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In this supplementary document, we present the discussion on ResNet12 results (Section A) and
additional results on few-shot classification (Section B) and cross-domain few-shot classification
(Section D); experimental details (Section E); and more visualizations of generated hyperparameters
(Section F).

A Discussion on ResNet12 results

Table A: 5-way 5-shot miniImageNet classification with multi-GPU setting vs single-GPU setting.

ALFA+Random Init MAML ALFA+MAML MAML+L2F ALFA+MAML+L2F

Single-GPU † 72.90± 0.44% 69.76± 0.46% 77.96± 0.41% 77.04± 0.42% 77.42± 0.42%
Multi-GPU 88.90± 0.31% 58.33± 0.49% 88.36± 0.32% 88.85± 0.31% 90.92± 0.29%

† The single GPU performance result is used in the main text.

We found a bug that is related to batch normalization in multi-GPU training/inference in the original
MAML++ code [1], which our code is based on. The bug results in different performance depending
on whether training/inference is performed with a single GPU or with multiple GPUs. We believe
this is due to how (asynchronous) batch normalization behaves differently in a multi-GPU setting and
MAML++ code does not shuffle the order of examples in a minibatch. This setting results in uneven
class distribution across GPUs. While MAML performs worse in this setting, adaptive variants of
MAML (L2F [2] or ALFA) perform substantially better, compared with a single-GPU setting (see
Table A). This result suggests more investigation can be done on normalization in few-shot learning
setting for possible performance improvement. While we report single-GPU ResNet12 results, we
share our results and finding in hope of facilitating further research and study on the issue.

B Additional Experiments on Few-Shot Classification

We further validate the effectiveness of our proposed dynamic inner-loop update rule ALFA, through
evaluating the performance on the relatively new CIFAR100-based [6] few-shot classification datasets:
FC100 (Fewshot-CIFAR100) [12] and CIFAR-FS (CIFAR100 few-shots) [3]. They use low resolu-
tion images (32 × 32) to create more challenging scenarios, compared to miniImageNet [14] and
tieredImageNet [15], which use images of size 84 × 84. The difference between the two datasets
comes from how CIFAR100 is split into meta-train / meta-validation / meta-test sets. Similar to
tieredImageNet, FC100 splits the dataset based on superclasses, in order to minimize the amount of
overlap. CIFAR-FS, on the other hand, is similar to miniImageNet, where the dataset is randomly
split. Table B presents the results.

While ALFA with any initialization consistently performs better than MAML, the performance gap is
not as significant as in miniImageNet, especially for a base learner with ResNet12 backbone. Also,
unlike miniImageNet, ALFA with MAML+L2F does not always perform better than MAML+L2F.
This may have to do with the low resolution of images, leading to noisy gradients. Gradients have
more noise due to less data variations, compared to higher resolution of miniImageNet images.
Because ALFA is mainly conditioned on the gradients, such noisy gradients are likely to disrupt
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the generation of hyperparameters. While no data augmentation is used during training for fair
comparisons with most meta-learning methods, data augmentation could help mitigate the problem
as data augmentation may provide more data variations and thus less noisy gradients.

Table B: Test accuracy on 5-way classification for FC100 and CIFAR-FS.

Backbone FC100 CIFAR-FS

1-shot 5-shot 1-shot 5-shot

Random Init 4-CONV 27.50± 0.45% 35.37± 0.48% 29.74± 0.46% 39.87± 0.49%
ALFA + Random Init 4-CONV 38.20± 0.49% 52.98± 0.50% 60.56± 0.49% 75.43± 0.43%

MAML † [4] 4-CONV 36.67± 0.48% 49.38± 0.49% 56.80± 0.49% 74.97± 0.43%
ALFA + MAML 4-CONV 37.99± 0.48% 53.01± 0.49% 59.96± 0.49% 76.79± 0.42%
MAML + L2F † [2] 4-CONV 38.96± 0.49% 53.23± 0.48% 60.35± 0.48% 76.76± 0.42%
ALFA + MAML + L2F 4-CONV 38.50± 0.47% 53.20± 0.50% 60.36± 0.50% 76.60± 0.42%

Random Init ResNet12 32.26± 0.47% 42.00± 0.49% 36.86± 0.48% 49.46± 0.50%
ALFA + Random Init ResNet12 40.57± 0.49% 53.19± 0.50% 64.14± 0.48% 78.11± 0.41%

MAML † ResNet12 37.92± 0.48% 52.63± 0.50% 64.33± 0.48% 76.38± 0.42%
ALFA + MAML ResNet12 41.46± 0.49% 55.82± 0.50% 66.79± 0.47% 83.62± 0.37%
MAML + L2F † ResNet12 41.89± 0.47% 54.68± 0.50% 67.48± 0.46% 82.79± 0.38%
ALFA + MAML + L2F ResNet12 42.37± 0.50% 55.23± 0.50% 68.25± 0.47% 82.98± 0.38%

Prototypical Networks∗ [17] 4-CONV 35.3± 0.6% 48.6± 0.6% 55.5± 0.7% 72.0± 0.6%
Relation Networks [18] 4-CONV+ - - 55.0± 1.0 69.3± 0.8
TADAM [12] ResNet12 40.1± 0.4% 56.1± 0.4% - -
MetaOpt ‡ [8] ResNet12 41.1± 0.6% 55.5± 0.6% 72.0± 0.7% 84.2± 0.5%

* Meta-network is trained using the union of meta-training set and meta-validation set.
+ Number of channels for each layer is modified to 64-96-128-256 instead of the standard 64-64-64-64.
† Our reproduction.
‡ Meta-network is trained with data augmentation.

In Table C, we also add more comparisons to the prior works for Table 1 of our main paper, which
were omitted due to space limit.

Table C: Test accuracy on 5-way classification for miniImageNet and tieredImageNet.

Backbone miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

Random Init 4-CONV 24.85± 0.43% 31.09± 0.46% 26.55± 0.44% 33.82± 0.47%
ALFA + Random Init 4-CONV 51.61± 0.50% 70.00± 0.46% 53.32± 0.50% 71.97± 0.44%

MAML [4] 4-CONV 48.70± 1.75% 63.11± 0.91% 49.06± 0.50% 67.48± 0.47%
ALFA + MAML 4-CONV 50.58± 0.51% 69.12± 0.47% 53.16± 0.49% 70.54± 0.46%

MAML + L2F [2] 4-CONV 52.10± 0.50% 69.38± 0.46% 54.40± 0.50% 73.34± 0.44%
ALFA + MAML + L2F 4-CONV 52.76± 0.52% 71.44± 0.45% 55.06± 0.50% 73.94± 0.43%

Random Init ResNet12 31.23± 0.46% 41.60± 0.49% 33.46± 0.47% 44.54± 0.50%
ALFA + Random Init ResNet12 56.86± 0.50% 72.90± 0.44% 62.00± 0.47% 79.81± 0.40%

MAML ResNet12 58.37± 0.49% 69.76± 0.46% 58.58± 0.49% 71.24± 0.43%
ALFA + MAML ResNet12 59.74± 0.49% 77.96± 0.41% 64.62± 0.49% 82.48± 0.38%
MAML + L2F ResNet12 59.71± 0.49% 77.04± 0.42% 64.04± 0.48% 81.13± 0.39%
ALFA + MAML + L2F ResNet12 60.05± 0.49% 77.42± 0.42% 64.43± 0.49% 81.77± 0.39%

Matching Networks [20] 4-CONV 43.56± 0.84% 55.31± 0.73% - -
Meta-Learning LSTM [14] 4-CONV 43.44± 0.77% 60.60± 0.71% - -
Prototypical Networks∗ [17] 4-CONV 49.42± 0.78% 68.20± 0.66% 53.31± 0.89% 72.69± 0.74%
Relation Networks [18] 4-CONV+ 50.44± 0.82% 65.32± 0.70% 54.48± 0.93% 71.32± 0.78%
Transductive Prop Nets [9] 4-CONV 55.51± 0.99% 68.88± 0.92% 59.91± 0.94% 73.30± 0.75%
SNAIL [10] ResNet12 55.71± 0.99% 68.88± 0.92% - -
AdaResNet [11] ResNet12 56.88± 0.62% 71.94± 0.57% - -
TADAM [12] ResNet12 58.50± 0.30% 76.70± 0.30% - -
Activation to Parameter∗ [13] WRN-28-10 59.60± 0.41% 73.74± 0.19% - -
LEO-trainval∗ [16] WRN-28-10 61.76± 0.08% 77.59± 0.12% 66.33± 0.05% 81.44± 0.09%
MetaOpt ‡ [8] ResNet12 62.64± 0.61% 78.63± 0.46% 65.99± 0.72% 81.56± 0.53%

* Meta-network is trained using the union of meta-training set and meta-validation set.
+ Number of channels for each layer is modified to 64-96-128-256 instead of the standard 64-64-64-64.
‡ Meta-network is trained with data augmentation.
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C Comparisons with the state-of-the-art on Meta-Dataset

We compare one of the methods [19] that provides the state-of-the-art performance on Meta-Dataset.
The state-of-the-art method is shown to outperform ALFA+fo-Proto-MAML in Table D. This is
mainly because Tian et al. [19] uses the metric-based meta-learning approaches, which are known for
high performance in few-shot classification. On the other hand, ALFA is a general plug-in module
that can be used to improve over MAML-based algorithms, such as fo-Proto-MAML, as shown in
Table 3 in the main paper. Also, ALFA can be used to improve over MAML-based algorithms in
other problem domains, such as regression (shown in Table 8 of the main paper), while the algorithm
from [19] can only be applied to few-shot classification.

Table D: Test accuracy on Meta-Dataset, where models are trained on ILSVRC-2012 only.
ALFA+fo-Proto-MAML Best from [19]

ILSVRC 52.80% 61.48%
Omniglot 61.87% 64.31%
Aircraft 63.43% 62.32%
Birds 69.75% 79.47%
Textures 70.78% 79.28%
Quick Draw 59.17% 60.84%
Fungi 41.49% 48.53%
VGG Flower 85.96% 91.00%
Traffic Signs 60.78% 76.33%
MSCOCO 48.11% 59.28%

D Additional Experiments on Cross-Domain Few-Shot Classification

In this section, we study how robust the proposed meta-learner is to changes in domains, through
additional experiments on cross-domain few-shot classification under similar settings to Section
4.3.2 in the main paper. In particular, miniImagenet meta-train set is used for meta-training, while
corresponding meta-test splits of Omniglot [7], FC100 [12], and CIFAR-FS [3] are used for evaluation.
Because either image channel (1 for Omniglot) or resolution (28 × 28 for Omniglot and 32 × 32
for CIFAR-based datasets) is different from miniImagenet, we expand the image channel (to 3) and
resolution (to 84× 84) to match meta-train settings. Table E reports the test accuracy on 5-way 5-shot
cross-domain classification of 4-CONV base learner with baseline meta-learners and our proposed
meta-learners. Trends similar to Table 2 in the main paper are observed in Table E, where ALFA
consistently improves the performance across different domains.

Table E: Test accuracy on 5-way 5-shot cross-domain classification. All models are only trained with
miniImageNet meta-train set and tested on various datasets (domains) without any fine-tuning.

miniImageNet

→ Omniglot → FC100 → CIFAR-FS

ALFA + Random Init 91.02± 0.29% 62.49± 0.48% 63.49± 0.45%

MAML [4] 85.68± 0.35% 55.52± 0.50% 55.82± 0.50%
ALFA + MAML 93.11± 0.23% 60.12± 0.49% 59.76± 0.49%

MAML + L2F [2] 94.96± 0.22% 61.99± 0.49% 63.73± 0.48%
ALFA + MAML + L2F 94.10± 0.24% 63.33± 0.45% 63.87± 0.48%

E Experimental Details

For the better reproducibility, the details of experiment setup, training, and architecture are delineated.

E.1 Experiment Setup

For N -way k-shot classification on all datasets, the standard settings [4] are used. During the fast
adaptation (inner-loop optimization), the number of examples in D is k per each class. Except for the
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ablation studies on the number of inner-loop steps (Section 4.4.2 in the main paper), the inner-loop
optimization is performed for 5 gradient steps for all experiments performed in this work. During
outer-loop optimization, 15 examples are sampled per each class for D′. All models were trained
for 50000 iterations with the meta-batch size of 2 and 4 tasks for 5-shot and 1-shot, respectively.
For fair comparisons with most meta-learning methods, no data augmentation is used. Similar to
the experimental settings from [1], an ensemble of the top 5 performing per-epoch-models on the
validation set were evaluated on the test set. Every result is presented with the mean and standard
deviation after running experiments independently with 3 different random seeds. All experiments
were performed on NVIDIA GeForce GTX 2080Ti GPUs. For new experiments on ResNet12
backbone, NVIDIA Quadro RTX 8000 GPUs are used.

E.2 Network Architecture for base learner fθ

4-CONV Following the settings from [1], 4 layers of 48-channel 3 × 3 convolution filters, batch
normalization [5], Leaky ReLU non-linear activation functions, and 2× 2 max pooling are used to
build 4-CONV base learner. Then, the fully-connected layer and softmax are placed at the end of the
base learner network.

ResNet12 For overall ResNet12 architecture design, the settings from [12] are used. Specifically,
the network is comprised of 4 residual blocks, each of which in turn consists of three convolution
blocks. The first two convolution blocks in each residual block consist of 3× 3 convolutional layer,
batch normalization, and a ReLU non-linear activation function. In the last convolution block in each
residual block, the convolutional layer is followed by batch normalization and a skip connection.
Each skip connection contains a 1× 1 convolutional layer, which is followed by batch normalization.
Then, a ReLU non-linear activation function and 2× 2 max-pooling are placed at the end of each
residual block. Lastly, the number of filters is 64, 128, 256, 512 for each residual block, respectively.

E.3 Network Architecture for the proposed meta-learner gφ

As mentioned in Section 3.3 in the main paper, the architecture of the proposed meta-learner gφ
is a 3-layer MLP. Each layer consists of 2N hidden units, where N is the number of layers of the
base learner network, fθ. This is because the meta-learner is conditioned on the layer-wise mean of
gradients and weights of the base learner network at each inner-loop update step. ReLU activation
function is placed between MLP layers.

F Visualization

In Section 4.5 of the main paper, the visualization of generated hyperparameters during meta-test
is shown for only a bias term of a 4-convolutional layer. To further examine the dynamic behavior
of our proposed adaptive update rule, the generated values across tasks, layers, and update steps
for different initializations are plotted in Figure A, Figure B, and Figure C, respectively. There are
several observations to make from the figures.

For different initializations, the ranges of generated values are different. This is especially evident
for the generated learning rate α, where the magnitude of values is diverse. This hints that each
initialization prefers different learning dynamics, thus stressing the importance and effectiveness of
ALFA. Furthermore, one should note the drastic changes in values across steps for each layer. In
particular, this is prominent for the regularization term β for different layers and the learning rate
α for Conv3, Conv4, and linear bias, where the generated values change (up to the order of 1e−1).
Because the changes across inner-loop steps are so great, the variations across tasks are not visible.
Thus, each plot includes a zoomed-in boxplot for one step due to the limited space. While not as
dynamic as across steps, the variations across tasks are still present (up to the order of 1e−3 for both
α and β). This is still significant, considering how the usual inner-loop learning rate is from 1e−2 to
1e−1 and the usual `2 weight decay term is in the order of 1e−6 or 1e−5, depending on the learning
rate.

Overall, different dynamic changes across layers and initializations as well as variations across
tasks and inner-loop steps further underline the significance of the adaptive learning update rule in
gradient-based meta-learning frameworks.
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Figure A: ALFA+Random Init: Visualization of the generated hyperparameters, α and β, across
inner-loop steps and layers for a base learner of backbone 4-CONV. The proposed meta-learner was
trained with a random initialization on 5-way 5-shot miniImagenet classification.
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Figure B: ALFA+MAML [4]: Visualization of the generated hyperparameters, α and β, across
inner-loop steps and layers for a base learner of backbone 4-CONV. The proposed meta-learner was
trained with MAML initialization on 5-way 5-shot miniImagenet classification.

6



(a) Conv1 weight (b) Conv2 weight (c) Conv3 weight

1 2 3 4 5
Inner-loop step

0.0

0.5

1.0

1.5

2.0

2.5 1e 2

3

1.410

1.415

1.420

1.425
1e 2

1 2 3 4 5
Inner-loop step

4

2

0

2

4

1e 3

3

3.2

3.3

1e 4

1 2 3 4 5
Inner-loop step

6

4

2

0

1e 2

3
1.830

1.828

1.826

1e 2

1 2 3 4 5
Inner-loop step

0

1

2

3

4

5

6

7
1e 4+1

3

0

2

4
1e 6+1.0004

1 2 3 4 5
Inner-loop step

0.0

0.5

1.0

1.5

2.0

3

7.9075

7.9100

7.9125

1e 1

1 2 3 4 5
Inner-loop step

0.2

0.4

0.6

0.8

1.0

1.2

3

0.0

0.5

1.0
1e 4+1.034

(d) Conv4 weight (e) Linear weight (f) Linear bias

1 2 3 4 5
Inner-loop step

0

2

4

6

8

1e 1

3
9.26

9.28

9.30
1e 1

1 2 3 4 5
Inner-loop step

0

1

2

3

4

5

6

1e 2

3

8.68

8.69

8.70

1e 3

1 2 3 4 5
Inner-loop step

0

2

4

6

8

3

3.260

3.265

3.270

1 2 3 4 5
Inner-loop step

0.2

0.4

0.6

0.8

1.0

1.2

1.4

3

9.100

9.101

9.102

9.103
1e 1

1 2 3 4 5
Inner-loop step

0

1

2

3

4

5

3

0

2

4

6
1e 4+1.195

1 2 3 4 5
Inner-loop step

0.0

0.5

1.0

1.5

2.0

2.5

3

1.60

1.61

1.62

1e 1

Figure C: ALFA+MAML+L2F [2]: Visualization of the generated hyperparameters, α and β, across
inner-loop steps and layers for a base learner of backbone 4-CONV. The proposed meta-learner was
trained with MAML+L2F initialization on 5-way 5-shot miniImagenet classification.
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