (S53)

Since µ′ and ν′ are both supported on a compact space, they have infinitely many finite moments. We
can then bound (S53) using the convergence rate of empirical measures in W1, recalled in Lemma S2.
This concludes the proof.

Proof of Theorem 8. Let p ∈ [1,∞) and ε ≥ 0. Consider µ, ν ∈ P(X) with X ⊂ Rd compact, and
denote by µ̂n, ν̂n their respective empirical distributions.

Let θ ∈ Sd−1 and define Xθ = {〈θ, x〉 : x ∈ X}. Xθ is compact (since X is compact and θ? is
continuous) and verifies diam(Xθ) ≤ diam(X) (by the Cauchy-Schwarz inequality). Besides, by
(S39), for any k > 0, Mk(θ?]µ) ≤ Mk(µ) and Mk(θ?] ν) ≤ Mk(ν). By Corollary S7, there exists
Cq <∞ which depends on q > 2 such that,

E
∣∣Wp,ε(θ

?
] µ̂n, θ

?
] ν̂n)−Wp,ε(θ

?
]µ, θ

?
] ν)
∣∣ ≤ 2 diam(X)Cq

[
M1/q
q (µ) +M1/q

q (ν)
]
n−1/2 .

The sample complexity of SWp,ε is finally obtained by applying Theorem 4.

S2.5 Proof of Proposition 2

Sinkhorn’s algorithm refers to an iterative procedure which operates on empirical distributions as
follows: consider a cost matrix C between two sets of n samples, and define the matrix K with
Ki,j = exp(−Ci,j/ε) for 1 ≤ i, j ≤ n, and initialize b(0) = 1 ∈ Rn ; then, compute for ` > 1,
a(`) = 1./n(Kb(`−1)), b(`) = 1./n(Ka(`)), where ./ stands for the entry-wise division. This defines
a sequence γ(`)i,j = a

(`)
i Ki,jb

(`)
j , which converges to a solution of (3) at a linear rate. The convergence

rate of Sinkhorn’s algorithm is recalled in Theorem S1. For an extended discussion on this result, we
refer to [16, Section 4.2].
Theorem S1 ([17]). The iterates a(`) and b(`) of Sinkhorn’s algorithm converge linearly for the
Hilbert metric at a rate 1− tanh(τ(K)/4), with τ(K) = log maxi,j,i′,j′

KijKi′j′

Kij′Ki′j
. In particular, for

the squared-norm cost, i.e. Kij = exp(−‖xi − xj‖2/ε), it holds

τ(K) ≤ 2 max
i,j
‖xi − xj‖2/ε.

Proof of Proposition 2. For i, j ∈ {1, . . . , n}, the function fi,j : θ ∈ Sd−1 7→ 1
R 〈θ, xi − xj〉 is

1-Lipschitz and has median 0 for θ uniformly distributed on the unit sphere. Thus, by concentration
of measure on the sphere [18, Example 3.12], it holds for ε > 0,

P (|fi,j(θ)| ≥ ε) ≤
√

2π exp(−dε2/2) .

Taking a union bound over the n(n− 1) pairs of indices and setting τ = (Rε)2, it follows

P
(

max
i,j
|〈θ, xi − xj〉|2 ≥ τ

)
≤
√

2πn2 exp(−dτ/2R2) .

Hence, for any δ > 0, it holds with probability 1−δ that maxi,j |〈θ, xi−xj〉|2 ≤ 2R2

d log(
√

2πn2/δ).
This argument was suggested to us by an anonymous reviewer.
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S3 Additional experimental results

All of our experimental findings presented in this paper and its supplementary document can be
reproduced with the code that we provided here: https://github.com/kimiandj/sliced_div.

In this section, we provide additional results obtained for the synthetical experiments illustrating
the sample complexity of Sliced-Wasserstein and Sliced-Sinkhorn divergences: we produce figures
analogously to Figures 2(b), 3(a) and 3(b), with different hyperparameter values.
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Figure S1: Illustration of Corollary 2: Wasserstein and Sliced-Wasserstein distances of order 2
between two sets of n samples generated from N (0, Id) vs. n, for different d, on log-log scale.
SW2 is approximated with L random projections, L ∈ {1, 10, 1000}. Results are averaged over 100
runs, and the shaded areas correspond to the 10th-90th percentiles. Figure 2(b) shows the results for
L = 100.
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(a) Influence of the data dimension for ε ∈ {0.05, 10, 100}
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(b) Influence of the regularization coefficient for d ∈ {2, 10, 50}

Figure S2: Illustration of Theorem 8: Sinkhorn and Sliced-Sinkhorn divergences between two sets
of n samples generated from N (0, Id) for different values of n, dimension d, and regularization
coefficient ε. Sliced-Sinkhorn is approximated with 10 random projections. Results are averaged over
100 runs, and the shaded areas correspond to the 10th-90th percentiles. All plots have a log-log scale.
Figure 3(a) shows the influence of the dimension for ε = 1, and Figure 3(b) shows the influence of
the regularization for d = 100.
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