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Abstract

We study the question of obtaining last-iterate convergence rates for no-regret
learning algorithms in multi-player games. We show that the optimistic gradient
(OG) algorithm with a constant step-size, which is no-regret, achieves a last-iterate
rate of O(1/

p
T ) with respect to the gap function in smooth monotone games.

This result addresses a question of Mertikopoulos & Zhou (2018), who asked
whether extra-gradient approaches (such as OG) can be applied to achieve improved
guarantees in the multi-agent learning setting. The proof of our upper bound uses
a new technique centered around an adaptive choice of potential function at each
iteration. We also show that the O(1/

p
T ) rate is tight for all p-SCLI algorithms,

which includes OG as a special case. As a byproduct of our lower bound analysis
we additionally present a proof of a conjecture of Arjevani et al. (2015) which is
more direct than previous approaches.

1 Introduction

In the setting of multi-agent online learning ([SS11, CBL06]), K players interact with each other over
time. At each time step t, each player k 2 {1, . . . ,K} chooses an action z(t)

k
; z(t)

k
may represent,

for instance, the bidding strategy of an advertiser at time t. Player k then suffers a loss `t(z
(t)

k
)

that depends on both player k’s action z(t)
k

and the actions of all other players at time t (which are
absorbed into the loss function `t(·)). Finally, player k receives some feedback informing them of
how to improve their actions in future iterations. In this paper we study gradient-based feedback,
meaning that the feedback is the vector g(t)

k
= rzk`t(z

(t)

k
).

A fundamental quantity used to measure the performance of an online learning algorithm is the
regret of player k, which is the difference between the total loss of player k over T time steps and
the loss of the best possible action in hindsight: formally, the regret at time T is

P
T

t=1
`t(z

(t)

k
) �

minzk

P
T

t=1
`t(zk). An algorithm is said to be no-regret if its regret at time T grows sub-linearly

with T for an adversarial choice of the loss functions `t. If all agents playing a game follow no-regret
learning algorithms to choose their actions, then it is well-known that the empirical frequency of
their actions converges to a coarse correlated equilibrium (CCE) ([MV78, CBL06]). In turn, a
substantial body of work (e.g., [CBL06, DP09, EDMN09, CD11, VZ13, KKDB15, BTHK15, MP17,
MZ18, KBTB18]) has focused on establishing for which classes of games or learning algorithms this
convergence to a CCE can be strengthened, such as to convergence to a Nash equilibrium (NE).

However, the type of convergence guaranteed in these works generally either applies only to the
time-average of the joint action profiles, or else requires the sequence of learning rates to converge to
0. Such guarantees leave substantial room for improvement: a statement about the average of the joint
action profiles fails to capture the game dynamics over time ([MPP17]), and both types of guarantees
use newly acquired information with decreasing weight, which, as remarked by [LZMJ20], is very
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Table 1: Known last-iterate convergence rates for learning in smooth monotone games with perfect
gradient feedback (i.e., deterministic algorithms). We specialize to the 2-player 0-sum case in
presenting prior work, since some papers in the literature only consider this setting. Recall that a
game G has a �-singular value lower bound if for all z, all singular values of @FG(z) are � �. `,⇤
are the Lipschitz constants of FG , @FG , respectively, and c, C > 0 are absolute constants where c is
sufficiently small and C is sufficiently large. Upper bounds in the left-hand column are for the EG
algorithm, and lower bounds are for a general form of 1-SCLI methods which include EG. Upper
bounds in the right-hand column are for algorithms which are implementable as online no-regret
learning algorithms (e.g., OG or online gradient descent), and lower bounds are shown for two
classes of algorithms containing OG and online gradient descent, namely p-SCLI algorithms for
general p � 1 (recall for OG, p = 2) as well as those satisfying a 2-step linear span assumption (see
[IAGM19]). The reported upper and lower bounds are stated for the total gap function (Definition 3);
leading constants and factors depending on distance between initialization and optimum are omitted.

Deterministic
Game class Extra gradient Implementable as no-regret

µ-strongly
monotone

Upper: `
�
1� cµ

`

�T [MOP19b, EG]

Lower: µ
⇣
1� Cµ

`

⌘T

[AMLJG19, 1-SCLI]

Upper: `
�
1� cµ

`

�T [MOP19b, OG]

Lower: µ
⇣
1� Cµ

`

⌘T

[IAGM19, 2-step lin. span]

Lower: µ
✓
1� p

q
Cµ

`

◆T

[ASSS15, IAGM19, p-SCLI]

Monotone,
�-sing. val.
low. bnd.

Upper: `
⇣
1� c�

2

`2

⌘T

[AMLJG19, EG]

Lower: �
⇣
1� C�

2

`2

⌘T

[AMLJG19, 1-SCLI]

Upper: `
⇣
1� c�

2

`2

⌘T

[AMLJG19, OG]

Lower: �
⇣
1� C�

`

⌘T

[IAGM19, 2-step lin. span]

Lower: �
✓
1� p

q
C�

`

◆T

[ASSS15, IAGM19, p-SCLI]

�-cocoercive – Upper: 1

�
p
T

[LZMJ20, Online grad. descent]

Monotone
Upper: `+⇤p

T
[GPDO20, EG]

Lower: `p
T

[GPDO20, 1-SCLI]
Upper: `+⇤p

T
(Theorem 5, OG)

Lower: `p
T

(Theorem 7, p-SCLI, lin. coeff. matrices)

unnatural from an economic perspective.1 Therefore, the following question is of particular interest
([MZ18, LZMJ20, MPP17, DISZ17]):

Can we establish last-iterate rates if all players act according to
a no-regret learning algorithm with constant step size? (?)

We measure the proximity of an action profile z = (z1, . . . , zK) to equilibrium in terms of the
total gap function at z (Definition 3): it is defined to be the sum over all players k of the maximum
decrease in cost player k could achieve by deviating from its action zk. [LZMJ20] took initial steps
toward addressing (?), showing that if all agents follow the online gradient descent algorithm, then
for all �-cocoercive games, the action profiles z(t) = (z(t)

1
, . . . , z(t)

K
) will converge to equilibrium in

terms of the total gap function at a rate of O(1/
p
T ). Moreover, linear last-iterate rates have been

long known for smooth strongly-monotone games ([Tse95, GBV+18, LS18, MOP19b, AMLJG19,
ZMM+20]), a sub-class of �-cocoercive games. Unfortunately, even �-cocoercive games exclude
many important classes of games, such as bilinear games, which are the adaptation of matrix games
to the unconstrained setting. Moreover, this shortcoming is not merely an artifact of the analysis
of [LZMJ20]: it has been observed (e.g. [DISZ17, GBV+18]) that in bilinear games, the players’
actions in online gradient descent not only fail to converge, but diverge to infinity. Prior work on
last-iterate convergence rates for these various subclasses of monotone games is summarized in Table
1 for the case of perfect gradient feedback; the setting for noisy feedback is summarized in Table 2 in
Appendix A.4.

1In fact, even in the adversarial setting, standard no-regret algorithms such as FTRL ([SS11]) need to be
applied with decreasing step-size in order to achieve sublinear regret.
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1.1 Our contributions

In this paper we answer (?) in the affirmative for all monotone games (Definition 1) satisfying a mild
smoothness condition, which includes smooth �-cocoercive games and bilinear games. Many common
and well-studied classes of games, such as zero-sum polymatrix games ([BF87, DP09, CCDP16])
and its generalization zero-sum socially-concave games ([EDMN09]) are monotone but are not in
general �-cocoercive. Hence our paper is the first to prove last-iterate convergence in the sense of (?)
for the unconstrained version of these games as well. In more detail, we establish the following:

• We show in Theorem 5 and Corollary 6 that the actions taken by learners following the
optimistic gradient (OG) algorithm, which is no-regret, exhibit last-iterate convergence to a
Nash equilibrium in smooth, monotone games at a rate of O(1/

p
T ) in terms of the global

gap function. The proof uses a new technique which we call adaptive potential functions
(Section 3.1) which may be of independent interest.

• We show in Theorem 7 that the rate O(1/
p
T ) cannot be improved for any algorithm

belonging to the class of p-SCLI algorithms (Definition 5), which includes OG.

The OG algorithm is closely related to the extra-gradient (EG) algorithm ([Kor76, Nem04]),2 which,
at each time step t, assumes each player k has an oracle Ok which provides them with an additional
gradient at a slightly different action than the action z(t)

k
played at step t. Hence EG does not naturally

fit into the standard setting of multi-agent learning. One could try to “force” EG into the setting of
multi-agent learning by taking actions at odd-numbered time steps t to simulate the oracle Ok, and
using the even-numbered time steps to simulate the actions z(t)

k
that EG actually takes. Although

this algorithm exhibits last-iterate convergence at a rate of O(1/
p
T ) in smooth monotone games

when all players play according to it [GPDO20], it is straightforward to see that it is not a no-regret
learning algorithm, i.e., for an adversarial loss function the regret can be linear in T (see Proposition
10 in Appendix A.3).

Nevertheless, due to the success of EG at solving monotone variational inequalities, [MZ18] asked
whether similar techniques to EG could be used to speed up last-iterate convergence to Nash equilibria.
Our upper bound for OG answers this question in the affirmative: various papers ([CYL+12, RS12,
RS13, HIMM19]) have observed that OG may be viewed as an approximation of EG, in which
the previous iteration’s gradient is used to simulate the oracle Ok. Moreover, our upper bound of
O(1/

p
T ) applies in many games for which the approach used in [MZ18], namely Nesterov’s dual

averaging ([Nes09]), either fails to converge (such as bilinear games) or only yields asymptotic rates
with decreasing learning rate (such as smooth strictly monotone games). Proving last-iterate rates for
OG has also been noted as an important open question in [HIMM19, Table 1]. At a technical level,
the proof of our upper bound (Theorem 5) uses the proof technique in [GPDO20] for the last-iterate
convergence of EG as a starting point. In particular, similar to [GPDO20], our proof proceeds by
first noting that some iterate z(t

⇤
) of OG will have gradient gap O(1/

p
T ) (see Definition 2; this

is essentially a known result) and then showing that for all t � t⇤ the gradient gap only increases
by at most a constant factor. The latter step is the bulk of the proof, as was the case in [GPDO20];
however, since each iterate of OG depends on the previous two iterates and gradients, the proof for
OG is significantly more involved than that for EG. We refer the reader to Section 3.1 and Appendix
B for further details.

The proof of our lower bound for p-SCLI algorithms, Theorem 7, reduces to a question about the
spectral radius of a family of polynomials. In the course of our analysis we prove a conjecture by
[ASSS15] about such polynomials; though the validity of this conjecture is implied by each of several
independent results in the literature (e.g., [AS16, Nev93]), our proof is more direct than previous
ones.

Lastly, we mention that our focus in this paper is on the unconstrained setting, meaning that the
players’ losses are defined on all of Euclidean space. We leave the constrained setting, in which the
players must project their actions onto a convex constraint set, to future work.

2EG is also known as mirror-prox, which specifically refers to its generalization to general Bregman
divergences.
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1.2 Related work

Multi-agent learning in games. In the constrained setting, many papers have studied conditions
under which the action profile of no-regret learning algorithms, often variants of Follow-The-
Regularized-Leader (FTRL), converges to equilibrium. However, these works all assume either
a learning rate that decreases over time ([MZ18, ZMB+17, ZMA+18, ZMM+17]), or else only apply
to specific types of potential games ([KKDB15, KBTB18, PPP17, KPT09, CL16, BEDL06, PP14]),
which significantly facilitates the analysis of last-iterate convergence.3

Such potential games are in general incomparable with monotone games, and do not even include
finite-state two-player zero sum games (i.e., matrix games). In fact, [BP18] showed that the actions of
players following FTRL in two-player zero-sum matrix games diverge from interior Nash equilibria.
Many other works ([HMC03, MPP17, KLP11, DFP+10, BCM12, PP16]) establish similar non-
convergence results in both discrete and continuous time for various types of monotone games,
including zero-sum polymatrix games. Such non-convergence includes chaotic behavior such as
Poincaré recurrence, which showcases the insufficiency of on-average convergence (which holds in
such settings) and so is additional motivation for the question (?).

Monotone variational inequalities & OG. The problem of finding a Nash equilibrium of a mono-
tone game is exactly that of finding a solution to a monotone variational inequality (VI). OG was
originally introduced by [Pop80], who showed that its iterates converge to solutions of monotone
VIs, without proving explicit rates.4 It is also well-known that the averaged iterate of OG converges
to the solution of a monotone VI at a rate of O(1/T ) ([HIMM19, MOP19a, RS13]), which is known
to be optimal ([Nem04, OX19, ASM+20]). Recently it has been shown ([DP18, LNPW20]) that a
modification of OG known as optimistic multiplicative-weights update exhibits last-iterate conver-
gence to Nash equilibria in two-player zero-sum monotone games, but as with the unconstrained case
([MOP19a]) non-asymptotic rates are unknown. To the best of our knowledge, the only work proving
last-iterate convergence rates for general smooth monotone VIs was [GPDO20], which only treated
the EG algorithm, which is not no-regret. There is a vast literature on solving VIs, and we refer the
reader to [FP03] for further references.

2 Preliminaries

Throughout this paper we use the following notational conventions. For a vector v 2 R
n, let kvk

denote the Euclidean norm of v. For v 2 R
n, set B(v, R) := {z 2 R

n : kv � zk  R}; when we
wish to make the dimension explicit we write BRn(v, R). For a matrix A 2 R

n⇥n let kAk� denote
the spectral norm of A.

We let the set of K players be denoted by K := {1, 2, . . .K}. Each player k’s actions zk belong
to their action set, denoted Zk, where Zk ✓ R

nk is a convex subset of Euclidean space. Let
Z =

Q
K

k=1
Zk ✓ R

n, where n = n1 + · · · + nK . In this paper we study the setting where the
action sets are unconstrained (as in [LZMJ20]), meaning that Zk = R

nk , and Z = R
n, where

n = n1 + · · ·+ nK . The action profile is the vector z := (z1, . . . , zK) 2 Z . For any player k 2 K,
let z�k 2

Q
k0 6=k

Zk0 be the vector of actions of all the other players. Each player k 2 K wishes to
minimize its cost function fk : Z ! R, which is assumed to be twice continuously differentiable.
The tuple G := (K, (Zk)Kk=1

, (fk)Kk=1
) is known as a continuous game.

At each time step t, each player k plays an action z(t)
k

; we assume the feedback to player k is given
in the form of the gradient rzkfk(z

(t)

k
, z(t)�k

) of their cost function with respect to their action z(t)
k

,
given the actions z(t)�k

of the other players at time t. We denote the concatenation of these gradients
by FG(z) := (rz1f1(z), . . . ,rzKfK(z)) 2 R

n. When the game G is clear, we will sometimes drop
the subscript and write F : Z ! R

n.

3In potential games, there is a canonical choice of potential function whose local minima are equivalent to
being at a Nash equilibrium. The lack of existence of a natural potential function in general monotone games is
a significant challenge in establishing last-iterate convergence.

4Technically, the result of [Pop80] only applies to two-player zero-sum monotone games (i.e., finding the
saddle point of a convex-concave function). The proof readily extends to general monotone VIs ([HIMM19]).
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Equilibria & monotone games. A Nash equilibrium in the game G is an action profile z⇤ 2 Z so
that for each player k, it holds that fk(z⇤k, z

⇤
�k

)  fk(z0k, z
⇤
�k

) for any z0
k
2 Zk. Throughout this

paper we study monotone games:
Definition 1 (Monotonicity; [Ros65]). The game G = (K, (Zk)Kk=1

, (fk)Kk=1
) is monotone if for

all z, z0 2 Z , it holds that hFG(z0) � FG(z), z0 � zi � 0. In such a case, we say also that FG is a
monotone operator.

The following classical result characterizes the Nash equilibria in monotone games:
Proposition 1 ([FP03]). In the unconstrained setting, if the game G is monotone, any Nash equilib-
rium z⇤ satisfies FG(z⇤) = 0. Conversely, if FG(z) = 0, then z is a Nash equilibrium.

In accordance with Proposition 1, one measure of the proximity to equilibrium of some z 2 Z is the
norm of FG(z):
Definition 2 (Gradient gap function). Given a monotone game G with its associated operator FG , the
gradient gap function evaluated at z is defined to be kFG(z)k.

It is also common ([MOP19a, Nem04]) to measure the distance from equilibrium of some z 2 Z by
adding the maximum decrease in cost that each player could achieve by deviating from their current
action zk:
Definition 3 (Total gap function). Given a monotone game G = (K, (Zk)Kk=1

, (fk)Kk=1
), compact

subsets Z 0
k
✓ Zk for each k 2 K, and a point z 2 Z , define the total gap function at z with respect to

the set Z 0 :=
Q

K

k=1
Z

0
k

by TGapZ
0

G (z) :=
P

K

k=1

⇣
fk(z)�minz0

k2Z0
k
fk(z0k, z�k)

⌘
. At times we

will slightly abuse notation, and for F := FG , write TGapZ
0

F
in place of TGapZ

0

G .

As discussed in [GPDO20], it is in general impossible to obtain meaningful guarantees on the total gap
function by allowing each player to deviate to an action in their entire space Zk, which necessitates
defining the total gap function in Definition 3 with respect to the compact subsets Z 0

k
. We discuss in

Remark 4 how, in our setting, it is without loss of generality to shrink Zk so that Zk = Z
0
k

for each k.
Proposition 2 below shows that in monotone games, the gradient gap function upper bounds the total
gap function:
Proposition 2. Suppose G = (K, (Zk)Kk=1

, (fk)Kk=1
) is a monotone game, and compact subsets

Z
0
k
⇢ Zk are given, where the diameter of each Z

0
k

is upper bounded by D > 0. Then

TGapZ
0

G (z)  D
p

K · kFG(z)k.

For completeness, a proof of Proposition 2 is presented in Appendix A.

Special case: convex-concave min-max optimization. Since in a two-player zero-sum game
G = ({1, 2}, (Z1,Z2), (f1, f2)) we must have f1 = �f2, it is straightforward to show that f1(z1, z2)
is convex in z1 and concave in z2. Moreover, it is immediate that Nash equilibria of the game G

correspond to saddle points of f1; thus a special case of our setting is that of finding saddle points
of convex-concave functions ([FP03]). Such saddle point problems have received much attention
recently since they can be viewed as a simplified model of generative adversarial networks (e.g.,
[GBV+18, DISZ17, CGFLJ19, GHP+18, YSX+17]).

Optimistic gradient (OG) algorithm. In the optimistic gradient (OG) algorithm, each player k
performs the following update:

z(t+1)

k
:= z(t)

k
� 2⌘tg

(t)

k
+ ⌘tg

(t�1)

k
, (OG)

where g(t)

k
= rzkfk(z

(t)

k
, z(t)�k

) for t � 0. The following essentially optimal regret bound is well-
known for the OG algorithm, when the actions of the other players z(t)�k

(often referred to as the
environment’s actions) are adversarial:
Proposition 3. Assume that for all z�k the function zk 7! fk(zk, z�k) is convex. Then the regret
of OG with learning rate ⌘t = O(D/L

p
t) is O(DL

p
T ), where L = maxt kg

(t)

k
k and D =

max{kz⇤
k
k,maxt kz

(t)

k
k}.
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In Proposition 3, z⇤
k

is defined by z⇤
k
2 argminzk2Zk

P
t

t0=0
fk(zk, z

(t
0
)

�k
). The assumption in the

proposition that kz(t)
k
k  D may be satisfied in the unconstrained setting by projecting the iterates

onto the region B(0, D) ⇢ R
nk , for some D � kz⇤

k
k, without changing the regret bound. The

implications of this modification to (OG) are discussed further in Remark 4.

3 Last-iterate rates for OG via adaptive potential functions

In this section we show that in the unconstrained setting (namely, that where Zk = R
nk for all

k 2 K), when all players act according to OG, their iterates exhibit last-iterate convergence to a
Nash equilibrium. Our convergence result holds for games G for which the operator FG satisfies the
following smoothness assumption:
Assumption 4 (Smoothness). For a monotone operator F : Z ! R

n, assume that the following first
and second-order Lipschitzness conditions hold, for some `,⇤ > 0:

8z, z0 2 Z, kF (z)� F (z0)k  ` · kz� z0k (1)
8z, z0 2 Z, k@F (z)� @F (z0)k�  ⇤ · kz� z0k. (2)

Here @F : Z ! R
n⇥n denotes the Jacobian of F .

Condition (1) is entirely standard in the setting of solving monotone variational inequalities
([Nem04]); condition (2) is also very mild, being made for essentially all second-order methods (e.g.,
[ALW19, Nes06]).

By the definition of FG(·), when all players in a game G act according to (OG) with constant step
size ⌘, then the action profile z(t) takes the form

z(�1), z(0) 2 R
n, z(t+1) = z(t) � 2⌘FG(z

(t)) + ⌘FG(z
(t�1)) 8t � 0. (3)

The main theorem of this section, Theorem 5, shows that under the OG updates (3), the iterates
converge at a rate of O(1/

p
T ) to a Nash equilibrium with respect to the gradient gap function:

Theorem 5 (Last-iterate convergence of OG). Suppose G is a monotone game so that FG satisfies
Assumption 4. For some z(�1), z(0) 2 R

n, suppose there is z⇤ 2 R
n so that FG(z⇤) = 0 and kz⇤ �

z(�1)
k  D, kz⇤ � z(0)k  D. Then the iterates z(T ) of OG (3) for any ⌘  min

�
1

150`
, 1

1711D⇤

 

satisfy:

kFG(z
(T ))k 

60D

⌘
p
T

(4)

By Proposition 2, we immediately get a bound on the total gap function at each time T :
Corollary 6 (Total gap function for last iterate of OG). In the setting of Theorem 5, let Z 0

k
:=

B(z(0)
k

, 3D) for each k 2 K. Then, with Z
0 =

Q
k2K Z

0
k
,

TGapZ
0

G (z(T )) 
180KD2

⌘
p
T

. (5)

We made no attempt to optimize the consants in Theorem 5 and Corollary 6, and they can almost
certainly be improved.
Remark 4 (Bounded iterates). Recall from the discussion following Proposition 3 that it is necessary
to project the iterates of OG onto a compact ball to achieve the no-regret property. As our guiding
question (?) asks for last-iterate rates achieved by a no-regret algorithm, we should ensure that
such projections are compatible with the guarantees in Theorem 5 and Corollary 6. For this we
note that [MOP19a, Lemma 4(b)] showed that for the dynamics (3) without constraints, for all
t � 0, kz(t) � z⇤k  2kz(0) � z⇤k. Therefore, as long as we make the very mild assumption of a
known a priori upper bound kz⇤k  D/2 (as well as kz(�1)

k
k  D/2, kz(0)

k
k  D/2), if all players

act according to (3), then the updates (3) remain unchanged if we project onto the constraint sets
Zk := B(0, 3D) at each time step t. This observation also serves as motivation for the compact sets
Z

0
k

used in Corollary 6: the natural choice for Z 0
k

is Zk itself, and by restricting Zk to be compact,
this choice becomes possible.
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3.1 Proof overview: adaptive potential functions

In this section we sketch the idea of the proof of Theorem 5; full details of the proof may be
found in Appendix B. First we note that it follows easily from results of [HIMM19] that OG
exhibits best-iterate convergence, i.e., in the setting of Theorem 5 we have, for each T > 0,
min1tT kFG(z(t))k  O(1/

p
T ).5 The main contribution of our proof is then to show the

following: if we choose t⇤ so that kFG(z(t
⇤
))k  O(1/

p
T ), then for all t0 � t⇤, we have

kFG(z(t
0
))k  O(1) · kFG(z(t

⇤
))k. This was the same general approach taken in [GPDO20] to

prove that the extragradient (EG) algorithm has last-iterate convergence. In particular, they showed
the stronger statement that kFG(z(t))k may be used as an approximate potential function in the sense
that it only increases by a small amount each step:

kFG(z
(t

0
+1))k |{z}

t0�0

(1 + kF (z(t
0
))k2) · kFG(z

(t
0
))k |{z}

t0�t⇤

(1 +O(1/T )) · kFG(z
(t

0
))k. (6)

However, their approach relies crucially on the fact that for the EG algorithm, z(t+1) depends only
on z(t). For the OG algorithm, it is possible that (6) fails to hold, even when FG(z(t)) is replaced by
the more natural choice of (FG(z(t)), FG(z(t�1))).6

Instead of using kFG(z(t))k as a potential function in the sense of (6), we propose instead to track the
behavior of kF̃ (t)

k, where

F̃ (t) := FG(z
(t) + ⌘FG(z

(t�1))) +C(t�1)
· FG(z

(t�1)) 2 R
n, (7)

and the matrices C(t�1)
2 R

n⇥n are defined recursively backwards, i.e., C(t�1) depends directly
on C(t), which depends directly on C(t+1), and so on. For an appropriate choice of the matrices
C(t), we show that F̃ (t+1) = (I � ⌘A(t)+C(t)) · F̃ (t), for some matrix A(t)

⇡ @FG(z(t)). We then
show that for t � t⇤, it holds that kI � ⌘A(t) +C(t)

k�  1 +O(1/T ), from which it follows that
kF̃ (t+1)

k  (1 + O(1/T )) · kF̃ (t)
k. This modification of (6) is enough to show the desired upper

bound of kFG(z(T ))k  O(1/
p
T ).

To motivate the choice of F̃ (t) in (7) it is helpful to consider the simple case where F (z) = Az for
some A 2 R

n⇥n, which was studied by [LS18]. Simple algebraic manipulations using (3) (detailed in
Appendix B) show that, for the matrix C := (I+(2⌘A)

2
)
1/2�I

2
, we have F̃ (t+1) = (I � ⌘A+C)F̃ (t)

for all t. It may be verified that we indeed have A(t) = A and C(t) = C for all t in this case, and
thus (7) may be viewed as a generalization of these calculations to the nonlinear case.

Adaptive potential functions. In general, a potential function �(FG , z) depends on the problem
instance, here taken to be FG , and an element z representing the current state of the algorithm.
Many convergence analyses from optimization (e.g., [BG17, WRJ18], and references therein) have
as a crucial element in their proofs a statement of the form �(FG , z(t+1)) . �(FG , z(t)). For
example, for the iterates z(t) of the EG algorithm, [GPDO20] (see (6)) used the potential function
�(FG , z(t)) := kFG(z(t))k.

Our approach of controlling the the norm of the vectors F̃ (t) defined in (7) can also be viewed as
an instantion of the potential function approach: since each iterate of OG depends on the previous
two iterates, the state is now given by v(t) := (z(t�1), z(t)). The potential function is given by
�OG(FG ,v(t)) := kF̃ (t)

k, where F̃> is defined in (7) and indeed only depends on v(t) once FG is
fixed since v(t) determines z(t

0
) for all t0 � t (as OG is deterministic), which in turn determine C(t�1).

However, the potential function �OG is quite unlike most other choices of potential functions in
optimization (e.g., [BG17]) in the sense that it depends globally on FG : For any t0 > t, a local change
in FG in the neighborhood of v(t

0
) may cause a change in �OG(FG ,v(t)), even if kv(t)

� v(t
0
)
k

is arbitrarily large. Because �OG(FG ,v(t)) adapts to the behavior of FG at iterates later on in the
optimization sequence, we call it an adaptive potential function. We are not aware of any prior works

5In this discussion we view ⌘, D as constants.
6For a trivial example, suppose that n = 1, FG(z) = z, z(t

0) = � > 0, and z(t
0�1) = 0. Then

k(FG(z
(t0)), FG(z

(t0�1)))k = � but k(FG(z
(t0+1)), FG(z

(t0)))k > �
p
2� 4⌘.
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using such adaptive potential functions to prove last-iterate convergence results, and we believe this
technique may find additional applications.

4 Lower bound for convergence of p-SCLIs

The main result of this section is Theorem 7, stating that the bounds on last-iterate convergence
in Theorem 5 and Corollary 6 are tight when we require the iterates z(T ) to be produced by an
optimization algorithm satisfying a particular formal definition of “last-iterate convergence”. Notice
that that we cannot hope to prove that they are tight for all first-order algorithms, since the averaged
iterates z̄(T ) := 1

T

P
T

t=1
z(t) of OG satisfy TGapZ

0

G (z̄(T ))  O
⇣

D
2

⌘T

⌘
[MOP19a, Theorem 2].

Similar to [GPDO20], we use p-stationary canonical linear iterative methods (p-SCLIs) to formalize
the notion of “last-iterate convergence”. [GPDO20] only considered the special case p = 1 to
establish a similar lower bound to Theorem 7 for a family of last-iterate algorithms including the
extragradient algorithm. The case p > 1 leads to new difficulties in our proof since even for p = 2
we must rule out algorithms such as Nesterov’s accelerated gradient descent ([Nes75]) and Pólya’s
heavy-ball method ([Pol87]), a situation that did not arise for p = 1.
Definition 5 (p-SCLIs [ASSS15, ASM+20]). An algorithm A is a first-order p-stationary canonical
linear iterative algorithm (p-SCLI) if, given a monotone operator F , and an arbitrary set of p
initialization points z(0), z(�1), . . . , z(�p+1)

2 R
n, it generates iterates z(t), t � 1, for which

z(t) =
p�1X

j=0

↵j · F (z(t�p+j)) + �j · z
(t�p+j), (8)

for t = 1, 2, . . ., where ↵j ,�j 2 R are any scalars.7

From (3) it is evident that OG with constant step size ⌘ is a 2-SCLI with �1 = 1,�0 = 0,↵1 =
�2⌘,↵0 = ⌘. Many standard algorithms for convex function minimization, including gradient
descent, Nesterov’s accelerated gradient descent (AGD), and Pólya’s Heavy Ball method, are of the
form (8) as well. We additionally remark that several variants of SCLIs (and their non-stationary coun-
terpart, CLIs) have been considered in recent papers proving lower bounds for min-max optimization
([AMLJG19, IAGM19, ASM+20]).

For simplicity, we restrict our attention to monotone operators F arising as F = FG : Rn
! R

n for
a two-player zero-sum game G (i.e., the setting of min-max optimization). For simplicity suppose
that n is even and for z 2 R

n write z = (x,y) where x,y 2 R
n/2. Define F

bil

n,`,D
to be the set of

`-Lipschitz operators F : Rn
! R

n of the form F (x,y) = (rxf(x,y),�ryf(x,y))> for some
bilinear function f : Rn/2

⇥ R
n/2

! R, with a unique equilibrium point z⇤ = (x⇤,y⇤), which
satisfies z⇤ 2 DD := BRn/2(0, D) ⇥ BRn/2(0, D). The following Theorem 7 uses functions in
F

bil

n,`,D
as “hard instances” to show that the O(1/

p
T ) rate of Corollary 5 cannot be improved by

more than an algorithm-dependent constant factor.
Theorem 7 (Algorithm-dependent lower bound for p-SCLIs). Fix `, D > 0, let A be a p-SCLI, and
let z(t) denote the tth iterate of A. Then there are constants cA, TA > 0 so that the following holds:
For all T � TA, there is some F 2 F

bil

n,`,D
so that for some initialization z(0), . . . , z(�p+1)

2 DD

and T 0
2 {T, T + 1, . . . , T + p� 1}, it holds that TGapD2D

F
(z(T

0
)) � cA`D

2
p
T

.

We remark that the order of quantifiers in Theorem 7 is important: if instead we first fix a monotone
operator F 2 F

bil

n,`,D
corresponding to some bilinear function f(x,y) = x>My, then as shown in

[LS18, Theorem 3], the iterates z(T ) = (x(T ),y(T )) of the OG algorithm will converge at a rate

of e
�O

✓
�min(M)2

�max(M)2
·T

◆

, which eventually becomes smaller than the sublinear rate of 1/
p
T .8 Such

“instance-specific” bounds are complementary to the minimax perspective taken in this paper.
7We use slightly different terminology from [ASSS15]; technically, the p-SCLIs considered in this paper are

those in [ASSS15] with linear coefficient matrices.
8
�min(M) and �max(M) denote the minimum and maximum singular values of M, respectively. The

matrix M is assumed in [LS18] to be a square matrix of full rank (which holds for the construction used to prove
Theorem 7).
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We briefly discuss the proof of Theorem 7; the full proof is deferred to Appendix C. As in prior
work proving lower bounds for p-SCLIs ([ASSS15, IAGM19]), we reduce the problem of proving a
lower bound on TGapDD

G (z(t)) to the problem of proving a lower bound on the supremum of the
spectral norms of a family of polynomials (which depends on A). Recall that for a polynomial p(z),
its spectral norm ⇢(p(z)) is the maximum norm of any root. We show:
Proposition 8. Suppose q(z) is a degree-p monic real polynomial such that q(1) = 0, r(z) is a
polynomial of degree p�1, and ` > 0. Then there is a constant C0 > 0, depending only on q(z), r(z)
and `, and some µ0 2 (0, `), so that for any µ 2 (0, µ0),

sup
⌫2[µ,`]

⇢(q(z)� ⌫ · r(z)) � 1� C0 ·
µ

`
.

The proof of Proposition 8 uses elementary tools from complex analysis. The fact that the constant
C0 in Proposition 8 depends on q(z), r(z) leads to the fact that the constants cA, TA in Theorem 7
depend on A. Moreover, we remark that this dependence cannot be improved from Proposition 8, so
removing it from Theorem 7 will require new techniques:
Proposition 9 (Tightness of Proposition 8). For any constant C0 > 0 and µ0 2 (0, `), there is some
µ 2 (0, µ0) and polynomials q(z), r(z) so that sup⌫2[µ,`] ⇢(q(z)� ⌫ · r(z)) < 1�C0 ·µ. Moreover,
the choice of the polynomials is given by

q(z) = `(z � ↵)(z � 1), r(z) = �(1 + ↵)z + ↵ for ↵ :=

p
`�

p
µ

p
`+

p
µ
. (9)

The choice of polynomials q(z), r(z) in (9) are exactly the polynomials that arise in the p-SCLI
analysis of Nesterov’s AGD [ASSS15]; as we discuss further in Appendix C, Proposition 8 is tight,
then, even for p = 2, because acceleration is possible with a 2-SCLI. As byproducts of our lower
bound analysis, we additionally obtain the following:

• Using Proposition 8, we show that any p-SCLI algorithm must have a rate of at least
⌦A(1/T ) for smooth convex function minimization (again, with an algorithm-dependent
constant).9 This is slower than the O(1/T 2) error achievable with Nesterov’s AGD with a
time-varying learning rate.

• We give a direct proof of the following statement, which was conjectured by [ASSS15]: for
polynomials q, r in the setting of Proposition 8, for any 0 < µ < `, there exists ⌫ 2 [µ, `]

so that ⇢(q(z)� ⌫ · r(z)) �
p

`/µ�1
p

`/µ+1
. Using this statement, for the setting of Theorem 7,

we give a proof of an algorithm-independent lower bound TGapDD
F

(z(t)) � ⌦(`D2/T ).
Though the algorithm-independent lower bound of ⌦(`D2/T ) has already been established
in the literature, even for non-stationary CLIs (e.g., [ASM+20, Proposition 5]), we give an
alternative proof from existing approaches.

5 Discussion

In this paper we proved tight last-iterate convergence rates for smooth monotone games when all
players act according to the optimistic gradient algorithm, which is no-regret. We believe that there
are many fruitful directions for future research. First, it would be interesting to obtain last-iterate
rates in the case that each player’s actions is constrained to the simplex and they use the optimistic
multiplicative weights update (OMWU) algorithm. [DP18, LNPW20] showed that OMWU exhibits
last-iterate convergence, but non-asymptotic rates remain unknown even for the case that FG(·) is
linear, which includes finite-action polymatrix games. Next, it would be interesting to determine
whether Theorem 5 holds if (2) is removed from Assumption 4; this problem is open even for the
EG algorithm ([GPDO20]). Finally, it would be interesting to extend our results to the setting where
players receive noisy gradients (i.e., the stochastic case). As for lower bounds, it would be interesting
to determine whether an algorithm-independent lower bound of ⌦(1/

p
T ) in the context of Theorem

7 could be proven for stationary p-SCLIs. As far as we are aware, this question is open even for
convex minimization (where the rate would be ⌦(1/T )).

9[AS16] claimed to prove a similar lower bound for stationary algorithms in the setting of smooth convex
function minimization; however, as we discuss in Appendix C, their results only apply to the strongly convex
case, where they show a linear lower bound.
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Broader impact

As this is a theoretical paper, we expect that the direct ethical and societal impacts of this work will
be limited. As the setting of multi-agent learning in games describes many systems with potential for
practical impact, such as GANs, we believe that the insights developed in this paper may eventually
aid the improvement of such technologies. If not deployed and regulated carefully, technologies
such as GANs could lead to harmful outcomes, such as through the proliferation of false media
(“deepfakes”). We hope that, through a combination of legal and technological measures, such
negative impacts of GANs can be limited and the positive applications, such as drug discovery and
image analysis in the medical field, may be realized.
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