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Abstract

The pure-exploration problem in stochastic multi-armed bandits aims to find one
or more arms with the largest (or near largest) means. Examples include finding
an ε-good arm, best-arm identification, top-k arm identification, and finding all
arms with means above a specified threshold. However, the problem of finding all
ε-good arms has been overlooked in past work, although arguably this may be the
most natural objective in many applications. For example, a virologist may conduct
preliminary laboratory experiments on a large candidate set of treatments and
move all ε-good treatments into more expensive clinical trials. Since the ultimate
clinical efficacy is uncertain, it is important to identify all ε-good candidates.
Mathematically, the all-ε-good arm identification problem presents significant new
challenges and surprises that do not arise in the pure-exploration objectives studied
in the past. We introduce two algorithms to overcome these and demonstrate their
great empirical performance on a large-scale crowd-sourced dataset of 2.2M ratings
collected by the New Yorker Caption Contest as well as a dataset testing hundreds
of possible cancer drugs.

1 Introduction

We propose a new multi-armed bandit problem where the objective is to return all arms that are ε-good
relative to the best-arm. Concretely, if the arms have means µ1, · · · , µn, with µ1 = max1≤i≤n µi,
then the goal is to return the set {i : µi ≥ µ1 − ε} in the additive case, and {i : µi ≥ (1− ε)µ1} in
the multiplicative case. The ALL-ε problem is a novel setting in the bandits literature, adjacent to two
other methods for finding many good arms: TOP-k where the goal is to return the arms with the k
highest means, and threshold bandits where the goal is to identify all arms above a fixed threshold.
Building on a metaphor given by [1], if TOP-k is a “contest” and thresholding bandits is an “exam”,
ALL-ε organically decides which arms are “above the bar” relative to the highest score. We argue
that the ALL-ε problem formulation is more appropriate in many applications, and we show that it
presents some unique challenges that make its solution distinct from TOP-k and threshold bandits.

A Natural and Robust Objective. A motivating example is drug discovery, where pharmacologists
want to identify a set of highly-potent drug candidates from potentially millions of compounds using
various in vitro and in silico assays, and only the selected undergo more expansive testing [2]. Since
performing the assays can be costly, one would like to use an adaptive, sequential experiment design
that requires fewer experiments than a fixed experiment design. In sequential experiment design, it
is important to fix the objective at the beginning as that choice affects the experimentation process.
Both the objectives of finding the top-k performing drugs, or all drugs above a threshold can result
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in failure. In TOP-k, choosing k too small may miss potent compounds, and choosing k too large
may yield many ineffective compounds and require an excessively large number of experiments.
Setting a threshold suffers from the same issues - with the additional concern that if it is set too high,
potentially no drug discoveries are made. In contrast, the ALL-ε objective of finding all arms whose
potency is within 20% of the best avoids these concerns by giving a robust and natural guarantee: no
significantly suboptimal arms will be returned and but every near-optimal arm will be discovered.

We emphasize that unlike TOP-k or thresholding which require some prior knowledge about the
distribution of arms to guarantee a good set of returned arms, choosing the arms relative to the
best is a natural, distribution-free metric for finding good arms. As an example, we consider the
New Yorker Cartoon Caption Contest (NYCCC). Each week, contestants submit thousands of
supposedly funny captions for a cartoon (see Appendix A), which are rated from 1 (unfunny)
to 3 (funny) through a crowdsourcing process. The New Yorker editors select final winners
from a set with the highest average crowd-ratings (typically over 1 million ratings per contest).
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The number of truly funny captions varies from week to week,
and this makes setting a choice of k or fixed threshold difficult.
In Figure 1, we plot the distribution of ratings from 3 different
contests. Horizontal lines depict a reasonable threshold of
0.8µ1 in each and vertical lines show the number of arms that
exceed this threshold. Both of these quantities vary over weeks
and these differences can be stark. In contest 627, only k = 27
arms are within 20% of µ1, but k = 748 are in contest 651.
Additionally, a fixed threshold of τ = 1.5, admits captions
within 30% of the best in contest 627, but only those within
15% of the best in contest 651. These examples show that it
would be imprudent, and indeed, incorrect to choose a value
of k or a threshold based on past contests– the far more principled decision is to optimize for the
objective of finding the captions that are within a percentage of the best every week.

Though the ALL-ε objective is natural and easy to state, it has not been studied in the literature.
As we will show, admitting arms relative to the best makes the ALL-ε problem inherently more
challenging than either TOP-k or thresholding. In particular, it is not easily possible to adapt TOP-k
or thresholding algorithms to achieve the instance dependent lower bound for ALL-ε. In this work, we
provide a careful investigation of the ALL-ε problem including theoretical and empirical guarantees.

1.1 Problem Statement and Notation

Fix ε > 0 and a failure probability δ > 0. Let ν := {ρ1, · · · , ρn} be an instance of n distributions (or
arms) with 1-sub-Gaussian distributions having unknown means µ1 ≥ · · · ≥ µn. We now formally
define our notions of additive and multiplicative ε-good arms.
Definition 1 (additive ε-good). For a given ε > 0, arm i is additive ε-good if µi ≥ µ1 − ε.
Definition 2 (multiplicative ε-good). For a given ε > 0, arm i is multiplicative ε-good if µi ≥
(1− ε)µ1.

Additionally, we define the sets

Gε(ν) := {i : µi ≥ µ1 − ε} and Mε(ν) := {i : µi ≥ (1− ε)µ1} (1)

to be the sets of additive and multiplicative ε-good arms respectively. Where clear, we take Gε =
Gε(ν) and Mε = Mε(ν). Consider an algorithm that at each time s selects an arm Is ∈ [n] based on
the history Fs−1 = σ(I1, X1, · · · , Is−1, Xs−1), and observes a reward Xs

iid∼ ρIs . The objective of
the algorithm is to return Gε or Mε using as few total samples as possible.
Definition 3. (ALL-ε problem). An algorithm for the ALL-ε problem is δ-PAC if (a) the algorithm
has a finite stopping time τ with respect to Ft, (b) at time τ it recommends a set Ĝ such that with
probability at least 1− δ, Ĝ = Gε in the additive case, or Ĝ = Mε in the multiplicative case.

Notation: For any arm i ∈ [n], let µ̂i(t) denote the empirical mean after t pulls. For all i ∈ [n],
define the suboptimality gap ∆i := µ1 − µi. Without loss of generality, we denote k = |Gε| (resp.
k = |Mε|). Throughout, we will keep track of the quantity αε := mini∈Gε µi− (µ1− ε) which is the
distance from the smallest additive ε-good arm, denoted µk, to the threshold µ1 − ε. Additionally, if
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Gcε is non-empty, we consider βε = mini∈Gcε (µ1 − ε)− µi, the distance of the largest arm that is not
additive ε-good, denoted µk+1, to the threshold. Equivalently, in the case of returning multiplicative
ε arms, we define α̃ε := mini∈Mε

µi − (1 − ε)µ1, β̃ε := mini∈Mc
ε
(1 − ε)µ1 − µi, µk, and µk+1

to be the smallest differences of arms in Mε and M c
ε to (1 − ε)µ1 respectively. For our sample

complexity results, we also consider a relaxed version of the ALL-ε problem, where for a user-given
slack γ ≥ 0, we allow our algorithm to return Ĝ that satisfies Gε ⊂ Ĝ ⊂ Gε+γ in the additive case,
or Mε ⊂ Ĝ ⊂ Mε+γ in the multiplicative case. As we will see, this prevents large or potentially
unbounded sample complexities when arms’ means are very close to or equal µ1 − ε.

1.2 Contributions and Summary of Main Results
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Figure 2: An example instance

In this paper we propose the new problem of finding all ε-good
arms and give a precise characterization of its complexity. Our
contribution is threefold:

• Information-theoretic lower bounds for the ALL-ε problem.

• A novel algorithm, (ST)2, that is nearly optimal, is easy
to implement, and has excellent empirical performance on
real-world data.

• An instance optimal algorithm, FAREAST.

We now summarize our results in the additive setting (the mul-
tiplicative setting is analogous).

Lower Bound and Algorithms. As a preview of our results, we highlight the impact of three key
quantities that affect the sample complexity: the user provided ε and the instance dependent quantities
αε and βε, (see Figure 2). In this case, Theorem 2.1 implies that any δ-PAC algorithm requires an
expected number of samples exceeding

n∑
i=1

max

{
1

(µ1 − ε− µi)2
,

1

(µ1 + αε − µi)2

}
log

(
1

δ

)
. (2)

We provide two algorithms, (ST)2 and FAREAST for the ALL-ε problem. Our starting point, (ST)2 is
a novel combination of UCB [3] and LUCB [4] and is easier to implement and has good empirical
performance. (ST)2 is nearly optimal, however in some instances does not achieve the lower bound.
To overcome this gap, we provide an instance optimal algorithm FAREAST which achieves the lower
bound, however suffers from larger constants and is not always better in practical applications.

To highlight the difficulty of developing optimal algorithms for the ALL-ε problem, we quickly
discuss a naive elimination approach that uniformly samples all arms and eliminates arms once they
are known to be above or below µ1 − ε and not the best arm. Intuitively, such an algorithm would
keep pulling arms until µ1 − ε is estimated to an accuracy of O(min(αε, βε)) to resolve the arms
around the threshold (see Figure 2). An elimination algorithm pays a high cost of exploration -
potentially over pulling arms close to µ1 compared to the lower bound until a time when µ1 − ε
is estimated sufficiently well. Our algorithm FAREAST provides a novel approach to overcome the
issues with this approach. However, as we will show in Section 4, in certain instances a dependence
on
∑n
i=1(µ1 + βε − µi)−2 is present in moderate confidence, i.e., it is not multiplied by log(1/δ),

unlike the lower bound in equation (2) and becomes negligible compared to other terms as δ → 0.

Empirical results. We demonstrate the empirical success of (ST)2 on a real world dataset of 9250
captions from the NYCCC. In Fig. 4a, we compare (ST)2 to other methods that have been used to run
this contest. We show that (ST)2 is better able to detect which arms have means within 10% of the
best. The plot demonstrates the sub-optimality of using existing sampling schemes such as UCB or
LUCB with an incorrect k for the ALL-ε problem, providing an additional empirical validation for
the study of this paper.

1.3 Connections to prior Bandit art

Our problem is related to several prior pure-exploration settings in the multi-armed bandit literature,
including TOP-k bandits, and threshold bandits.
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TOP-k. In the TOP-k problem, the goal is to identify the set {µ1, · · · , µk} with probability greater
than 1 − δ [4–9]. The ALL-ε problem reduces to the setting of the TOP-k problem with k = |Gε|
when |Gε| is known. In particular, lower bounds for the TOP-k problem apply to our setting. A
lower bound (with precise logarithmic factors) given in [9] is

∑k
i=1(µi − µk+1)−2 log((n− k)/δ) +∑n

i=k+1(µi−µk)−2 log(k/δ). In general, this is smaller than our lower bound in Theorem 2.1 since
µk ≥ µ1 − ε ≥ µk+1. A particular case of this problem is best-arm identification when k = 1.

Approximate versions of the TOP-k problem have also been considered where the goal is to return a
set of arms S with |S| = k and such that with probability greater than 1 − δ, each i ∈ S satisfies
µi ≥ µk − ε [4, 10]. In the case where k = 1, this is also known as the problem of identifying
an (single) ε-good arm [4, 7, 9–17] which has received a large amount of interest. If |Gε| = k, [6],
demonstrate a lower bound of O((kε−2 +

∑n
i=k+1(µ1 − µi)−2) log(1/δ)) samples in expectation

to find such an arm and [10] provide an algorithm that matches this to doubly logarithmic factors,
though methods such as [4, 9, 18, 19] achieve better empirical performance. A particular instance
of interest is when it is known that one arm is at mean ε, and the rest are at mean zero. In this
setting, [11] show a lower bound on the sample complexity of O(n/ε2 + 1/ε2 log(1/δ)) highlighting
that the dependence on n only occurs in moderate confidence, i.e., for a fixed value of δ. They also
provide a matching upper bound that motivates our procedure in FAREAST. Finally [15] considers the
unverifiable regime where there are potentially many ε-good arms. In such cases, sample-efficient
algorithms exist that return an ε-good arm with high probability, but verifying it is ε-good requires far
more samples. Extending these ideas to the setting of ALL-ε is a goal of future work.

Threshold Bandits. In the threshold bandit problem, we are given a threshold τ and the goal is
to identify the set of arms whose means are greater than the threshold [1, 20]. If the value of µ1

were known, then ALL-ε problem would reduce to a threshold bandit with τ = µ1 − ε. A naive
sequential sampling scheme that stops sampling an arm when its upper or lower confidence bound
clears the threshold has sample complexity O(

∑n
i=1(µi − τ)−2 log(n/δ)). Up to factors of log(n),

this can be shown to be a lower bound for threshold bandits as well, and as a result is bounded above
by the result Theorem 2.1. Hence, ALL-ε is intrinsically more difficult than threshold bandits. A
naive approach to the ALL-ε problem is to first identify the index and mean of the best arm using
a best-arm identification algorithm and then utilize it to build an estimate of the threshold µ1 − ε.
In general, this two-step procedure is sub-optimal if there are many arms close to the best-arm in
which case identifying the best-arm is both unnecessary and expends unnecessary samples. In the
fixed confidence setting, threshold bandits is closely related to that of multiple hypothesis testing, and
recent work [21] achieves tight upper and lower bounds for this problem including tighter logarithmic
factors similar to those for TOP-k. If µ1 is known, then the additive ALL-ε problem reduces to the
FWER (family-wise error rate) and FWPD (family-wise probability of detection) setting in [21].
Finally, in the fixed budget setting, [1] proposes an optimal anytime method APT whose sampling
strategy we use as a comparison in Section 5.

2 Lower Bound

Theorem 2.1. (additive and multiplicative lower bounds) Fix δ, ε > 0. Consider n arms, such that
the ith is distributed according to N (µi, 1). Any δ-PAC algorithm for the additive setting satisfies

E[τ ] ≥ 2

n∑
i=1

max

{
1

(µ1 − ε− µi)2 ,
1

(µ1 + αε − µi)2

}
log

(
1

2.4δ

)
and if µ1 > 0, any δ-PAC algorithm for the multiplicative algorithm satisfies,

E[τ ] ≥ 2

n∑
i=1

max

{
1

((1− ε)µ1 − µi)2 ,
1

(µ1 + α̃ε
1−ε − µi)2

}
log

(
1

2.4δ

)
.

The bounds are different but share a common interpretation. Consider the additive case. First, every
arm must be sampled inversely proportional to its squared distance to µ1 − ε. In a manner similar
to thresholding [1], even if µ1 − ε was known, these number of samples are necessary to decide if
an arm’s mean is above or below that quantity. This leads to the first term in the max{·, ·}. The
second term in the max{·, ·} states that every arm must be sampled inversely proportional to its
squared distance to µ1 + αε. Recall that αε = µk − (µ1 − ε) is the margin by which arm k is good.
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Hence, to verify that k ∈ Gε, it is also necessary to confirm that all means are below µ1 + αε, as
µ1 + αε − ε ≥ µk which would imply that k is bad. This represents the necessity of estimating the
threshold, and leads to the second term. For arms in Gcε, comparing against µ1 − ε is always more
difficult, but for arms in Gε, either constraint may be more challenging to ensure. We state the bound
for Gaussian distributions, but the same technique can be used to prove equivalent results for other
distributions. Lastly, we note that it is possible to prove bounds with tighter logarithmic terms. For an
instance where O(nφ) arms have mean 2ε for φ ∈ (0, 1), and the remaining have mean 0, Theorem
1 of [22] suggests that Ω(n/ε2 log(n/δ)) samples are necessary, exceeding the above bounds by a
factor of log(n).

3 An Optimism Algorithm for ALL-ε

We propose algorithm 1 called (ST)2, (Sample the Threshold, Split the Threshold) to return a set
containing all ε-good arms and none worse than (ε + γ)-good with probability 1 − δ. Intuitively,
(ST)2 runs UCB and LUCB1 in parallel. At all times, (ST)2 pulls three arms. We pull the arm with the
highest upper confidence bound, similarly to the UCB algorithm, [3], to refine an estimate of the
threshold using the highest empirical mean (Sample the Threshold). Using the empirical estimate of
the threshold, we pull an arm above it and an arm below it whose confidence bounds cross it, similar
to LUCB1, [4] (Split the Threshold). Using these bounds, (ST)2 forms upper and lower bounds on
the true threshold, i.e. µ1 − ε (resp. (1− ε)µ1) and terminates when it can declare that all arms are
either in Gε+γ or Gcε. To do so, (ST)2 maintains anytime confidence widths, Cδ/n(t) such that for
an empirical mean µ̂i(t) of t samples, we have P(

⋃∞
t=1 |µ̂i(t) − µi| > Cδ/n(t)) ≤ δ/n. For this

work, we take Cδ(t) =

√
cφ log(log2(2t)/δ)

t for a constant cφ. It suffices to take cφ = 4, though tighter
bounds are known and should be used in practice, e.g. [6, 23, 24].

Algorithm 1 (ST)2: Sample the Threshold, Split the Threshold
Require: ε, δ > 0, γ ≥ 0, instance ν
1: Pull each arm once, initialize Ti ← 1, update µ̂i for each i ∈ {1, 2, . . . , n}
2: Empirically good arms: Ĝ = {i : µ̂i ≥ maxj µ̂j − ε}, Ĝ = {i : µ̂i ≥ (1− ε)maxj µ̂j}
3: Ut = maxj µ̂j(Tj) + Cδ/n(Tj)− ε− γ and Lt = maxj µ̂j(Tj)− Cδ/n(Tj)− ε
4: Ut = (1− ε− γ)

(
maxj µ̂j(t) + Cδ/n(Tj)

)
and Lt = (1− ε)

(
maxj µ̂j(t)− Cδ/n(Tj)

)
5: Known arms: K = {i : µ̂i(Ti) + Cδ/n(Ti) < Lt or µ̂i(Ti)− Cδ/n(Ti) > Ut}
6: while K 6= [n] do
7: Pull arm i1(t) = argmini∈Ĝ\K µ̂i(Ti)− Cδ/n(Ti), update Ti1 , µ̂i1
8: Pull arm i2(t) = argmaxi∈Ĝc\K µ̂i(Ti) + Cδ/n(Ti), update Ti2 , µ̂i2
9: Pull arm i∗(t) = argmaxi µ̂i(Ti) + Cδ/n(Ti), update Ti∗ , µ̂i∗

10: Update bounds Lt, Ut, sets Ĝ, K
return The set of good arms {i : µ̂i(Ti)− Cδ/n(Ti) > Ut}

3.1 Theoretical guarantees

Next we present a pair of theorems on the sample complexity of (ST)2. For clarity, we omit doubly
logarithmic terms and defer such statements to Appendix B. Below we denote a ∧ b := min{a, b}.
Theorem 3.1 (Additive Case). Fix ε > 0, 0 < δ ≤ 1/2, γ ≤ 16 and an instance ν such that
max(∆i, |ε−∆i|) ≤ 8 for all i. With probability at least 1− δ, there is a constant c1 such that (ST)2

returns a set Ĝ such that Gε ⊂ Ĝ ⊂ G(ε+γ) in at most the following number of samples.

c1 log
(n
δ

) n∑
i=1

max

{
1

(µ1 − ε− µi)2
,

1

(µ1 + αε − µi)2
,

1

(µ1 + βε − µi)2

}
∧ 1

γ2
(3)

Given a positive slack γ, we are allowed to return an arm that is (ε+ γ)-good. Thus a confidence
width less than Ω(γ) on any arm is not needed, resulting in the 1/γ2 term in Theorem 3.1. In
particular this prevents unbounded sample complexities if there is an arm at the threshold µ1 − ε. For
γ = 0, the first two terms inside the max are also present in the lower bound (Theorem 2.1). When
αε is within a constant factor of βε, the second and third term in the max have the same order, and
the upper bound matches the lower bound up to a log(n) factor.
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If βε � αε, (3) has a different scaling than the lower bound. In such restrictive settings the upper
bound above can be significantly larger than the lower bound. In the next section, we provide an
algorithm that overcomes these issues and is optimal over all parameter regimes. The multiplicative
case has different terms but follows the same intuition.

Theorem 3.2 (Multiplicative Case). Fix ε ∈ (0, 1/2], γ ∈ [0,min(16/µ1, 1/2)] and 0 < δ ≤ 1/2
and an instance ν such that µ1 ≥ 0 and max(∆i, |εµ1 −∆i|) ≤ 2 for all i. With probability at least
1− δ, for a constant c1 (ST)2 returns a set G such that Mε ⊂ G ⊂M(ε+γ) with sample complexity:

c1 log
(n
δ

) n∑
i=1

max

 1

((1− ε)µ1 − µi)2 ,
1

(µ1 + α̃ε
1−ε − µi)2

,
1

(µ1 + β̃ε
1−ε − µi)2

 ∧ 1

γ2µ2
1

.

4 Surprising Complexity of Finding All ε-Good arms

When αε and βε are not of the same order, (ST)2 is not optimal. In this section we present an
algorithm that is optimal for all parameter regimes. We focus on the additive case here, and defer the
multiplicative case to Appendix E. We first state an improved sample complexity lower bound for a
family of problem instances that makes explicit the moderate confidence terms.

Theorem 4.1. Fix δ ≤ 1/16, n ≥ 2/δ, and ε > 0. Let ν be an instance of n arms such that the ith is
distributed as N (µi, 1), |G2βε | = 1, and βε < ε/2. Select a permutation π : [n] → [n] uniformly
from the set of n! permutations, and consider the permuted instance π(ν). Any algorithm that returns
Gε(π(ν)) on π(ν) correctly with probability at least 1− δ requires at least the following number of
samples in expectation over randomness in ν and π for a universal constant c2.[

c2

n∑
i=1

max

{
1

(µ1 − ε− µi)2 ,
1

(µ1 + αε − µi)2

}
log

(
1

2.4δ

)]
+ c2

n∑
i=1

1

(µ1 + βε − µi)2
(4)

Proof. (Sketch) To give a tight lower bound in the setting where |G2βε | = 1 and βε < ε/2, we
break our argument into pieces performing a series of reductions that link the ALL-ε problem to a
hypothesis test, and then the hypothesis test to the problem of identifying the best-arm. We apply
the Simulator technique from [9] to compute precise moderate confidence bounds. Other works that
prove strong lower bounds in moderate confidence include [25]. We extend the Simulator technique
via a novel reduction to composite hypothesis testing in order to connect to ALL-ε. In all cases, we
consider sample complexity in expectation with respect to the randomness in the outcomes and a
randomly chosen permutation of the means.

Step 1. Finding an isolated best arm: Consider the problem of finding the best arm where
µ1 = β > 0 and µ2, · · · , µn ≤ −β. This relates to the problem of finding a β-good arm when µ1 is
known, studied by [11]. We use the Simulator technique, [9], to show that any algorithm requires
Ω
(∑n

i=2 ∆−2
i

)
samples in expectation. This can be significantly larger than the asymptotically

optimal rate of O(β−2 log(1/δ)) (which was proven by [11]) for non-asymptotic δ, e.g. δ = 0.05.

Step 2. Deciding if Any mean is positive: We then consider a composite hypothesis test on n
distributions where the null hypothesis, H0, is that the mean of each distribution is less that −β
and the alternate hypothesis, H1, is that there exists a single distribution i∗ with mean β and the
remainder have mean less than −β. Importantly, an algorithm does not need to declare which arm is
i∗, otherwise the bound from step 1 applies immediately. Instead, to link this to step 1, we develop a
novel extension of the simulator technique and use this to show that if an algorithm can solve this
composite hypothesis test in fewer than o

(∑n
i=2 ∆−2

i

)
samples, then one may design a method to

solve the problem in step 1 in o
(∑n

i=2 ∆−2
i

)
samples which is a contradiction. Hence any algorithm

for this hypothesis test requires Ω
(∑n

i=2 ∆−2
i

)
samples in expectation.

Step 3: Reducing ALL-ε to Step 2: Finally, we show that a generic algorithm for ALL-ε can
be used to solve the hypothesis test in step 2. Hence the lower bound from step 2 applies to
finding all ε-good arms as well. In the case of the instances considered in the theorem statement,
O
(∑n

i=2 ∆−2
i

)
= O

(∑n
i=2(µ1 + βε − µi)−2

)
. Combining this bound, which is independent of δ

with the result from Theorem 2.1 gives the result.
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Theorem 4.1 states that an additional Ω(
∑n
i=1(µ1 + βε − µi)−2) samples are necessary for instances

where no arm is within 2βε of µ1 compared to the lower bound Theorem 2.1. Somewhat surprisingly,
these samples are necessary in moderate confidence, independent of δ and negligible as δ → 0.
For non-asymptotic values of δ, such as the common choice of δ = .05 in scientific applications,
this term is present and can even dominate the sample complexity when βε � αε. As an extreme
example, if µ1 = β > 0, µ2 · · · , µn−1 = −β, µn = −ε, the first term in 4 scales like ((n −
1)/ε2 + 1/β2) log(1/δ) but the second term scales like n/β2, which is O(n) larger than the first
term for small β and fixed δ. Furthermore, we point out that Theorem 4.1 highlights that (ST)2 is
optimal on these instances up to a log factor! The algorithm we present next, FAREAST, improves
(ST)2’s dependence on δ and matches the lower bound in Theorem 4.1 for certain instances. Though
moderate confidence terms can dominate the sample complexity in practice, few works have focused
on understanding their effect.

4.1 FAREAST

We focus on the additive case with γ = 0 in Algorithm 4.1, FAREAST, and defer the more general case
(multiplicative and γ > 0) to Algorithm E.1 in the supplementary. FAREAST matches the instance
dependent lower bound in Theorem 2.1 as δ → 0. At a high level, FAREAST (Fast Arm Removal
Elimination Algorithm for a Sampled Threshold) proceeds in rounds r and maintains sets Ĝr and B̂r
of arms thus far declared to be good or bad. It sorts unknown arms into either set through use of a
good filter to detect arms in Gε and a bad filter to detect arms in Gcε.

Good Filter: The good filter is a simple elimination scheme. It maintains an upper bound Ut and
lower bound Lt on µ1−ε. If an arm’s upper bound drops below Lt (line 20), the good filter eliminates
that arm, otherwise, if an arm’s lower bound rises above Ut (19), the good filter adds the arm to Ĝr,
but only eliminates this arm if its upper bound falls below the highest lower bound. This ensures
that µ1 is never eliminated and Ut and Lt are always valid bounds 1. As the sampling is split across
rounds, the good filter always samples the least sampled arm, breaking ties arbitrarily. The number
of samples given to the good filter in each round is such that both filters receive identically many
samples. This prevents the good filter from over-sampling bad arms and vice versa. In our proof we
show that in an unknown round, Ĝr = Gε, ie all good arms have been found, having used fewer than
O
(∑n

i=1 max
{

(µ1−ε−µi)−2, (µ1+αε−µi)−2
}

log(n/δ)
)

samples, matching the lower bound.

FAREAST cannot yet terminate, however, as it must also verify that any remaining arms are in Gcε.

Bad Filter: The bad filter removes arms that are not ε-good. To show an arm i is in Gcε, it suffices
to find any j such that µj − µi > ε. To motivate the idea of lines 9-12, consider the following
procedure in the special case where βi = µ1 − ε − µi is known. In each round we first run
Median-Elimination, [12], with failure probability 1/16, to find an arm î that is βi/2-good in
O(n/β2

i ) samples2. We then pull both i and î roughlyO(1/β2
i log(1/δ)) times and can check whether

µî − µi > ε with probability greater than 1 − δ. This procedure relies on Median-Elimination
succeeding, which happens with probability 15/16. In the case that it fails and we declare µî−µi < ε,
we merely repeat this process until it succeeds– on averageO(1) times. This gives an expected sample
complexity of O(n/β2

i + 1/β2
i log(1/δ)) for any i ∈ Gcε . Of course, βi is unknown to the algorithm.

Instead, in each round r, the bad filter guesses that βi ≥ 2−r for all unknown arms i /∈ Ĝr ∪ B̂r and
performs the above procedure. The following theorem demonstrates that this algorithm matches our
lower bounds asymptotically as δ → 0.
Theorem 4.2. Fix 0 < ε, 0 < δ < 1/8, and an instance ν of n arms such that max(∆i, |ε−∆i|) ≤ 8
for all i. There exists an event E such that P(E) ≥ 1− δ and on E, FAREAST terminates and returns
Gε. Letting T denote the number of samples taken, for a constant c3

E[1ET ] ≤

[
c3

n∑
i=1

max

{
1

(µ1 − ε− µi)2
,

1

(µ1 + αε − µi)2

}
log
(n
δ

)]
+ c3

∑
i∈Gcε

c′′n

(µ1 − ε− µi)2
.

Additionally for γ ≤ 16 FAREAST terminates on E and returns a set Ĝ such that Gε ⊂ Ĝ ⊂ Gε+γ in
a number of samples no more than a constant times (3), the complexity of (ST)2.

1This scheme works as an independent algorithm, we analyze it in Appendix E.5.
2Median-Elimination is used for ease of analysis. One can use LUCB [4] or another method instead.
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(b) A more challenging setting

Figure 3: Comparison of (ST)2 and FAREAST averaged over 250 trials plotted with 3 standard errors.

Algorithm 4.1: additive FAREAST with γ = 0
Input: ε, δ, instance ν
Let Ĝ0 = ∅ be the set of arms declared as good and B̂0 = ∅ the set of arms declared as bad.
Let A = [n] be the active set, Ni = 0 track the total number of samples of arm i by the Good Filter.
Let t = 0 denote the total number of times that line 16 is true in the Good Filter.
for r = 1, 2, · · ·

1

2

3

4

5

6

Let δr = δ/2r2, τr =
⌈
22r+3 log

(
8n
δr

)⌉
, Initialize Ĝr = Ĝr−1 and B̂r = B̂r−1

// Bad Filter: find bad arms in Gcε
Let ir = MedianElimination(ν, 2−r, 1/16), sample ir τr times and compute µ̂ir
for i /∈ Ĝr−1 ∪ B̂r−1:

7

8

9

10

Sample µi τr times and compute µ̂i
If µ̂ir − µ̂i ≥ ε+ 2−r+1: Add i to B̂r // Bad arm detected

11

12

// Good Filter: find good arms in Gε
for s = 1, · · · , HME(n, 2

−r, 1/16) + (|(Ĝr−1 ∪ B̂r−1)
c|+ 1)τr:

13

14

Pull arm Is ∈ argminj∈A{Nj} and set NIs ← NIs + 1.
if minj∈A{Nj} = maxj∈A{Nj}:

15

16

Update t = t+ 1. Let Ut = maxj∈A µ̂i(t) + Cδ/2n(t)− ε and Lt = maxj∈A µ̂i(t)− Cδ/2n(t)− ε
for i ∈ A:

17

18

if µ̂i(t)− Cδ/2n(t) ≥ Ut: Add i to Ĝr // Good arm detected

if µ̂i(t) + Cδ/2n(t) ≤ Lt: Remove i from A and add i to B̂r // Bad arms removed

if i ∈ Ĝr and µ̂i(t) + Cδ/2n(t) ≤ maxj∈A µ̂(t)− Cδ/2n(t): // Good arms removed

19

20

21

Remove i from A22

if A ⊂ Ĝr or Ĝr ∪ B̂r = [n]: Return the set Ĝr23

5 Empirical Performance

We begin by comparing (ST)2 and FAREAST on simulated data. FAREAST is asymptotically optimal,
but suffers worse constant factors compared to (ST)2 3. (ST)2 is optimal except when βε � αε. We
compare (ST)2 and FAREAST on two instances in the additive case, shown in Figure 3. All arms
are Gaussian with σ = 1. In the first example on the left, δ = 0.1, αε = βε = 0.05. Both (ST)2

and FAREAST are optimal in this setting; we show the scaling of their sample complexity as the
number of arms increases while keeping the threshold, αε, and βε constant. In the second example,
αε = ε = 0.99, and β = 0.01. When 1/β2

ε � n/ε2, Theorem 2.1 suggests that O(1/β2
ε log(1/δ))

samples are necessary, independent of n. Indeed, in Figure 3, for δ = 0.01, the average complexity
of FAREAST is constant, but (ST)2 scales linearly with n as Theorem 3.1 suggests. Finally, a naive
uniform sampling strategy performed very poorly - additional experiments including the uniform
sampling method and with γ > 0 are in the Appendix A.

5.1 Finding all ε-good arms in real world data – fast

As discussed in the introduction, in many applications such as the New Yorker Cartoon Caption
Contest (NYCCC), the ALL-ε objective returns a set of good arms which can then be screened further
to choose a favorite. We considered Contest 651, which had 9250 captions whose means we estimated
from a total of 2.2 million ratings. We set ε = 0.1 and focus on the multiplicative setting, i.e., the
objective of recovering all captions within 10% of the funniest one. In this experiment, we contrast
(ST)2 with several other methods including two oracle methods (marked with N): LUCB1 [4] with

3Implementations of all algorithms and baselines used in this paper are available on GitHub.
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(b) Cancer drug discovery with ε = 0.8

Figure 4: F1 scores averaged over 600 trials with 95% confidence widths for each dataset.
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(b) Recall curves for ε = 0.1

Figure 5: Precision and recall averaged over 600 trials with 95% confidence widths on NYCCC data.

k set to the number of ε-good arms (here it was 46), and a threshold-bandit, APT [1] given the
value of 0.9µ1. We focus on a common practical requirement, each algorithm’s ability to balance
precision and recall as it samples. With every new sample, each method recommends an empirical
set of ε-good arms based on the empirical means, and we consider the F1 score of this set4. We
focus on the F1 score as it is practically relevant and provides a continuous measure of performance
of each method. F1 = 1 indicates that an algorithm has found all ε-good arms. As can be seen
in Figure 4a, (ST)2 outperforms all baselines including the oracle APT, and almost matches the
performance of the TOP-k oracle! We transition from a solid line to a dashed one at 2.2M pulls to
mark the number of samples drawn in the real contest from which we gather the data. To illustrate
the importance of knowing the correct value of k, we also plot LUCB1 given k = 46/2 = 23 and
k = 46 × 2 = 92, settings where the experimenter under or over estimates the number of ε good
arms by as little as a factor of 2. Both cases result in a poor performance. We have also included
UCB, currently being used for the contest [26]; the plot shows that UCB is not able to estimate the
ε-good set. In Figure 5, we show precision and recall curves for each method on the NYCCC data.
(ST)2 achieves near-perfect precision quickly, matched only by UCB. APT’s poor performance is a
consequence of having low-precision, shown in Figure 5a. (ST)2 achieves high recall more slowly,
but is still competitive with other methods. In practical experiments, high precision early on may
be more important than high recall, as it guarantees that practitioners can trust the declarations that
the algorithm has made, even if some arms are yet to be found. In the Supplementary we show plots
for more values of ε. Additionally, motivated by drug discovery, we performed an experiment on a
dataset [27] of 189 inhibitors whose activities were tested against ACVRL1, a kinase associated with
cancer [28]. In this experiment, we use the multiplicative case of ALL-ε with ε = 0.8 and δ = 0.001,
to promote high precision. In this experiment as well, (ST)2 performs best (Figure 4b), with only the
oracle methods are competitive with it. We plot on a log-scale to emphasize the early regime.

4F1 is the harmonic mean of precision (fraction of captions returned that are actually good) and recall
(fraction of all good captions that are actually returned).
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6 Broader Impacts and Funding Transparency Statement

6.1 Broader Impacts

The application of machine learning (ML) in domains such as advertising, biology, or medicine
brings the possibility of utilizing large computational power and large datasets to solve new problems.
It is tempting to use powerful, if not fully understood, ML tools to maximize scientific discovery.
However, at times the gap between a tool’s theoretical guarantees and its practical performance can
lead to sub-optimal behavior. This is especially true in adaptive data collection where misspecifying
the model or desired output (e.g., “return the top k performing compounds” vs. “return all compounds
with a potency about a given threshold”) may bias data collection and hinder post-hoc consideration
of different objectives. In this paper we highlight several such instances in real-life data collection
using multi-armed bandits where such a phenomenon occurs. We believe that the objective studied
in this work, that of returning all arms whose mean is quantifiably near-best, more naturally aligns
with practical objectives as diverse as finding funny captions to performing medical tests. We point
out that methods from adaptive data collection and multi-armed bandits can also be used on content-
recommendation platforms such as social media or news aggregator sites. In these scenarios, time
and again, we have seen that recommendation systems can be greedy, attempting purely to maximize
clickthrough with a long term effect of a less informed public. Adjacent to one of the main themes of
this paper, we recommend that practitioners not just focus on the objective of recommendation for
immediate profit maximization but rather keep track of a more holistic set of metrics. We are excited
to see our work used in practical applications and believe it can have a major impact on driving the
process of scientific discovery.

6.2 Funding Transparency Statement

The work presented in this paper was supported by ARO grant W911NF-15-1-0479. Additionally,
this work was partially supported by the MADLab AF Center of Excellence FA9550-18-1-0166.
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Figure 6: Simulation results with uniform sampling included.
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Figure 7: (ST)2 and FAREAST with different values of γ

A Additional Experimental Results

Practical change made to FAREAST for simulations: We make one change to FAREAST that we
recommend for practitioners wishing to use FAREAST that improve its empirical performance. In
particular, Median-Elimination may instead be replaced by another method, such as LUCB1, [4],
to find ε-good arms. LUCB1, for instance, has better constant factors and enjoys improved empirical
performance versus Median-Elimination. The use of Median-Elimination in this algorithm
serves to ease both notation and analysis since it’s sample complexity is deterministic. To modify the
algorithm, simply track the number of samples given to the bad filter in total, which can be a random
variable, and give the good filter the same number in that round. The proof then follows identically,
with only the moderate confidence term changing in the result.

Additional Simulations Results As mentioned in the Experiments, Section 5, we omitted curves
comparing against uniform sampling as they make the plots hard to read with uniform performing
much more poorly. For completeness, we include them in Figure 6. Clearly, uniform sampling
performs much more poorly than either active method, as expected.

Additionally, we include experiments with γ > 0 here. For small γ, the only valid solution is Gε
(resp. Mε) itself. However, for larger γ, there are many valid solutions. Indeed, any G such that
Gε ⊂ G ⊂ Gε+γ is valid. To analyze the effect of γ on both (ST)2 and FAREAST, we consider the
same type of instances studied in Figure 3b. Here, n− 1 arms have means equal to µ1, and a single
arm is in Gcε . Again, we take ε = 0.99 and βε = 0.01, and additionally, set n = 150 arms. Recall that
in this setting, FAREAST outperforms (ST)2, as shown in Figure 3b. As we increase γ, the problem
becomes easier. We increase γ on an exponential scale, beginning with γ ≈ ε/100 and ending with
γ ≈ ε/2. Indeed, for smaller values of γ, FAREAST is superior as it finds the exact solution fastest.
For larger γ, (ST)2 is able to terminated more quickly. In Figure 7 we plot these results.
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Metrics we consider for real data experiments: For all methods, we track their precision, recall
and F1 score with respect to the true set of ε-good arms. To compute these metrics, at each time, the
algorithm outputs a set that it guesses are the ε-good arms based on the data it has gathered thus far. For
UCB, Uniform, and (ST)2, this is based directly on empirical means, i.e., Ĝ = {i : µ̂i ≥ maxj µ̂j−ε}
or Ĝ = {i : µ̂i ≥ maxj(1−ε)µ̂j} in the multiplicative case. Oracle methods may use their additional
information to return the set. In particular, APT returns all arms whose empirical means exceed
(1− ε)µ1 (using knowledge of µ1) and LUCB1 returns the k largest empirical means (using knowledge
that |Mε| = k. Let TP (true positives) denote the number of arms that an algorithm declares as
ε-good that truly are. Let FN (false negatives denote) the number of arms that an algorithm declares
as not ε-good when in fact they are. Recall, r ∈ [0, 1], is computed as r = TP

TP+FN . Intuitively,
recall is the total number of ε-good arms that the algorithm detects. Precision, p ∈ [0, 1], by contrast
is the the fraction of the arms that an algorithm predicts as ε-good that truly are. It is computed as
p = max(TP/|Ĝ|, 1) where the max() is necessary to avoid the trivial case that Ĝ = ∅. Finally, the
F1 is the harmonic mean of precision and recall: F1 = 2pr

p+r . It balances how precise an algorithm
is with how many discoveries it makes. In many cases, F1 may a more relevant metric than the
others, as it avoids trivial edge cases. For instance, an algorithm that always declare every arm as
ε-good independent of the data, achieves perfect recall because it has 0 false negatives. Similarly,
an algorithm that never declares any arms as ε-good, again independent of data, achieves perfect
precision. Both methods, despite seemingly good performance with respect to their individual metrics,
are undesirable in practice. In particular, both would achieve low F1 scores.

The New Yorker Caption Contest: In this section we provide additional experimental results
adjoining those in Section 5. The data can be downloaded at https://github.com/nextml/caption-
contest-data. We chose contest 651 for our experiments, but hundreds of others are available.
Captions are rated on a scale of 1 to 3 (“unfunny”, “somewhat funny”, or “funny”). It is desirable to
find all captions that are nearly as good as the best. However, setting a fixed number of captions or
fraction of captions to accept is undesirable as the number of truly funny captions varies from week
to week and represents a small fraction of the submissions. For instance, in the contest that ran the
week of 3/14/16, only 8 captions were rated within 20% of the funniest caption. In the following
week, by contrast, 187 captions were. Similarly, a choosing a fixed threshold of what it means for a
caption to be funny is unrealistic. In the same two contests, first week saw 3% of captions be rated
at least 1.5 out of 3 whereas the second saw < 0.1%. For this reason, finding all ε-good arms is
more natural. We consider finding all multiplicative ε-good arms with ε = 0.1, 0.15, 0.2. To keep
the comparison fair, all methods use the same confidence widths from [24]. In Figure 9b we plot the
average rating of each caption in sorted order with horizontal lines corresponding to (1 − 0.2)µ1,
(1− 0.15)µ1, and (1− 0.1)µ1. The arms with means above this line are 0.2, 0.15, and 0.1 ε-good.
The oracle methods tend to achieve high recall, but low precision, and this is especially true for the
threshold oracle, APT. In Figures 10, 11, 12 we plot F1, Precision, and Recall curves for all methods
tested on ε = 0.2, 0.15, 0.1 respectively. As before, all curves are averaged over 600 independent
repetitions and plotted with 95% confidence intervals. It is evident from these curves, that (ST)2

performs especially well with regard to precision, though it achieves lower recall than some other
baselines.

Protein Kinase Inhibitors for Cancer Drug Discovery

Additionally, we consider a second, medically focused experiment. In 2013, researchers at Glaxo-
SmithKline published a dataset of protein kinase inhibitors different kinases (PKIS1), primarily from
humans [29]. Kinases are a family of enzymes present in many cells and researchers are interested
in developing targeted kinase inhibitors to as a new way to treat cancer [2]. The dataset contains
numerous measures of how strongly each inhibitor reacts with each kinase. A second, larger dataset
(PKIS2) was expanded on by [27]5. For the purpose of our experiment, we selected a single Kinase in
the dataset, ACVRL1, which researchers have linked to numerous types of cancer, most prominently
bladder and prostate cancers [28]. PKIS2 contains 641 different compounds that were tested as
being potential kinase inhibitors, though not every compound was tested against every kinase. In
particular, 189 were tested against ACVRL1. For each compound, there is an associated average
“percent inhibition” that is reported. All numbers are between 0 and 1 and averaged across multiple
trials in a single assay. We subtract each number from 1 to compute the percent control, representing
how effective any method is relative to a control, an important metric for estimating how effective

5The dataset can be downloaded at the following link: https://doi.org/10.1371/journal.pone.0181585.s004.
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Figure 8: The user interface for the caption contest with the caption for contest 651. “Unfunny” = 1,
“Somewhat funny” = 2, “Funny” = 3
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Figure 10: F1, Precision, and Recall scores on the New Yorker Caption Contest with ε = 0.2
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Figure 11: F1, Precision, and Recall scores on the New Yorker Caption Contest with ε = 0.15
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Figure 12: F1, Precision, and Recall scores on the New Yorker Caption Contest with ε = 0.1

that compound is against the target, ACRVL1. A meta-analysis, done by [2], reported that these
values have log-normal distributions with variance less than 1. Therefore, we compute the log of
each percent control and may sample from a normal distribution with that mean and variance 1. As
before, we plot F1, precision, and recall for all methods. To simulate being in a medical research
regime where a higher level of precision is often desired, we take δ = 0.001. We test each method
on returning all multiplicative ε-good arms with ε = 0.8 and plot the results in Figure 13. Note
that these curves are plotted on a log-scale to emphasize the early regime of this experiment. It is
likewise true here that the oracle baselines perform better on recall than they do on precision. (ST)2

again performs well with respect to precision, and is more competitive with respect to recall in this
experiment. Finally, (ST)2 is competitive versus oracle methods on F1 score and greatly outperforms
UCB and uniform sampling.
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Figure 13: Precision and Recall curves for the PKIS2 cancer drug discovery experiment with ε = 0.8
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B (ST)2, An optimism based algorithm for all-ε

Algorithm 2 The (ST)2 Algorithm

Require: Instance ν, ε > 0, δ ∈ (0, 1/2], γ ≥ 0 (ε ∈ (0, 1/2], and γ ∈ [0,min(16/µ1, 1/2)])
1: Pull each arm once, initialize Ti ← 1, update µ̂i for each i ∈ {1, 2, . . . , n}
2: Empirically good arms: Ĝ = {i : µ̂i ≥ maxj µ̂j − ε} or Ĝ = {i : µ̂i ≥ (1− ε) maxj µ̂j}
3: Ut = maxj µ̂j(Tj) + Cδ/n(Tj)− ε− γ or Ut = (1− ε− γ)

(
maxj µ̂j(t) + Cδ/n(Tj)

)
4: Lt = maxj µ̂j(Tj)− Cδ/n(Tj)− ε or Lt = (1− ε)

(
maxj µ̂j(t)− Cδ/n(Tj)

)
5: Known arms: K = {i : µ̂i(Ti) + Cδ/n(Ti) < Lt or µ̂i(Ti)− Cδ/n(Ti) > Ut}
6: while K 6= [n] do
7: Pull arm i1(t) = arg mini∈Ĝ\K µ̂i(Ti)− Cδ/n(Ti), update Ti1 , µ̂i1
8: Pull arm i2(t) = arg maxi∈Ĝcε\K

µ̂i(Ti) + Cδ/n(Ti), update Ti2 , µ̂i2
9: Pull arm i∗(t) = arg maxi µ̂i(Ti) + Cδ/n(Ti), update Ti∗ , µ̂i∗

10: Update bounds Lt, Ut, sets Ĝ, K
return The set of good arms {i : µ̂i(Ti)− Cδ/n(Ti) > Ut}

B.1 Optimism with additive γ

Theorem B.1. Fix ε ≥ 0, 0 < δ ≤ 1/2, γ ∈ [0, 16] and an instance ν such that max(∆i, |ε−∆i|) ≤
8 for all i. In the case that Gε = [n], let αε = min(αε, βε). With probability at least 1 − δ, (ST)2

correctly returns a set G such that Gε ⊂ G ⊂ Gε+γ in at most

12

n∑
i=1

min

{
max

{
1024

(µ1 − ε− µi)2
log

(
2n

δ
log2

(
3072n

δ(µ1 − ε− µi)2

))
,

4096

(µ1 + αε − µi)2
log

(
2n

δ
log2

(
12288n

δ(µ1 + αε − µi)2

))
,

4096

(µ1 + βε − µi)2
log

(
2n

δ
log2

(
12288n

δ(µ1 + βε − µi)2

))}
,

1

γ2
log

(
2n

δ
log2

(
3072n

δγ2

))}
samples.

Proof. Throughout the proof, recall that ∆i = µ1 − µi for all i, αε = mini∈Gε µi − (µ1 − ε), and
βε = mini∈Gcε (µ1 − ε)− µi. Additionally, at any time t, we will take Tj(t) to denote the number of
samples of arm j up to time t.

Define the event

E =

 ⋂
i∈[n]

⋂
t∈N
|µ̂i(t)− µi| ≤ Cδ/n(t)

 .

Using standard anytime confidence bound results, and recalling that that Cδ(t) :=
√

4 log(log2(2t)/δ)
t ,

we have

P(Ec) = P

 ⋃
i∈[n]

⋃
t∈N
|µ̂i − µi| > Cδ/n(t)


≤

n∑
i=1

P

(⋃
t∈N
|µ̂i − µi| > Cδ/n(t)

)
≤

n∑
i=1

δ

n
= δ

Hence, P (E) ≥ 1− δ. Throughout, we will make use of a function h(x, δ) such that if t ≥ h(x, δ),
then Cδ(t) ≤ |x|. We bound h(·, ·) in Lemma F.2. h(·, ·) is assumed to decrease monotonically in
both arguments and is symmetric in its first argument.
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B.1.1 Step 0: Correctness

We begin by showing that on E , if (ST)2 terminates, it returns a set G such that Gε ⊂ G ⊂ Gε+γ .
Since P (E) ≥ 1− δ, this implies that (ST)2 is correct with high probability.

Claim 0: On Event E , at all times t, Ut ≥ µ1 − ε− γ.

Proof.

Ut = max
j
µ̂j(Tj(t)) + Cδ/n(Tj(t))− ε− γ ≥ µ̂1(T1(t)) + Cδ/n(T1(t))− ε− γ

E
≥ µ1 − ε− γ

Claim 1: On Event E , at all times t, Lt ≤ µ1 − ε.
Proof.

Lt = max
j
µ̂j(Tj(t))− Cδ/n(Tj(t))− ε

E
≤ max

j
µj − ε = µ1 − ε

Claim 2: On event E , if there is a time t such that µ̂i(Ti(t))− Cδ/n(Ti(t)) > Ut, then i ∈ Gε+γ .

Proof. Assume for some t, µ̂i(Ti(t))− Cδ/n(Ti(t)) > Ut. Then

µi
E
≥ µ̂i(Ti(t))− Cδ/n(Ti(t)) ≥ Ut

Claim 0
≥ µ1 − ε− γ

which implies i ∈ Gε+γ
Claim 3: On event E , if there is a time t such that µ̂i(Ti(t)) + Cδ/n(Ti(t)) < Lt, then i ∈ Gcε.

Proof. Assume that is a t for which µ̂i(Ti(t)) + Cδ/n(Ti(t)) < Lt. Then

µi
E
≤ µ̂i(Ti(t)) + Cδ/n(Ti(t)) ≤ Lt

Claim 1
≤ µ1 − ε

which implies i ∈ Gcε.
(ST)2 terminates at any time t such that simultaneously for all arms i, either µ̂i(Ti(t))+Cδ/n(Ti(t)) >
Ut or µ̂i(Ti(t))− Cδ/n(Ti(t)) < Lt. On E , by Claim 3, Gε ⊂ {i : µ̂i(Ti(t)) + Cδ/n(Ti(t)) > Ut}.
On E , by Claim 2, {i : µ̂i(Ti(t)) + Cδ/n(Ti(t)) > Ut} ⊂ Gε+γ . Hence, on the event E . (ST)2

returns a set G such that Gε ⊂ G ⊂ Gε+γ .

B.1.2 Step 1: Complexity of estimating the threshold, µ1 − ε

Let STOP denote the termination event that for all arms i, either µ̂i(Ti(t)) + Cδ/n(Ti(t)) > Ut or
µ̂i(Ti(t))− Cδ/n(Ti(t)) < Lt. Let ω denote the quantity

ω := max{γ,min(αε, βε)}.
Let T denote the random variable of the total number of rounds before (ST)2 terminates. At most
3 samples are drawn in any round. Hence, the total sample complexity is bounded by 3T . We may
write T as

T := |{t : ¬STOP}| = |{t : ¬STOP and i∗ /∈ Gω}|+ |{t : ¬STOP and i∗ ∈ Gω}|
Next, we bound the first event in this decomposition.

Claim 0: On E ,

|{t : ¬STOP and i∗ /∈ Gω}| ≤
∑
i∈Gcω

min
{
h
(
γ
2 ,

δ
n

)
,min

[
h
(

∆i

2 ,
δ
n

)
, h
(

min(αε,βε)
2 , δn

)]}
.

Proof. If for each i ∈ Gcω, µi + 2Cδ/n(Ti(t)) < µ1 is true, which is ensured when Ti(t) >

h
(
∆i/2,

δ
n

)
for all i ∈ Gcω , then

µ̂i(Ti(t)) + Cδ/n(Ti(t))
E
≤ µi + 2Cδ/n(Ti(t)) < µ1

E
≤ µ̂1(T1(t)) + Cδ/n(T1(t))
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which implies that i 6= i∗. Additionally, since i ∈ Gcω by assumption, we have that µ1 − ω − µi ≥ 0,
which reduces to ∆i ≥ ω. Since ω = max(γ,min(αε, βε)), it is likewise true that

h

(
∆i

2
,
δ

n

)
= min

[
h

(
γ

2
,
δ

n

)
,min

{
h

(
∆i

2
,
δ

n

)
, h

(
min(αε, βε)

2
,
δ

n

)]}
.

Summing over all i ∈ Gcω achieves the result.

We may decompose the set {t : ¬STOP and i∗ ∈ Gω} as{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) >

ω

16

}
∪
{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) ≤

ω

16

}
Claim 1:

∣∣{t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) >
ω
16

}∣∣ ≤∑
i∈Gω min

{
h
(
γ
16 ,

δ
n

)
,min

[
h
(

∆i

8 ,
δ
n

)
, h
(

min(αε,βε)
16 , δn

)]}
Proof. Cδ/n(Ti(t)) ≤ ω

16 is true when Ti(t) ≥ h
(
ω
16 ,

δ
n

)
. Since i∗ ∈ Gω , µi− (µ1−ω) ≥ 0, which

implies ∆i ≤ ω. By definition, ω = min(γ,min(αε, βε)). Hence, by monotonicity of h(·, ·),

h

(
ω

16
,
δ

n

)
= min

[
h

(
∆i

16
,
δ

n

)
, h

(
ω

16
,
δ

n

)]
= min

{
h

(
γ

16
,
δ

n

)
,min

[
h

(
∆i

16
,
δ

n

)
, h

(
min(αε, βε)

16
,
δ

n

)]}
Summing over all i ∈ Gω achieves the desired result.

B.1.3 Step 2: Controlling “crossing” events

Recall that we sample i1(t) ∈ Ĝ and i2(t) ∈ Ĝc. In this section, we control the number of times that
i1(t) ∈ Gcε+ γ

2
and i2(t) ∈ Gε+ γ

2
.

To do so, we first decompose the set
{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) ≤ ω

16

}
as{

t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) ≤
ω

16
and i1(t) ∈ Gcε+ γ

2

}
∪
{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) ≤

ω

16
and i1(t) ∈ Gε+ γ

2

}
Claim 0:

∣∣∣{t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) ≤ ω
16 and i1(t) ∈ Gcε+ γ

2

}∣∣∣ ≤∑
i∈Gc

ε+
γ
2

min
[
h
(

∆i−ε
8 , δn

)
, h
(
γ
8 ,

δ
n

)]
.

Proof. Recall that Ĝ is the set of all arms whose empirical means exceed maxi µ̂i(Ti(t))− ε, and
i1(t) ∈ Ĝ by definition. Note that maxi µ̂i(Ti(t)) − ε > maxi µ̂i(Ti(t)) − Cδ/n(Ti(t)) − ε = Lt.
Hence, if an arm’s upper bound is below Lt, then the arm cannot be in Ĝ and thus not be i1(t). By
the above event, Cδ/n(Ti∗(t)) ≤ ω

16 . Hence,

µ∗i +
ω

8
≥ µ∗i + 2Cδ/n(Ti∗(t))

E
≥ µ̂∗i (Ti∗(t)) + Cδ/n(Ti∗(t)) ≥ µ̂1(T1(t)) + Cδ/n(T1(t))

E
≥ µ1.

Therefore, µi∗ ≥ µ1 − ω
8 or equivalently, i∗ ∈ Gω/8. Using this,

Lt = max
i
µ̂i(Ti(t))− Cδ/n(Ti(t))− ε ≥ µ̂i∗(Ti∗(t))− Cδ/n(Ti∗(t))− ε

E
≥ µi∗ − 2Cδ/n(Ti∗(t))− ε
E
≥ µi∗ −

ω

8
− ε

≥ µ1 −
ω

4
− ε
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Next, we bound the number of times an arm i ∈ Gcε+ γ
2

is sampled before its upper bound

is below µ1 − ω
4 − ε. Note that Cδ/n(Ti(t)) < 1

2

(
µ1 − ω

4 − ε− µi
)
, true when Ti(t) >

h
(

1
2

(
µ1 − ω

4 − ε− µi
)
, δn
)

implies that

µ̂i(Ti(t)) + Cδ/n(Ti(t))
E
≤ µi + 2Cδ/n(Ti(t)) < µ1 −

ω

4
− ε ≤ Lt.

Finally, we turn our attention to the difference µ1− ω
4 −ε−µi. Recall that ω = max(γ,min(αε, βε)).

µ1 −
ω

4
− ε− µi = (µ1 − ε)− µi −

1

4
ω

= (µ1 − ε)− µi −
1

4
max(γ,min(αε, βε)).

By definition, βε = mini∈Gcε (µ1 − ε)− µi. Hence, min(αε, βε) ≤ (µ1 − ε)− µi for all i ∈ Gcε+ γ
2

.
Similarly, since i ∈ Gcε+ γ

2
by assumption, (µ1−ε− γ2 )−µi ≥ 0, which rearranges to γ

2 ≤ (µ1−ε)−µi.
Therefore,

(µ1 − ε)− µi −
1

4
max(γ,min(αε, βε)) ≥

1

2
((µ1 − ε)− µi) =

∆i − ε
2

.

Hence, by monotonicity of h(·, ·),

h

(
1

2

(
µ1 −

ω

4
− ε− µi

)
,
δ

n

)
≤ h

(
∆i − ε

4
,
δ

n

)
.

Lastly, as above, since i ∈ Gcε+ γ
2

, we have that ∆i − ε = (µ1 − ε)− µi ≥ 1
2γ. Hence,

h

(
∆i − ε

4
,
δ

n

)
≤ min

[
h

(
∆i − ε

8
,
δ

n

)
, h

(
γ

8
,
δ

n

)]
.

Putting this together, if Ti(t) ≥ min
[
h
(

∆i−ε
8 , δn

)
, h
(
γ
8 ,

δ
n

)]
, then i 6= i1(t) for all i ∈ Gcε+ γ

2
.

Summing over all such i bounds the size of set stated in the claim.

We decompose the remaining event{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) ≤

ω

16
and i1(t) ∈ Gε+ γ

2

}
as {

t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) ≤
ω

16
and i1(t) ∈ Gε+ γ

2
and i2(t) ∈ Gε+ γ

2

}
∪
{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) ≤

ω

16
and i1(t) ∈ Gε+ γ

2
and i2(t) ∈ Gcε+ γ

2

}
.

We proceed by bounding the size of the first set.

Claim 1:∣∣∣{t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) ≤
ω

16
and i1(t) ∈ Gε+ γ

2
and i2(t) ∈ Gε+ γ

2

}∣∣∣
≤

∑
i∈Gε+ γ

2

min

[
h

(
ε∆i

8
,
δ

n

)
, h

(
γ

8
,
δ

n

)]

Proof. Recall that K = {i : µ̂(Ti(t)) + Cδ/n(Ti(t)) < Lt or µ̂(Ti(t))− Cδ/n(Ti(t)) > Lt} and i2
is sampled from the set Ĝc\K, ie all arms in Ĝc who have not been declared as above Ut or below
Lt. Hence, if an arm’s lower bound exceeds Ut = maxi µ̂(Ti(t)) + Cδ/n(Ti(t))− ε− γ, it must be
in K an thus cannot be i2. Recall that i∗(t) = arg max µ̂i(Ti(t)) +Cδ/n(Ti(t)). By the above event,
i∗(t) ∈ Gω and Cδ/n(Ti∗(t)) ≤ ω

16 . Hence,

Ut = max
i
µ̂i(Ti(t)) + Cδ/n(Ti(t))− ε− γ = µ̂i∗(t)(Ti∗(t)(t)) + Cδ/n(Ti∗(t)(t))− ε− γ
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E
≤ µi∗(t) + 2Cδ/n(Ti∗(t)(t))− ε− γ

≤ µi∗(t) +
ω

8
− ε− γ

≤ µ1 +
ω

8
− ε− γ

Next, we bound the number of times an arm i ∈ Gε+ γ
2

is sampled before its lower bound is
above µ1 + ω

8 − ε − γ. Note that Cδ/n(Ti(t)) <
1
2

(
µi − (µ1 + ω

8 − ε− γ)
)
, true when Ti(t) >

h
(

1
2

(
µi − (µ1 + ω

8 − ε− γ)
)
, δn
)

implies that

µ̂i(Ti(t))− Cδ/n(Ti(t))
E
≥ µi − 2Cδ/n(Ti(t)) > µ1 +

ω

8
− ε− γ.

Finally, we turn our attention to the difference µi − (µ1 + ω
8 − ε − γ). Recall that ω =

max(γ,min(αε, βε)).

µi −
(
µ1 +

ω

8
− ε− γ

)
= µi − (µ1 − ε) + γ − 1

8
ω

Case 1a, ω = min(αε, βε) and i ∈ Gε:.
By definition, αε = mini∈Gε µi − (µ1 − ε) . Hence, min(αε, βε) ≤ µi − (µ1 − ε) for all i ∈ Gε.
Therefore,

µi − (µ1 − ε) + γ − 1

8
ω = µi − (µ1 − ε) + γ − 1

8
min(αε, βε)

≥ max

(
µi − (µ1 − ε)−

1

8
min(αε, βε), γ

)
≥ max

(
7

8
(µi − (µ1 − ε)), γ

)

Case 1b, ω = min(αε, βε) and i ∈ Gcε ∩Gε+ γ
2

Since ω = max(γ,min(αε, βε)), if ω = min(αε, βε), then 1
2γ < min(αε, βε). Since min(αε, βε) =

min |µi − (µ1 − ε)|, the set Gcε ∩Gε+ γ
2

is empty and there is nothing to prove.

Case 2a, ω = γ and i ∈ Gε:

µi − (µ1 − ε) + γ − 1

8
ω = µi − (µ1 − ε) +

7

8
γ ≥ max

(
µi − (µ1 − ε),

7

8
γ

)
Case 2b, ω = γ and i ∈ Gcε ∩Gε+ γ

2
:

For i ∈ Gcε ∩Gε+ γ
2

, we have that µi − (µ1 − ε− γ/2) ≥ 0. Hence µi − (µ1 − ε) ≥ −γ2 . Therefore,

µi − (µ1 − ε) + γ − 1

8
ω ≥ 3

8
γ = max

(
3

8
((µ1 − ε)− µi),

3

8
γ

)
.

Applying the above cases and using monotonicity of h(·, ·), we see that for i ∈ Gε+ γ
2

,

h

(
1

2

(
µi −

(
µ1 +

ω

8
− ε
))

,
δ

n

)
≤ min

[
h

(
ε−∆i

8
,
δ

n

)
, h

(
γ

8
,
δ

n

)]
.

Hence, if any i ∈ Gε+ γ
2

has received this many samples, then its lower bound exceeds Ut and thus

the arm must be in Ĝ. Putting this together, if Ti(t) ≥ min
[
h
(
ε−∆i

8 , δn
)
, h
(
γ
8 ,

δ
n

)]
, then i 6= i2(t)

for all i ∈ Gε+ γ
2

. Summing over all such i bounds the size of set stated in the claim.
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B.1.4 Step 3: Controlling the complexity until stopping occurs

In this step, we turn our attention to the final event to control:

S :=
{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) ≤

ω

16
and i1(t) ∈ Gε+ γ

2
and i2(t) ∈ Gcε+ γ

2

}
.

For brevity, we will refer to this set as S for this step. The objective will be to bound the time before
each arms lower bound either clears Ut or its upper bound clears Lt which implies the stopping
condition. To do so, we introduce, two events:

E1(t) := {µ̂i1(t)(Ti1(t)(t))− Cδ/n(Ti1(t)(t)) > Ut} (5)

and
E2(t) := {µ̂i2(t)(Ti2(t)(t)) + Cδ/n(Ti2(t)(t)) < Lt}. (6)

If E1(t) is true, then µ̂i(Ti) − Cδ/n(Ti(t)) > Lt for all i ∈ Ĝ. If E2(t) is true, then µ̂i(Ti) +

Cδ/n(Ti(t)) < Ut for all i ∈ Ĝc. Hence, by line 6 of (ST)2, if both E1(t) and E2(t) are true, then
(ST)2 terminates.

Claim 0: |S ∩ {t : ¬E1(t)}| ≤
∑
i∈Gε+ γ

2

min
[
h
(
ε−∆i

8 , δn
)
, h
(
γ
8 ,

δ
n

)]
.

Proof. Recall that by the set S , we have that i1(t) ∈ Gε+ γ
2

. Furthermore, by the set S , we have that
i∗(t) ∈ Gω and Cδ/n(Ti∗(t)) ≤ ω/16. Hence,

Ut = max
i
µ̂i(Ti(t)) + Cδ/n(Ti(t))− ε− γ

= µ̂i∗(t)(Ti∗(t)(t)) + Cδ/n(Ti∗(t)(t))− ε− γ
E
≤ µi∗(t) + 2Cδ/n(Ti∗(t)(t))− ε− γ

≤ µi∗(t) +
ω

8
− ε− γ

≤ µ1 +
ω

8
− ε− γ

If Cδ/n(Ti) ≤ 1
2

(
µi −

(
µ1 + ω

8 − ε− γ
))

which is true when Ti ≥
h
(

1
2

(
µi −

(
µ1 + ω

8 − ε− γ
))
, δn
)
, then

µ̂i(Ti)− Cδ/n(Ti) ≥ µi − 2Cδ/n(Ti) ≥ µ1 +
ω

8
− ε− γ ≥ Ut.

The remainder of the proof of this claim focuses on controlling the difference: µi−
(
µ1 + ω

8 − ε− γ
)

in the case that ω = min(αε, βε) and ω = γ. Recall that ω = max(γ,min(αε, βε)). Hence, if any
possible i ∈ Gε+ γ

2
has received sufficiently many samples, since i1(t) ∈ Gε+ γ

2
, this implies E1(t).

Case 1a, ω = min(αε, βε) and i ∈ Gε
We focus on the difference µi −

(
µ1 + ω

8 − ε− γ
)
.

µi −
(
µ1 +

ω

8
− ε− γ

)
= µi −

(
µ1 +

min(αε, βε)

8
− ε− γ

)
= µi − (µ1 − ε) + γ − 1

8
min(αε, βε)

(γ≥0)

≥ 1

2
(µi − (µ1 − ε)) =

ε−∆i

2

where the final step follows since min(αε, βε) ≤ αε ≤ µi − (µ1 − ε) by definition for all i ∈ Gε.
Then by monotonicity of h(·, ·),

h

(
1

2

(
µi −

(
µ1 +

ω

8
− ε− γ

))
,
δ

n

)
≤ h

(
ε−∆i

4
,
δ

n

)
.

Lastly, in this setting, γ ≤ min(αε, βε) ≤ ε−∆i since ω = min(αε, βε). Hence, it is trivially true
that

h

(
ε−∆i

4
,
δ

n

)
= min

[
h

(
ε−∆i

4
,
δ

n

)
, h

(
γ

4
,
δ

n

)]

25



Case 1b, ω = min(αε, βε) and i ∈ Gcε ∩Gε+ γ
2

Since ω = max(γ,min(αε, βε)), if ω = min(αε, βε), then 1
2γ < min(αε, βε). Since min(αε, βε) =

min |µi − (µ1 − ε)|, the set Gcε ∩Gε+ γ
2

is empty and there is nothing to prove.

Case 2a, ω = γ and i ∈ Gε
Again, we bound the difference µi −

(
µ1 + ω

4 − ε− γ
)
.

µi −
(
µ1 +

ω

8
− ε− γ

)
= µi − (µ1 − ε) +

7

8
γ

Since i ∈ Gε, µi − (µ1 − ε) ≥ 0. Hence,

µi − (µ1 − ε) +
7

8
γ ≥ max

(
µi − (µ1 − ε),

7

8
γ

)
≥ 1

2
max (ε−∆i, γ)

Therefore, we have that

h

(
1

2

(
µi −

(
µ1 +

ω

8
− ε− γ

))
,
δ

n

)
≤ h

(
ε−∆i

4
,
δ

n

)
and

h

(
1

2

(
µi −

(
µ1 +

ω

8
− ε− γ

))
,
δ

n

)
≤ h

(
γ

4
,
δ

n

)
.

Hence,

h

(
1

2

(
µi −

(
µ1 +

ω

4
− ε− γ

))
,
δ

n

)
≤ min

[
h

(
ε−∆i

4
,
δ

n

)
, h

(
γ

4
,
δ

n

)]
.

Case 2b, ω = γ and i ∈ Gcε ∩Gε+ γ
2

As before,

µi −
(
µ1 +

ω

8
− ε− γ

)
= µi − (µ1 − ε) +

7

8
γ

Since i ∈ Gcε ∩Gε+ γ
2

, we have that µi− (µ1− ε− γ
2 ) ≥ 0. Rearranging implies that µi− (µ1− ε) ≥

−1
2 γ. Hence,

µi − (µ1 − ε) +
7

8
γ ≥ 3

8
γ.

Hence,

h

(
1

2

(
µi −

(
µ1 +

ω

8
− ε− γ

))
,
δ

n

)
≤ h

(
γ

8
,
δ

n

)
.

Additionally, as above, if i ∈ Gcε ∩Gε+ γ
2

, we have that µi − (µ1 − ε− γ
2 ) ≥ 0 which implies that

(µ1 − ε)− µi ≤ γ. Hence

h

(
γ

8
,
δ

n

)
= min

[
h

(
∆i − ε

8
,
δ

n

)
, h

(
γ

8
,
δ

n

)]
.

Therefore, if Ti exceeds the above, then E1(t) is true for an i1 ∈ Gcε ∩Gε+ γ
2

. Combining all cases,
and noting that h(x, δ) ≥ h(x/2, δ) ∀x, we see that for i1 ∈ Gε+ γ

2
, if

Ti1(t)(t) > min

[
h

(
ε−∆i

8
,
δ

n

)
, h

(
γ

8
,
δ

n

)]
,

Then E1(t) is true. Summing over all possible i1 ∈ Gε+ γ
2

proves the claim.

Claim 1: |S ∩ {t : E1(t)} ∩ {t : ¬E2(t)}| ≤
∑
i∈Gc

ε+
γ
2

min
[
h
(
ε−∆i

8 , δn
)
, h
(
γ
8 ,

δ
n

)]
.
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Proof. By the events in set S, Cδ/n(Ti∗(t)) ≤ ω
16 . Hence,

µ∗i +
ω

8
≥ µ∗i + 2Cδ/n(Ti∗(t))

E
≥ µ̂∗i (Ti∗(t)) + Cδ/n(Ti∗(t)) ≥ µ̂1(T1(t)) + Cδ/n(T1(t))

E
≥ µ1.

Therefore, µi∗ ≥ µ1 − ω
8 or equivalently, i∗ ∈ Gω/8. Using this,

Lt = max
i
µ̂i(Ti(t))− Cδ/n(Ti(t))− ε ≥ µ̂i∗(Ti∗(t))− Cδ/n(Ti∗(t))− ε

E
≥ µi∗ − 2Cδ/n(Ti∗(t))− ε
E
≥ µi∗ −

ω

8
− ε

≥ µ1 −
ω

4
− ε

For i ∈ Gcε+ γ
2

, if Cδ/n(Ti) ≤ 1
2

((
µ1 − ω

4 − ε
)
− µi

)
, true when Ti ≥

h
(

1
2

((
µ1 − ω

4 − ε
)
− µi

)
, δn
)
, then

µ̂i(Ti) + Cδ/n(Ti) ≤ µi + 2Cδ/n(Ti) ≤ µ1 −
ω

4
− ε ≤ Lt.

As before, we seek a lower bound for the difference
(
µ1 − ω

4 − ε
)
− µi.

Case 1: ω = min(αε, βε)(
µ1 −

ω

4
− ε
)
− µi = (µ1 − ε)− µi −

1

4
min(αε, βε)

≥ 1

2
((µ1 − ε)− µi)

since (µ1 − ε)− µi ≥ min(αε, βε). Therefore, we have that

h

(
1

2

((
µ1 −

ω

4
− ε
)
− µi

)
,
δ

n

)
≤ h

(
∆i − ε

4
,
δ

n

)
.

Lastly, in this setting, γ ≤ min(αε, βε) ≤ ε−∆i since ω = min(αε, βε). Hence, it is trivially true
that

h

(
∆i − ε

4
,
δ

n

)
= min

[
h

(
∆i − ε

4
,
δ

n

)
, h

(
γ

4
,
δ

n

)]
.

Case 2: ω = γ

Assume that γ > min(αε, βε), as equality is covered by the previous case. Hence,(
µ1 −

ω

4
− ε
)
− µi = (µ1 − ε)− µi −

1

4
γ

Recall that we seek to control i2 ∈ Gcε+ γ
2

. For any i ∈ Gcε+ γ
2

, we have that µ1 − ε − γ
2 − µi ≥ 0.

Rearranging, we see that (µ1 − ε)− µi ≥ 1
2γ which implies that

(µ1 − ε)− µi −
1

4
γ ≥ 1

2
((µ1 − ε)− µi).

Therefore, we have that

h

(
1

2

((
µ1 −

ω

4
− ε
)
− µi

)
,
δ

n

)
≤ h

(
∆i − ε

4
,
δ

n

)
is this setting as well. Similarly, since ∆i − ε ≥ 1

2γ, we likewise have that

h

(
∆i − ε

4
,
δ

n

)
≤ min

[
h

(
∆i − ε

8
,
δ

n

)
, h

(
γ

8
,
δ

n

)]
.

Hence, if Ti exceeds the right-hand side of the preceding inequality, then for any i ∈ Gcε+ γ
2

, its upper
bound is below Lt. Hence for i2(t) ∈ Gcε+ γ

2
, this implies event E2(t). Summing over all possible

values of i2(t) ∈ Gcε+ γ
2

proves the claim.
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Claim 2: The cardinality of S is bounded as |S| ≤
∑n
i=1 min

[
h
(

∆i−ε
8 , δn

)
, h
(
γ
8 ,

δ
n

)]
.

Proof. First, S may be decomposed as

|S| = |S ∩ {t : ¬E1(t)}|+ |S ∩ {t : E1(t)} ∩ {t : ¬E2(t)}|+ |S ∩ {t : E1(t)} ∩ {t : E2(t)}|

Note that |S ∩ {t : E1(t)} ∩ {t : E2(t)}| = 0 because we have assumed in set S that
(ST)2 has not stopped, and {t : E1(t)} ∩ {t : E2(t)} implies termination. By Claim 0,
|S ∩ {t : ¬E1(t)}| ≤

∑
i∈Gε+ γ

2

min
[
h
(
ε−∆i

4 , δn
)
, h
(
γ
4 ,

δ
n

)]
. By Claim 1, |S ∩ {t : E1(t)} ∩ {t :

¬E2(t)}| ≤
∑
i∈Gc

ε+
γ
2

min
[
h
(
ε−∆i

8 , δn
)
, h
(
γ
8 ,

δ
n

)]
. Recalling that h is assumed to be symmetric

in its first argument proves the claim.

B.1.5 Step 4: Putting it all together

Recall that the total number of rounds T that (ST)2 runs for is given by T = |{t : ¬STOP}|. To
bound this quantity, we have decomposed the set {t : ¬STOP} into many subsets. Below, we show
this decomposition.

{t : ¬STOP} =

{t : ¬STOP and i∗ /∈ Gω}

∪
{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) >

ω

16

}
∪
{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) ≤

ω

16
and i1(t) ∈ Gcε+ γ

2

}
∪
{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) ≤

ω

16
and i1(t) ∈ Gε+ γ

2
and i2(t) ∈ Gε+ γ

2

}
∪
{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) ≤

ω

16
and i1(t) ∈ Gε+ γ

2
and i2(t) ∈ Gcε+ γ

2

}
.

Hence, by a union bound and plugging in the results of the above steps,

|{t : ¬STOP}| ≤
|{t : ¬STOP and i∗ /∈ Gω}|

+
∣∣∣{t : ¬STOP and i∗ ∈ Gω and ∃i ∈ Gω : Cδ/n(Ti∗(t)) >

ω

16

}∣∣∣
+
∣∣∣{t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) ≤

ω

16
and i1(t) ∈ Gcε+ γ

2

}∣∣∣
+
∣∣∣{t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) ≤

ω

16
and i1(t) ∈ Gε+ γ

2
and i2(t) ∈ Gε+ γ

2

}∣∣∣
+
∣∣∣{t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) ≤

ω

16
and i1(t) ∈ Gε+ γ

2
and i2(t) ∈ Gcε+ γ

2

}∣∣∣
≤
∑
i∈Gcω

min

{
h

(
γ

2
,
δ

n

)
,min

[
h

(
∆i

2
,
δ

n

)
, h

(
min(αε, βε)

2
,
δ

n

)]}

+
∑
i∈Gω

min

{
h

(
γ

16
,
δ

n

)
,min

[
h

(
∆i

16
,
δ

n

)
, h

(
min(αε, βε)

16
,
δ

n

)]}
+

∑
i∈Gc

ε+
γ
2

min

[
h

(
∆i − ε

8
,
δ

n

)
, h

(
γ

8
,
δ

n

)]

+
∑

i∈Gε+ γ
2

min

[
h

(
ε−∆i

8
,
δ

n

)
, h

(
γ

8
,
δ

n

)]

+

n∑
i=1

min

[
h

(
∆i − ε

8
,
δ

n

)
, h

(
γ

8
,
δ

n

)]
(ε≤1/2)

≤
n∑
i=1

min

{
h

(
γ

16
,
δ

n

)
,min

[
h

(
∆i

16
,
δ

n

)
, h

(
min(αε, βε)

16
,
δ

n

)]}
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+ 2

n∑
i=1

min

[
h

(
∆i − ε

8
,
δ

n

)
, h

(
γ

8
,
δ

n

)]

≤ 4

n∑
i=1

min

{
max

{
h

(
∆i − ε

16
,
δ

n

)
,min

[
h

(
∆i

16
,
δ

n

)
, h

(
min(αε, βε)

16
,
δ

n

)]}
,

h

(
γ

16
,
δ

n

)}
Next, by Lemma F.3, we may bound the minimum of h(·, ·) functions.

4

n∑
i=1

min

{
max

{
h

(
∆i − ε

16
,
δ

n

)
,min

[
h

(
∆i

16
,
δ

n

)
, h

(
min(αε, βε)

16
,
δ

n

)]}
,

h

(
γ

16
,
δ

n

)}
= 4

n∑
i=1

min

{
max

{
h

(
∆i − ε

16
,
δ

n

)
,

min

[
h

(
∆i

16
,
δ

n

)
,max

[
h

(
αε
16
,
δ

n

)
, h

(
βε
16
,
δ

n

)]]}
,

h

(
γ

16
,
δ

n

)}
≤ 4

n∑
i=1

min

{
max

{
h

(
∆i − ε

16
,
δ

n

)
,

max

[
h

(
∆i + αε

32
,
δ

n

)
, h

(
∆i + βε

32
,
δ

n

)]}
,

h

(
γ

16
,
δ

n

)}
= 4

n∑
i=1

min

{
max

{
h

(
∆i − ε

16
,
δ

n

)
, h

(
∆i + αε

32
,
δ

n

)
, h

(
∆i + βε

32
,
δ

n

)}
,

h

(
γ

16
,
δ

n

)}

Finally, we use Lemma F.2 to bound the function h(·, ·). Since δ ≤ 1/2, δ/n ≤ 2e−e/2. Further,
|ε−∆i| ≤ 8 for all i and ε ≤ 1/2 implies that 1

8 |ε−∆i| ≤ 2 and 1
8 min(αε, βε) ≤ 2. ∆i ≤ 16 for

all i, gives 0.125∆i ≤ 2. Lastly, γ ≤ 16 implies that γ8 ≤ 2. Therefore,

4

n∑
i=1

min

{
max

{
h

(
∆i − ε

16
,
δ

n

)
, h

(
∆i + αε

32
,
δ

n

)
, h

(
∆i + βε

32
,
δ

n

)}
,

h

(
γ

16
,
δ

n

)}
≤ 4

n∑
i=1

min

{
max

{
1024

(ε−∆i)2
log

(
2n

δ
log2

(
3072n

δ(ε−∆i)2

))
,

4096

(∆i + αε)2
log

(
2n

δ
log2

(
12288n

δ(∆i + αε)2

))
,

4096

(∆i + βε)2
log

(
2n

δ
log2

(
12288n

δ(∆i + βε)2

))}
,

1

γ2
log

(
2n

δ
log2

(
3072n

δγ2

))}
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= 4

n∑
i=1

min

{
max

{
1024

(µ1 − ε− µi)2
log

(
2n

δ
log2

(
3072n

δ(µ1 − ε− µi)2

))
,

4096

(µ1 + αε − µi)2
log

(
2n

δ
log2

(
12288n

δ(µ1 + αε − µi)2

))
,

4096

(µ1 + βε − µi)2
log

(
2n

δ
log2

(
12288n

δ(µ1 + βε − µi)2

))}
,

1

γ2
log

(
2n

δ
log2

(
3072n

δγ2

))}
.

The above bounds the number of rounds T . Therefore, the total number of samples is at most 3T .

B.2 Optimism with multiplicative γ

Theorem B.2. Fix ε ∈ (0, 1/2], 0 < δ ≤ 1/2, γ ∈ [0,min(16/µ1, 1/2)] and an instance ν such
that max(∆i, |εµ1 − ∆i|) ≤ 8 for all i. In the case that Mε = [n], let α̃ε = min(α̃ε, β̃ε). With
probability at least 1− δ, (ST)2 correctly returns a set G such that Mε ⊂ G ⊂Mε+γ in at most

12

n∑
i=1

min

{
max

{
1024

((1− ε)µ1 − µi)2
log

(
2n

δ
log2

(
3072n

δ((1− ε)µ1 − µi)2

))
,

4096

(µ1 + α̃ε
1−ε − µi)2

log

(
2n

δ
log2

(
12288n

δ(µ1 + α̃ε
1−ε )

2

))
,

4096

(µ1 + β̃ε
1−ε − µi)2

log

2n

δ
log2

 12288n

δ(µ1 + β̃ε
1−ε − µi)2

 ,

1024

γ2µ2
1

log

(
2n

δ
log2

(
3072n

δγ2µ2
1

))}
samples.

Proof. Throughout the proof, recall that ∆i = µ1 − µi for all i, α̃ε = mini∈Mε
µi − (1− ε)µ1, and

β̃ε = mini∈Mc
ε
(1− ε)µ1 − µi. Additionally, at any time t, we will take Tj(t) to denote the number

of samples of arm j up to time t.

Define the event

E =

 ⋂
i∈[n]

⋂
t∈N
|µ̂i(t)− µi| ≤ Cδ/n(t)

 .

Using standard anytime confidence bound results, and recalling that that Cδ(t) :=
√

4 log(log2(2t)/δ)
t ,

we have

P(Ec) = P

 ⋃
i∈[n]

⋃
t∈N
|µ̂i − µi| > Cδ/n(t)


≤

n∑
i=1

P

(⋃
t∈N
|µ̂i − µi| > Cδ/n(t)

)
≤

n∑
i=1

δ

n
= δ

Hence, P (E) ≥ 1− δ. Throughout, we will make use of a function h(x, δ) such that if t ≥ h(x, δ),
then Cδ(t) ≤ |x|. We bound h(·, ·) in Lemma F.2. h(·, ·) is assumed to decrease monotonically in
both arguments and is symmetric in its first argument.

B.2.1 Step 0: Correctness

We begin by showing that on E , if (ST)2 terminates, it returns a set G such that Mε ⊂ G ⊂M(ε+γ).
Since P (E) ≥ 1− δ, this implies that (ST)2 is correct with high probability.
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Claim 0: On Event E , at all times t, Ut ≥ (1− ε− γ)µ1.

Proof.
Ut = (1− ε− γ)(max

j
µ̂j(Tj(t)) + Cδ/n(Tj(t))) ≥ (1− ε− γ)(µ̂1(T1(t)) + Cδ/n(T1(t)))

E
≥ (1− ε− γ)µ1

Claim 1: On Event E , at all times t, Lt ≤ (1− ε)µ1.

Proof.

Lt = (1− ε)
(

max
j
µ̂j(Tj(t))− Cδ/n(Tj(t))

)
E
≤ (1− ε) max

j
µj = (1− ε)µ1

Claim 2: On event E , if there is a time t such that µ̂i(Ti(t))− Cδ/n(Ti(t)) > Ut, then i ∈Mε+γ .

Proof. Assume for some t, µ̂i(Ti(t))− Cδ/n(Ti(t)) > Ut. Then

µi
E
≥ µ̂i(Ti(t))− Cδ/n(Ti(t)) ≥ Ut

Claim 0
≥ (1− ε− γ)µ1

which implies i ∈Mε+γ

Claim 3: On event E , if there is a time t such that µ̂i(Ti(t)) + Cδ/n(Ti(t)) < Lt, then i ∈M c
ε .

Proof. Assume that is a t for which µ̂i(Ti(t)) + Cδ/n(Ti(t)) < Lt. Then

µi
E
≤ µ̂i(Ti(t)) + Cδ/n(Ti(t)) ≤ Lt

Claim 1
≤ (1− ε)µ1

which implies i ∈M c
ε .

(ST)2 terminates at any time t such that simultaneously for all arms i, either µ̂i(Ti(t))+Cδ/n(Ti(t)) >
Ut or µ̂i(Ti(t))− Cδ/n(Ti(t)) < Lt. On E , by Claim 3, Mε ⊂ {i : µ̂i(Ti(t)) + Cδ/n(Ti(t)) > Ut}.
On E , by Claim 2, {i : µ̂i(Ti(t)) + Cδ/n(Ti(t)) > Ut} ⊂ Mε+γ . Hence, on the event E . (ST)2

returns a set G such that Mε ⊂ G ⊂Mε+γ .

B.2.2 Step 1: Complexity of estimating the threshold, (1− ε)µ1

Let STOP denote the termination event that for all arms i, either µ̂i(Ti(t)) + Cδ/n(Ti(t)) > Ut or
µ̂i(Ti(t))− Cδ/n(Ti(t)) < Lt. Let ω denote the quantity

ω := max{γµ1,min(α̃ε, β̃ε)}.
Let T denote the random variable of the total number of rounds before (ST)2 terminates. At most
3 samples are drawn in any round. Hence, the total sample complexity is bounded by 3T . We may
write T as

T ≡ |{t : ¬STOP}| = |{t : ¬STOP and i∗ /∈Mω/µ1
}|+ |{t : ¬STOP and i∗ ∈Mω/µ1

}|
Next, we bound the first event in this decomposition.

Claim 0: On E , |{t : ¬STOP and i∗ /∈ Mω/µ1
}| ≤∑

i∈Mc
ω/µ1

min
{
h
(
γµ1

2 , δn
)
,min

[
h
(

∆i

2 ,
δ
n

)
, h
(

min(α̃ε,β̃ε)
2 , δn

)]}
.

Proof. For each i ∈M c
ω/µ1

, µi + 2Cδ/n(Ti(t)) < µ1, true when Ti(t) > h
(
∆i/2,

δ
n

)
implies that

µ̂i(Ti(t)) + Cδ/n(Ti(t))
E
≤ µi + 2Cδ/n(Ti(t)) < µ1

E
≤ µ̂1(T1(t)) + Cδ/n(T1(t))

which implies that i 6= i∗. Additionally, since i ∈ M c
ω/µ1

by assumption, we have that (1 −
ω/µ1)µ1−µi ≥ 0, which reduces to ∆i ≥ ω. Since ω = max(γµ1,min(α̃ε, β̃ε)), it is likewise true
that

h

(
∆i

2
,
δ

n

)
= min

[
h

(
γµ1

2
,
δ

n

)
,min

{
h

(
∆i

2
,
δ

n

)
, h

(
min(α̃ε, β̃ε)

2
,
δ

n

)]}
.
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Summing over all i ∈M c
ω/µ1

achieves the result.

We may decompose the event {t : ¬STOP and i∗ ∈Mω/µ1
} as{

t : ¬STOP and i∗ ∈Mω/µ1
and ∃i ∈Mω/µ1

: Cδ/n(Ti∗(t)) >
ω

16(1− ε)

}
∪
{
t : ¬STOP and i∗ ∈Mω/µ1

and Cδ/n(Ti∗(t)) ≤
ω

16(1− ε)

}
Claim 1:

∣∣∣{t : ¬STOP and i∗ ∈Mω/µ1
and Cδ/n(Ti∗(t)) ≥ ω

16(1−ε)

}∣∣∣ ≤∑
i∈Mω/µ1

min
{
h
(
γµ1

16 ,
δ
n

)
,min

[
h
(

∆i

16 ,
δ
n

)
, h
(

min(α̃ε,β̃ε)
16(1−ε) , δn

)]}
Proof. Cδ/n(Ti(t)) ≤ ω

16(1−ε) is true when Ti(t) ≥ h
(

ω
16(1−ε) ,

δ
n

)
. Since i∗ ∈ Mω/µ1

, µi −
(1− ω/µ1)µ1 ≥ 0, which implies ∆i ≤ ω. By definition, ω = min(γµ1,min(α̃ε, β̃ε)). Hence, by
monotonicity of h(·, ·),

h

(
ω

16(1− ε)
,
δ

n

)
= min

[
h

(
∆i

16(1− ε)
,
δ

n

)
, h

(
ω

16(1− ε)
,
δ

n

)]
= min

{
h

(
γµ1

16(1− ε)
,
δ

n

)
,min

[
h

(
∆i

16(1− ε)
,
δ

n

)
, h

(
min(α̃ε, β̃ε)

16(1− ε)
,
δ

n

)]}

≤ min

{
h

(
γµ1

16
,
δ

n

)
,min

[
h

(
∆i

16
,
δ

n

)
, h

(
min(α̃ε, β̃ε)

16(1− ε)
,
δ

n

)]}
.

Summing over all i ∈Mω/µ1
achieves the desired result.

B.2.3 Step 2: Controlling “crossing” events

Recall that we sample i1(t) ∈ Ĝ and i2(t) ∈ Ĝc. In this section, we control the number of times that
i1(t) ∈M c

ε+ γ
2

and i2(t) ∈Mε+ γ
2

.

To do so, we first decompose the set
{
t : ¬STOP and i∗ ∈Mω/µ1

and Cδ/n(Ti∗(t)) ≤ ω
16(1−ε)

}
as{

t : ¬STOP and i∗ ∈Mω/µ1
and Cδ/n(Ti∗(t)) ≤

ω

16(1− ε)
and i1(t) ∈M c

ε+ γ
2

}
∪
{
t : ¬STOP and i∗ ∈Mω/µ1

and Cδ/n(Ti∗(t)) ≤
ω

16(1− ε)
and i1(t) ∈Mε+ γ

2

}
Claim 0:

∣∣∣{t : ¬STOP and i∗ ∈Mω/µ1
and Cδ/n(Ti∗(t)) ≤ ω

16(1−ε) and i1(t) ∈M c
ε+ γ

2

}∣∣∣ ≤∑
i∈Mc

ε+
γ
2

min
[
h
(

∆i−εµ1

16 , δn

)
, h
(
γµ1

16 ,
δ
n

)]
.

Proof. Recall that Ĝ is the set of all arms whose empirical means exceed (1 −
ε) maxi µ̂i(Ti(t)), and i1(t) ∈ Ĝ by definition. Note that (1 − ε) maxi µ̂i(Ti(t)) > (1 −
ε)
(
maxi µ̂i(Ti(t))− Cδ/n(Ti(t))

)
= Lt. Hence, if an arm’s upper bound is below Lt, then the arm

cannot be in Ĝ and thus not be i1(t). By the above event, Cδ/n(Ti∗(t)) ≤ ω
16(1−ε) . Therefore,

µi∗ +
ω

8(1− ε)
≥ µi∗ + 2Cδ/n(Ti∗(t))

E
≥ µ̂i∗(Ti∗(t)) + Cδ/n(Ti∗(t)) ≥ µ̂1(T1(t)) + Cδ/n(T1(t))

E
≥ µ1.

Hence, µi∗ ≥ µ1 − ω
8(1−ε) . Rearranging this, we see that µi∗ −

(
1− ω

8µ1(1−ε)

)
µ1 ≥ 0 which

implies that i∗ ∈M ω
8µ1(1−ε)

. Hence,

Lt = (1− ε)
(

max
i
µ̂i(Ti(t))− Cδ/n(Ti(t))

)
(1− ε)

(
µ̂i∗(Ti∗(t))− Cδ/n(Ti∗(t))

)
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E
≥ (1− ε)

(
µi∗ − 2Cδ/n(Ti∗(t))

)
≥ (1− ε)

(
µi∗ −

ω

8(1− ε)

)
≥ (1− ε)

(
µ1 −

ω

4(1− ε)

)
Next, we bound the number of times an arm i ∈ M c

ε+ γ
2

is sampled before its upper bound is

below (1 − ε)
(
µ1 − ω

4(1−ε)

)
. Note that Cδ/n(Ti(t)) < 1

2

(
(1− ε)

(
µ1 − ω

4(1−ε)

)
− µi

)
, true

when Ti(t) > h
(

1
2

(
(1− ε)

(
µ1 − ω

4(1−ε)

)
− µi

)
, δn

)
implies that

µ̂i(Ti(t)) + Cδ/n(Ti(t))
E
≤ µi + 2Cδ/n(Ti(t)) < (1− ε)

(
µ1 −

ω

4(1− ε)

)
≤ Lt.

Finally, we turn our attention to the difference (1 − ε)
(
µ1 − ω

4(1−ε)

)
− µi. Recall that ω =

max(γµ1,min(α̃ε, β̃ε)).

(1− ε)
(
µ1 −

ω

4(1− ε)

)
− µi = (1− ε)µ1 − µi −

1

4
ω

= (1− ε)µ1 − µi −
1

4
max(γµ1,min(α̃ε, β̃ε)).

By definition, β̃ε = mini∈Mc
ε
(1 − ε)µ1 − µi. Hence, min(α̃ε, β̃ε) ≤ (1 − ε)µ1 − µi for all

i ∈M c
ε+ γ

2
. Similarly, since i ∈M c

ε+ γ
2

by assumption, (1− ε− γ
2 )µ1 − µi ≥ 0, which rearranges to

γµ1

2 ≤ (1− ε)µ1 − µi. Therefore,

(1− ε)µ1 − µi −
1

4
max(γµ1,min(α̃ε, β̃ε)) ≥

1

2
((1− ε)µ1 − µi) =

∆i − εµ1

2
.

Hence, by monotonicity of h(·, ·),

h

(
1

2

(
(1− ε)

(
µ1 −

ω

4(1− ε)

)
− µi

)
,
δ

n

)
≤ h

(
∆i − εµ1

4
,
δ

n

)
.

Lastly, as above, since i ∈M c
ε+ γ

2
, we have that ∆i − εµ1 = (1− ε)µ1 − µi ≥ 1

2γµ1. Hence,

h

(
∆i − εµ1

4
,
δ

n

)
≤ min

[
h

(
∆i − εµ1

8
,
δ

n

)
, h

(
γµ1

8
,
δ

n

)]
.

Putting this together, if Ti(t) ≥ min
[
h
(

∆i−εµ1

8 , δn

)
, h
(
γµ1

8 , δn
)]

, then i 6= i1(t) for all i ∈M c
ε+ γ

2
.

Summing over all such i bounds the size of set stated in the claim.

We decompose the remaining event{
t : ¬STOP and i∗ ∈Mω/µ1

and Cδ/n(Ti∗(t)) ≤
ω

16(1− ε)
and i1(t) ∈Mε+ γ

2

}
as {

t : ¬STOP and i∗ ∈Mω/µ1
and Cδ/n(Ti∗(t)) ≤

ω

16(1− ε)
and i1(t) ∈Mε+ γ

2

and i2(t) ∈Mε+ γ
2

}
∪
{
t : ¬STOP and i∗ ∈Mω/µ1

and Cδ/n(Ti∗(t)) ≤
ω

16(1− ε)
and i1(t) ∈Mε+ γ

2

and i2(t) ∈M c
ε+ γ

2

}
.

We proceed by bounding the cardinality of the first set.
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Claim 1:∣∣∣∣{t : ¬STOP and i∗ ∈Mω/µ1
and Cδ/n(Ti∗(t)) ≤

ω

16(1− ε)
and i1(t) ∈Mε+ γ

2

and i2(t) ∈Mε+ γ
2

}∣∣∣
≤

∑
i∈Mε+

γ
2

min

[
h

(
εµ1 −∆i

8
,
δ

n

)
, h

(
γµ1

8
,
δ

n

)]

Proof. Recall that K = {i : µ̂i(Ti(t)) +Cδ/n(Ti(t)) < Lt or µ̂i(Ti(t))−Cδ/n(Ti(t)) > Ut} is the
set of known arms and i2 is sampled from Ĝc\K. Hence, if an arm’s lower bound exceeds Ut, it
must be in K and therefore cannot be i2. Recall that i∗(t) = arg max µ̂i(Ti(t)) + Cδ/n(Ti(t)). By
the above event, i∗(t) ∈Mω/µ1

and Cδ/n(Ti∗(t)) ≤ ω
16(1−ε) . Hence,

Ut = (1− ε− γ)
(

max
i
µ̂i(Ti(t)) + Cδ/n(Ti(t))

)
= (1− ε− γ)

(
µ̂i∗(t)(Ti∗(t)(t)) + Cδ/n(Ti∗(t)(t))

)
E
≤ (1− ε− γ)

(
µi∗(t) + 2Cδ/n(Ti∗(t)(t))

)
≤ (1− ε− γ)

(
µi∗(t) +

ω

8(1− ε)

)
≤ (1− ε− γ)

(
µ1 +

ω

8(1− ε)

)
Next, we bound the number of times an arm i ∈Mε+ γ

2
is sampled before its lower bound is above

(1 − ε − γ)
(
µ1 + ω

8(1−ε)

)
. Note that Cδ/n(Ti(t)) <

1
2

(
µi − (1− ε− γ)

(
µ1 + ω

8(1−ε)

))
, true

when Ti(t) > h
(

1
2

(
µi − (1− ε− γ)

(
µ1 + ω

8(1−ε)

))
, δn

)
implies that

µ̂i(Ti(t))− Cδ/n(Ti(t))
E
≥ µi − 2Cδ/n(Ti(t)) > (1− ε− γ)

(
µ1 +

ω

8(1− ε)

)
≥ Ut.

Finally, we turn our attention to the difference µi − (1 − ε)
(
µ1 + ω

8

)
. Recall that ω =

max(γµ1,min(α̃ε, β̃ε)). Additionally, recall ε+ γ ≤ 1.

µi − (1− ε− γ)

(
µ1 +

ω

8(1− ε)

)
= µi − (1− ε)µ1 + γµ1 −

1

8

(
1− ε− γ

1− ε

)
ω

≥ µi − (1− ε)µ1 + γµ1 −
1

8
ω

Case 1a, ω = min(α̃ε, β̃ε) and i ∈Mε:

By definition, α̃ε = mini∈Mε µi − (1− ε)µ1. Hence, min(α̃ε, β̃ε) ≤ µi − (1− ε)µ1 for all i ∈Mε.
Therefore,

µi − (1− ε)µ1 + γµ1 −
1

8
ω = µi − (1− ε)µ1 + γµ1 −

1

8
min(α̃ε, β̃ε)

≥ max

(
µi − (1− ε)µ1 −

1

8
min(α̃ε, β̃ε), γµ1

)
≥ max

(
7

8
(µi − (1− ε)µ1), γµ1

)
Case 1b, ω = min(α̃ε, β̃ε) and i ∈M c

ε ∩Mε+ γ
2

Since ω = max(γµ1,min(α̃ε, β̃ε)), if ω = min(α̃ε, β̃ε), then 1
2γµ1 < min(α̃ε, β̃ε). Since

min(α̃ε, β̃ε) = min |µi − (1− ε)µ1|, the set M c
ε ∩Mε+ γ

2
is empty and there is nothing to prove.
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Case 2a, ω = γµ1 and i ∈Mε

µi − (1− ε)µ1 + γµ1 −
1

8
ω = µi − (1− ε)µ1 +

7

8
γµ1 ≥ max

(
µi − (1− ε)µ1,

7

8
γµ1

)
.

Case 2b, ω = γµ1 and i ∈M c
ε ∩Mε+ γ

2

For i ∈M c
ε ∩Mε+ γ

2
, µi − (1− ε− γ

2 )µ1 ≥ 0. Hence, µi − (1− ε)µ1 ≥ −γµ1

2 . Therefore,

µi − (1− ε)µ1 + γµ1 −
1

8
ω = µi − (1− ε)µ1 +

7

8
γµ1 ≥

3

8
γµ1 ≥ max

(
1

4
γµ1,

(1− ε)µ1 − µi
4

)
.

Combining all cases, by monotonicity of h(·, ·) and symmetry in its first argument, we see that

h

(
1

2

(
µi − (1− ε− γ)

(
µ1 +

ω

8(1− ε)

))
,
δ

n

)
≤ min

[
h

(
γµ1

8
,
δ

n

)
, h

(
εµ1 −∆i

8
,
δ

n

)]
.

Putting this together, if Ti(t) ≥ min
[
h
(
εµ1−∆i

8 , δn

)
, h
(
γµ1

8 , δn
)]

, then i 6= i2(t) for all i ∈Mε+ γ
2

.
Summing over all such i bounds the size of set stated in the claim.

B.2.4 Step 3: Controlling the complexity until stopping occurs

In this step, we turn our attention to the final event to control:

S :=

{
t : ¬STOP and i∗ ∈Mω/µ1

and Cδ/n(Ti∗(t)) ≤
ω

16(1− ε)
(7)

and i1(t) ∈Mε+ γ
2

and i2(t) ∈M c
ε+ γ

2

}
.

For brevity, we will refer to this set as S for this step. The objective will be to bound the time before
each arms lower bound either clears Ut or its upper bound clears Lt which implies the stopping
condition. To do so, we introduce, two events:

E1(t) := {µ̂i1(t)(Ti1(t)(t))− Cδ/n(Ti1(t)(t)) > Ut} (8)

and
E2(t) := {µ̂i2(t)(Ti2(t)(t)) + Cδ/n(Ti2(t)(t)) < Lt}. (9)

If E1(t) is true, then µ̂i(Ti) − Cδ/n(Ti(t)) > Lt for all i ∈ Ĝ. If E2(t) is true, then µ̂i(Ti) +

Cδ/n(Ti(t)) < Ut for all i ∈ Ĝc. Hence, by line 6 of (ST)2, if both E1(t) and E2(t) are true, then
(ST)2 terminates.

Claim 0: |S ∩ {t : ¬E1(t)}| ≤
∑
i∈Mε+

γ
2

min
[
h
(
εµ1−∆i

4 , δn

)
, h
(
γµ1

4 , δn
)]

.

Proof. Recall that by the set S , we have that i1(t) ∈Mε+ γ
2

. Furthermore, by the set S , we have that
i∗(t) ∈Mω/µ1

and Cδ/n(Ti∗(t)) ≤ ω/16(1− ε). Hence,

Ut = (1− ε− γ)
(

max
i
µ̂i(Ti(t)) + Cδ/n(Ti(t))

)
= (1− ε− γ)

(
µ̂i∗(t)(Ti∗(t)(t)) + Cδ/n(Ti∗(t)(t))

)
E
≤ (1− ε− γ)

(
µi∗(t) + 2Cδ/n(Ti∗(t)(t))

)
≤ (1− ε− γ)

(
µi∗(t) +

ω

8(1− ε)

)
≤ (1− ε− γ)

(
µ1 +

ω

8(1− ε)

)
If Cδ/n(Ti) ≤ 1

2

(
µi − (1− ε− γ)

(
µ1 + ω

8(1−ε)

))
, true when Ti ≥

h
(

1
2

(
µi − (1− ε− γ)

(
µ1 + ω

8(1−ε)

))
, δn

)
, then

µ̂i(Ti)− Cδ/n(Ti) ≥ µi − 2Cδ/n(Ti) ≥ (1− ε− γ)

(
µ1 +

ω

8(1− ε)

)
≥ Ut.
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The remainder of the proof of this claim focuses on controlling the difference: µi − (1 −
ε − γ)

(
µ1 + ω

8(1−ε)

)
in the case that ω = min(α̃ε, β̃ε) and ω = γµ1. Recall that ω =

max(γµ1,min(α̃ε, β̃ε)). Hence, if any possible i ∈ Mε+ γ
2

has received sufficiently many sam-
ples, since i1(t) ∈Mε+ γ

2
, this implies E1(t).

Case 1a, ω = min(α̃ε, β̃ε) and i ∈Mε

We focus on the difference µi − (1− ε− γ)
(
µ1 + ω

8(1−ε)

)
. Recall that ε+ γ ≤ 1.

µi − (1− ε− γ)

(
µ1 +

ω

8(1− ε)

)
= µi − (1− ε− γ)

(
µ1 +

min(α̃ε, β̃ε)

8(1− ε)

)

= µi − (1− ε)µ1 + γµ1 −
1

8

(
1− ε− γ

1− ε

)
min(α̃ε, β̃ε)

γ≥0 and ε+γ≤1

≥ µi − (1− ε)µ1 −
1

8
min(α̃ε, β̃ε)

≥ 1

2
(µi − (1− ε)µ1) =

εµ1 −∆i

2

where the final step follows since min(α̃ε, β̃ε) ≤ α̃ε ≤ µi − (1− ε)µ1 by definition for all i ∈Mε.
Then by monotonicity of h(·, ·),

h

(
1

2

(
µi − (1− ε− γ)

(
µ1 +

ω

8(1− ε)

))
,
δ

n

)
≤ h

(
εµ1 −∆i

4
,
δ

n

)
.

Lastly, in this setting, γµ1 ≤ min(α̃ε, β̃ε) ≤ εµ1 −∆i since ω = min(α̃ε, β̃ε). Hence, it is trivially
true that

h

(
εµ1 −∆i

4
,
δ

n

)
= min

[
h

(
εµ1 −∆i

4
,
δ

n

)
, h

(
γµ1

4
,
δ

n

)]
Case 1b, ω = min(α̃ε, β̃ε) and i ∈M c

ε ∩Mε+ γ
2

Since ω = max(γµ1,min(α̃ε, β̃ε)), if ω = min(α̃ε, β̃ε), then 1
2γµ1 < min(α̃ε, β̃ε). Since

min(α̃ε, β̃ε) = min |µi − (1− ε)µ1|, the set M c
ε ∩Mε+ γ

2
is empty and there is nothing to prove.

Case 2a, ω = γµ1 and i ∈Mε

Next, we bound the difference µi − (1− ε− γ)
(
µ1 + ω

4(1−ε)

)
.

µi − (1− ε− γ)

(
µ1 +

ω

8(1− ε)

)
= µi − (1− ε)µ1 + γµ1 −

1

8

(
1− ε− γ

1− ε

)
γµ1

≥ µi − (1− ε)µ1 + γµ1

(
1− 1

8

(
1− ε− γ

1− ε

))
Since i ∈Mε, µi − (1− ε)µ1 ≥ 0. Using this and the fact that ε, γ ≥ 0 and ε+ γ ≤ 1,

µi − (1− ε)µ1 + γµ1

(
1− 1

8

(
1− ε− γ

1− ε

))
≥ µi − (1− ε)µ1 +

7

8
γµ1

≥ max

(
µi − (1− ε)µ1,

7

8
γµ1

)
≥ 1

2
max (εµ1 −∆i, γµ1)

Therefore, we have that

h

(
1

2

(
µi − (1− ε− γ)

(
µ1 +

ω

8(1− ε)

))
,
δ

n

)
≤ h

(
εµ1 −∆i

4
,
δ

n

)
and

h

(
1

2

(
µi − (1− ε− γ)

(
µ1 +

ω

8(1− ε)

))
,
δ

n

)
≤ h

(
γµ1

4
,
δ

n

)
.
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Hence,

h

(
1

2

(
µi − (1− ε− γ)

(
µ1 +

ω

8(1− ε)

))
,
δ

n

)
≤ min

[
h

(
εµ1 −∆i

4
,
δ

n

)
, h

(
γµ1

4
,
δ

n

)]
.

Case 2b, ω = γµ1 and i ∈M c
ε ∩Mε+ γ

2

As before,

µi − (1− ε− γ)

(
µ1 +

ω

8(1− ε)

)
= µi − (1− ε)µ1 + γµ1 −

1

8

(
1− ε− γ

1− ε

)
γµ1

Since i ∈M c
ε ∩Mε+ γ

2
, we have that µi−(1−ε− γ

2 )µ1 ≥ 0. Rearranging implies that µi−(1−ε)µ1 ≥
−1
2 γµ1. Hence,

µi − (1− ε)µ1 + γµ1 −
1

8

(
1− ε− γ

1− ε

)
γµ1 ≥

1

2
γµ1 −

1

8

(
1− ε− γ

1− ε

)
γµ1 ≥

3

8
γµ1.

Hence,

h

(
1

2

(
µi − (1− ε− γ)

(
µ1 +

ω

8(1− ε)

))
,
δ

n

)
≤ h

(
3γµ1

8
,
δ

n

)
.

Additionally, as above, if i ∈M c
ε ∩Mε+ γ

2
, we have that µi − (1− ε− γ

2 )µ1 ≥ 0 which implies that
(1− ε)µ1 − µi ≤ 1

2γµ1. Hence

h

(
3γµ1

8
,
δ

n

)
≤ min

[
h

(
∆i − εµ1

4
,
δ

n

)
, h

(
γµ1

4
,
δ

n

)]
.

Therefore, if Ti exceeds the above, then E1(t) is true for an i1 ∈M c
ε ∩Mε+ γ

2
. Combining all cases,

we see that for i1 ∈Mε+ γ
2

, if

Ti1(t)(t) > min

[
h

(
εµ1 −∆i

4
,
δ

n

)
, h

(
γµ1

4
,
δ

n

)]
,

Then E1(t) is true. Summing over all possible i1 ∈Mε+ γ
2

proves the claim.

Claim 1: |S ∩ {t : E1(t)} ∩ {t : ¬E2(t)}| ≤
∑
i∈Mc

ε+
γ
2

min
[
h
(
εµ1−∆i

8 , δn

)
, h
(
γµ1

8 , δn
)]

.

Proof. By the events in set S, Cδ/n(Ti∗(t)) ≤ ω
16(1−ε) . Therefore,

µi∗ +
ω

8(1− ε)
≥ µi∗ + 2Cδ/n(Ti∗(t))

E
≥ µ̂i∗(Ti∗(t)) + Cδ/n(Ti∗(t)) ≥ µ̂1(T1(t)) + Cδ/n(T1(t))

E
≥ µ1.

Hence, µi∗ ≥ µ1 − ω
8(1−ε) . Rearranging this, we see that µi∗ −

(
1− ω

8µ1(1−ε)

)
µ1 ≥ 0 which

implies that i∗ ∈M ω
8µ1(1−ε)

. Hence,

Lt = (1− ε)
(

max
i
µ̂i(Ti(t))− Cδ/n(Ti(t))

)
(1− ε)

(
µ̂i∗(Ti∗(t))− Cδ/n(Ti∗(t))

)
E
≥ (1− ε)

(
µi∗ − 2Cδ/n(Ti∗(t))

)
≥ (1− ε)

(
µi∗ −

ω

8(1− ε)

)
≥ (1− ε)

(
µ1 −

ω

4(1− ε)

)

As before, we seek a lower bound for the difference (1− ε)
(
µ1 − ω

4(1−ε)

)
− µi.
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Case 1: ω = min(α̃ε, β̃ε)

(1− ε)
(
µ1 −

ω

4(1− ε)

)
− µi = (1− ε)µ1 − µi −

1

4
min(α̃ε, β̃ε)

≥ 1

2
((1− ε)µ1 − µi)

since (1− ε)µ1 − µi ≥ min(α̃ε, β̃ε). Therefore, we have that

h

(
1

2

(
(1− ε)

(
µ1 −

ω

4(1− ε)

)
− µi

)
,
δ

n

)
≤ h

(
∆i − εµ1

4
,
δ

n

)
.

Lastly, in this setting, γµ1 ≤ min(α̃ε, β̃ε) ≤ εµ1 −∆i since ω = min(α̃ε, β̃ε). Hence, it is trivially
true that

h

(
∆i − εµ1

4
,
δ

n

)
= min

[
h

(
∆i − εµ1

4
,
δ

n

)
, h

(
γµ1

4
,
δ

n

)]
.

Case 2: ω = γµ1

Assume that γµ1 > min(α̃ε, β̃ε), as equality is covered by the previous case. Hence,

(1− ε)
(
µ1 −

ω

4(1− ε)

)
− µi = (1− ε)µ1 − µi −

1

4
γµ1

Recall that we seek to control i2 ∈M c
ε+ γ

2
. For any i ∈M c

ε+ γ
2

, we have that (1− ε− γ
2 )µ1− µi ≥ 0.

Rearranging, we see that (1− ε)µ1 − µi ≥ 1
2γµ1 which implies that

(1− ε)µ1 − µi −
1

4
γµ1 ≥

1

2
((1− ε)µ1 − µi).

Therefore, we have that

h

(
1

2

(
(1− ε)

(
µ1 −

ω

4(1− ε)

)
− µi

)
,
δ

n

)
≤ h

(
∆i − εµ1

4
,
δ

n

)
is this setting as well. Similarly, since ∆i − εµ1 ≥ 1

2γµ1, we likewise have that

h

(
∆i − εµ1

4
,
δ

n

)
≤ min

[
h

(
∆i − εµ1

8
,
δ

n

)
, h

(
γµ1

8
,
δ

n

)]
.

Hence, if Ti exceeds the right-hand side of the preceding inequality, then for any i ∈M c
ε+ γ

2
, its upper

bound is below Lt. Hence, for i2(t) ∈M c
ε+ γ

2
, this implies event E2(t). Summing over all possible

values of i2(t) ∈M c
ε+ γ

2
proves the claim.

Claim 2: The cardinality of S is bounded as |S| ≤
∑n
i=1 min

[
h
(

∆i−εµ1

8 , δn

)
, h
(
γµ1

8 , δn
)]

.

Proof. First, S may be decomposed as

|S| = |S ∩ {t : ¬E1(t)}|+ |S ∩ {t : E1(t)} ∩ {t : ¬E2(t)}|+ |S ∩ {t : E1(t)} ∩ {t : E2(t)}|
Note that |S ∩ {t : E1(t)} ∩ {t : E2(t)}| = 0 because we have assumed in set S that (ST)2 has
not stopped, and {t : E1(t)} ∩ {t : E2(t)} implies termination. By Claim 0, |S ∩ {t : ¬E1(t)}| ≤∑
i∈Mε+

γ
2

min
[
h
(
εµ1−∆i

4 , δn

)
, h
(
γµ1

4 , δn
)]

. By Claim 1, |S ∩ {t : E1(t)} ∩ {t : ¬E2(t)}| ≤∑
i∈Mc

ε+
γ
2

min
[
h
(
εµ1−∆i

8 , δn

)
, h
(
γµ1

8 , δn
)]

. Recalling that h is assumed to be symmetric in its

first argument and summing the two terms proves the claim.

B.2.5 Step 4: Putting it all together

Recall that the total number of rounds T that (ST)2 runs for is given by T = |{t : ¬STOP}|. To
bound this quantity, we have decomposed the set {t : ¬STOP} into many subsets. Below, we show
this decomposition.

{t : ¬STOP} =
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{t : ¬STOP and i∗ /∈Mω/µ1
}

∪
{
t : ¬STOP and i∗ ∈Mω/µ1

and Cδ/n(Ti∗(t)) >
ω

16(1− ε)

}
∪
{
t : ¬STOP and i∗ ∈Mω/µ1

and Cδ/n(Ti∗(t)) ≤
ω

16(1− ε)
and i1(t) ∈M c

ε+ γ
2

}
∪
{
t : ¬STOP and i∗ ∈Mω/µ1

and Cδ/n(Ti∗(t)) ≤
ω

16(1− ε)
and i1(t) ∈Mε+ γ

2

and i2(t) ∈Mε+ γ
2

}
∪
{
t : ¬STOP and i∗ ∈Mω/µ1

and Cδ/n(Ti∗(t)) ≤
ω

16(1− ε)
and i1(t) ∈Mε+ γ

2

and i2(t) ∈M c
ε+ γ

2

}
.

Hence, by a union bound and plugging in the results of the above steps,
|{t : ¬STOP}| ≤∣∣{t : ¬STOP and i∗ /∈Mω/µ1

}
∣∣

+

∣∣∣∣{t : ¬STOP and i∗ ∈Mω/µ1
and ∃i ∈Mω/µ1

: Cδ/n(Ti(t)) >
ω

8(1− ε)

}∣∣∣∣
+

∣∣∣∣{t : ¬STOP and i∗ ∈Mω/µ1
and Cδ/n(Ti∗(t)) ≤

ω

16(1− ε)
and i1(t) ∈M c

ε+ γ
2

}∣∣∣∣
+

∣∣∣∣{t : ¬STOP and i∗ ∈Mω/µ1
and Cδ/n(Ti∗(t)) ≤

ω

16(1− ε)
and i1(t) ∈Mε+ γ

2

and i2(t) ∈Mε+ γ
2

}∣∣∣
+

∣∣∣∣{t : ¬STOP and i∗ ∈Mω/µ1
and Cδ/n(Ti∗(t)) ≤

ω

16(1− ε)
and i1(t) ∈Mε+ γ

2

and i2(t) ∈M c
ε+ γ

2

}∣∣∣
≤

∑
i∈Mc

ω/µ1

min

{
h

(
γµ1

2
,
δ

n

)
,min

[
h

(
∆i

2
,
δ

n

)
, h

(
min(α̃ε, β̃ε)

2
,
δ

n

)]}

+
∑

i∈Mω/µ1

min

{
h

(
γµ1

16
,
δ

n

)
,min

[
h

(
∆i

16
,
δ

n

)
, h

(
min(α̃ε, β̃ε)

16(1− ε)
,
δ

n

)]}

+
∑

i∈Mc
ε+

γ
2

min

[
h

(
∆i − εµ1

8
,
δ

n

)
, h

(
γµ1

8
,
δ

n

)]

+
∑

i∈Mε+
γ
2

min

[
h

(
εµ1 −∆i

8
,
δ

n

)
, h

(
γµ1

8
,
δ

n

)]

+

n∑
i=1

min

[
h

(
∆i − εµ1

8
,
δ

n

)
, h

(
γµ1

8
,
δ

n

)]
(ε≤1/2)

≤
n∑
i=1

min

{
h

(
γµ1

16
,
δ

n

)
,min

[
h

(
∆i

16
,
δ

n

)
, h

(
min(α̃ε, β̃ε)

16(1− ε)
,
δ

n

)]}

+ 2

n∑
i=1

min

[
h

(
∆i − εµ1

8
,
δ

n

)
, h

(
γµ1

8
,
δ

n

)]

≤ 4

n∑
i=1

min

{
max

{
h

(
∆i − εµ1

16
,
δ

n

)
,min

[
h

(
∆i

16
,
δ

n

)
, h

(
min(α̃ε, β̃ε))

16(1− ε)
,
δ

n

)]}
,
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h

(
γµ1

16
,
δ

n

)}
Next, by Lemma F.3, we may bound the minimum of h(·, ·) functions.

4

n∑
i=1

min

{
max

{
h

(
∆i − εµ1

16
,
δ

n

)
,min

[
h

(
∆i

16
,
δ

n

)
, h

(
min(α̃ε, β̃ε)

16(1− ε)
,
δ

n

)]}
,

h

(
γµ1

16
,
δ

n

)}
= 4

n∑
i=1

min

{
max

{
h

(
∆i − εµi

16
,
δ

n

)
,

min

[
h

(
∆i

16
,
δ

n

)
,max

[
h

(
α̃ε

16(1− ε)
,
δ

n

)
, h

(
β̃ε

16(1− ε)
,
δ

n

)]]}
,

h

(
γµi
16

,
δ

n

)}
≤ 4

n∑
i=1

min

{
max

{
h

(
∆i − εµi

16
,
δ

n

)
,

max

h(∆i + α̃ε
1−ε

32
,
δ

n

)
, h

∆i + β̃ε
1−ε

32
,
δ

n

 ,

h

(
γµi
16

,
δ

n

)}

= 4

n∑
i=1

min

max

h
(

∆i − εµi
16

,
δ

n

)
, h

(
∆i + α̃ε

1−ε
32

,
δ

n

)
, h

∆i + β̃ε
1−ε

32
,
δ

n

 ,

h

(
γµi
16

,
δ

n

)}
Finally, we use Lemma F.2 to bound the function h(·, ·). Since δ ≤ 1/2, δ/n ≤ 2e−e/2. Further,
|εµ1−∆i| ≤ 8 for all i and ε ≤ 1/2 implies that 1

8(1−ε) |εµ1−∆i| ≤ 2 and 1
8(1−ε) min(α̃ε, β̃ε) ≤ 2.

∆i ≤ 16 for all i, gives 0.125∆i ≤ 2. Lastly, γ ≤ 16/µ1 implies that γµ1

8 ≤ 2. Therefore,

4
n∑
i=1

min

max

h
(

∆i − εµi
16

,
δ

n

)
, h

(
∆i + α̃ε

1−ε
32

,
δ

n

)
, h

∆i + β̃ε
1−ε

32
,
δ

n

 ,

h

(
γµi
16

,
δ

n

)}
≤ 4

n∑
i=1

min

{
max

{
1024

(εµ1 −∆i)2
log

(
2n

δ
log2

(
3072n

δ(εµ1 −∆i)2

))
,

4096

(∆i + α̃ε
1−ε )

2
log

(
2n

δ
log2

(
12288n

δ(∆i + α̃ε
1−ε )

2

))
,

4096

(∆i + β̃ε
1−ε )

2
log

2n

δ
log2

 12288n

δ(∆i + β̃ε
1−ε )

2


1024

γ2µ2
1

log

(
2n

δ
log2

(
3072n

δγ2µ2
1

))}
= 4

n∑
i=1

min

{
max

{
1024

((1− ε)µ1 − µi)2
log

(
2n

δ
log2

(
3072n

δ((1− ε)µ1 − µi)2

))
,
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4096

(µ1 + α̃ε
1−ε − µi)2

log

(
2n

δ
log2

(
12288n

δ(µ1 + α̃ε
1−ε )

2

))
,

4096

(µ1 + β̃ε
1−ε − µi)2

log

2n

δ
log2

 12288n

δ(µ1 + β̃ε
1−ε − µi)2

 ,

1024

γ2µ2
1

log

(
2n

δ
log2

(
3072n

δγ2µ2
1

))}
.

The above bounds the number of rounds T . Therefore, the total number of samples is at most 3T .

C Proof of instance dependent lower bounds, Theorem 2.1

First we restate and prove the lower bound.
Theorem C.1. (additive and multiplicative lower bound) Fix δ, ε > 0. Consider n arms, such that
the ith is distributed according to N (µi, 1). Any δ-PAC algorithm for the additive setting satisfies

E[τ ] ≥ 2
n∑
i=1

max

{
1

(µ1 − ε− µi)2 ,
1

(µ1 + αε − µi)2

}
log

(
1

2.4δ

)
and if µ1 > 0 any δ-PAC algorithm for the multiplicative algorithm satisfies,

E[τ ] ≥ 2

n∑
i=1

max

{
1

((1− ε)µ1 − µi)2 ,
1

(µ1 + α̃ε
1−ε − µi)2

}
log

(
1

2.4δ

)

Proof of Theorem 2.1 in the additive case. Recall that ν denotes the given instance, and without loss
of generality we have assumed that µ1 ≥ µ2 ≥ · · · ≥ µn. Then Gε(ν) = {1, · · · , k}. Consider the
event E that an algorithm returns {1, · · · , k}. For any δ-PAC algorithm, E occurs with probability at
least 1− δ. For each arm i ∈ [n] we consider two alternative instances

ν′i = {µ1, · · · , µ′i, · · · , µn}
and

ν′′i = {µ1, · · · , µ′′i , · · · , µn}
such that only the mean of arm i differs compared to ν but Gε(ν) 6= Gε(ν

′
i) and Gε(ν) 6= Gε(ν

′′
i ).

Therefore, on these alternate instances, E occurs with probability at most δ.

For ν′i, if i ≤ k, let µ′i = µ1 − ε− η. Then i ∈ Gε(ν) but i /∈ Gε(ν′i). If k < n and i ≥ k + 1, let
µ′i = µ1 − ε+ η. Then i /∈ Gε(ν) but i ∈ Gε(ν′i).

More subtly, for ν′′i , for any i ∈ [n]\{k}, let µ′′i = µk + ε+ η. In particular, arm i is now the best
arm. Under this definition, µ′′i − ε > µk. Therefore, k /∈ Gε(ν′′i ) but k ∈ Gε(ν).

The above holds for all η > 0. Let Ni denote the random variable of the number of samples of arm
i and Eν denote expectation with respect to instance ν. Using the fact that we have assumed the
distributions are Gaussian, considering ν′i, by Lemma 1 of [6], taking η → 0 we have that for any
δ-PAC algorithm,

Eν [Ni] ≥
2 log(1/2.4δ)

(µi − (µ1 − ε))2
.

Furthermore, considering ν′′i , and again taking η → 0, we have by the same lemma that for i 6= k

Eν [Ni] ≥
2 log(1/2.4δ)

(µk + ε− µi)2 =
2 log(1/2.4δ)

(µ1 + αε − µi)2 ,

where the later equality holds since µk + ε = µ1 + αε by definition of αε. For i = k, note that
1

(µk−(µ1−ε)) = 1
α2
ε
≥ 1

ε2 = 1
(µk−µk−ε)2 since αε = mini∈Gε µi − (µ1 − ε) = mini∈Gε ε − ∆i.

Putting these pieces together, we see that for any i,

Eν [Ni] ≥ max

(
1

(µi − (µ1 − ε))2 ,
1

(µk + ε− µi)2

)
2 log(1/2.4δ).

Summing over all i establishes a lower bound in the additive case.
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Proof of Theorem 2.1 in the multiplicative case. Recall that ν denotes the given instance, and with-
out loss of generality we have assumed that µ1 ≥ µ2 ≥ · · · ≥ µn. Let Mε(ν) = {1, · · · , k}.
Consider the event E that an algorithm returns {1, · · · , k}. For any δ-PAC algorithm, E occurs with
probability at least 1− δ. For each arm i ∈ [n] we consider two alternative instances

ν′i = {µ1, · · · , µ′i, · · · , µn}
and

ν′′i = {µ1, · · · , µ′′i , · · · , µn}
such that only the mean of arm i differs compared to ν but Mε(ν) 6= Mε(ν

′
i) and Mε(ν) 6= Mε(ν

′′
i ).

Therefore, E occurs with probability at most δ on these alternate instances.

For ν′i, if i ≤ k, let µ′i = (1− ε− η)µ1. Then i ∈ Mε(ν) but i /∈ Mε(ν
′
i). If k < n and i ≥ k + 1,

let µ′i = (1− ε+ η)µ1. Then i /∈Mε(ν) but i ∈Mε(ν
′
i).

More subtly, for ν′′i , for any i ∈ [n]\{k}, let µ′′i = µk
1−ε−η . In particular, arm i is now the best arm.

Under this definition, µ′′i − ε > µk. Therefore, k /∈Mε(ν
′′
i ) but k ∈Mε(ν).

The above holds for all η > 0. Let Ni denote the random variable of the number of samples of arm
i and Eν denote expectation with respect to instance ν. Using the fact that we have assumed the
distributions are Gaussian, considering ν′i, by Lemma 1 of [6], taking η → 0, we have that for any
δ-PAC algorithm,

Eν [Ni] ≥
2 log(1/2.4δ)

(µi − (1− ε)µ1)2
=

2 log(1/2.4δ)

(εµ1 −∆i)2
.

Additionally, by the same Lemma, considering ν′′i and again taking η → 0 we have that for i 6= k

Eν [Ni] ≥
2 log(1/2.4δ)(
µi − µk

1−ε

)2 =
2 log(1/2.4δ)(
µ1 + α̃ε

1−ε − µi
)2 ,

where the later equality holds since µk
1−ε = µ1 + α̃ε

1−ε by definition of α̃ε. Next recall that α̃ε :=

mini∈Mε µi−(1−ε)µ1 = µk−(1−ε)µ1, we have that µk = α̃ε+(1−ε)µ1. Hence, µk
1−ε = µ1+ α̃ε

1−ε .
Then, for i = k

1(
µk
1−ε − µk

)2 ≤
1

(µk − (1− ε)µ1)2
=

1

α̃2
ε

⇐⇒ α̃ε ≤
µk

1− ε
− µk =

α̃ε
1− ε

+ µ1 − µk =
α̃ε

1− ε
+ ∆k

(∆k≥0)⇐= α̃ε ≤
α̃ε

1− ε
which is always true since ε > 0. Therefore,

1

(µk − (1− ε)µ1)2
= max

 1

(µk − (1− ε)µ1)2
,

1(
µk
1−ε − µk

)2

 .

Hence, for all arms i,

Eν [Ni] ≥ 2 max

 1

(µi − (1− ε)µ1)2
,

1(
µ1 + α̃ε

1−ε − µi
)2

 log(1/2.4δ).

Summing over all i gives a lower bound for this problem in the multiplicative case.

D Theorem 4.1: Lower bounds in the moderate confidence regime

In this section, we prove a tighter lower bound that includes moderate confidence terms independent
of the value of δ similar to those that appear in the upper bound on the sample complexity of FAREAST,
Theorem 4.2.
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(b) An isolated instance (H0 is true)

Figure 14: Example of an isolated and non-isolated instance

Outline. To give a tight lower bound in the isolated setting, we break our argument into pieces
performing a series of reductions that link the all-ε problem to a hypothesis test, and then the
hypothesis test to the problem of identifying the best-arm.

Step 1. Finding an isolated arm. We first consider the following problem. Imagine that you are
given an isolated instance, depicted in Figure 14b where there are n distributions, with one of them at
mean β and the rest with mean −β. Theorem D.3, captures the sample complexity of any algorithm
that can return i∗ with probability greater than 1− δ.

Step 2. Deciding if an instance is isolated. We then consider a composite hypothesis test on n
distributions where the null hypothesis, H0, is that the mean of each distribution is less that −β and
the alternate hypothesis, H1, is that there exists single distribution i∗ with mean β and the remainder
have mean less than −β (i.e. the instance is isolated). In Figure 14, we show a picture of an instance
where the null is true and where the alternate is true. In Theorem D.6 we lower bound the complexity
of performing this test. To link this to Step 1, we show that if you can solve this composite hypothesis
test then you can find i∗, hence the lower bound of step 1 is a lower bound for the hypothesis test.

Step 3: Reducing ALL-ε to Step 2 Finally in step 3 we link this to the all-ε problem. Using the
above, we lower bound the complexity of ALL-ε in Theorem 4.1 when |G2βε | = 1. The key insight of
our proof is that any algorithm that can solve the ALL-ε problem can be used to solve the hypothesis
test in Step 2.

D.1 Step 1: Finding an Isolated Arm

Fix n ∈ N, 0 < β, and δ > 0. We refer to a β-isolated instance ν = {ρ1, · · · , ρn}, as a collection
of n, Gaussian distributions with variance one satisfying two properties. Firstly, there exists a
single arm i∗ ∈ [n] with ρi∗ = N (β, 1). We refer to this as the isolated arm. Secondly, for
i 6= i∗, ρi = N (µi, 1) ∀ i ∈ [n]\{i∗} have means µi ≤ −β. We introduce the additional notation
∆i,j = µi − µj .
Lemma D.1. Fix n, 0 < β and consider a set ν of n Gaussian random variables such that for a
uniformly random chosen i∗ ∈ [n], ρi∗ = N (β, 1) and ρi = N (µi, 1) for µi ≤ −β for all i 6= i∗.
Any algorithm that correctly returns i∗ with probability at least 1− δ, pulls arm i∗ at least

1

2β2
log(1/2.4δ)

times in expectation.

Proof. Consider the oracle setting where the value of i∗ is known and the algorithm only seeks
to confirm that µi∗ > −β. Lemma 1 of [6] implies that any δ-PAC algorithm requires at least

1
2β2 log(1/2.4δ) samples in expectation.

The above bound controls the number of samples that any algorithm must gather from i∗, and is
independent of n. The proof considered an oracle setting where the value of i∗ is known, and
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one only wishes to confirm that µi∗ > −β with probability at least 1 − δ. To lower bound the
number of samples drawn from [n]\{i∗}, we need significantly more powerful tools. In particular,
to rule out trivial algorithms that always output a fixed index, we consider a permutation model,
as in [9, 11, 15, 25]. Informally, we consider an additional expectation in the lower bound over a
random permutation π of the arms where π is sampled uniformly from the set of all permutations. In
particular, we with use a Simulator argument, as in [9, 15]. In what follows, we will let π : [n]→ [n]
denote a permutation selected uniformly at random from the set of n! permutations. For instance
ν, let π(ν) denote the permuted instance such that the ith distribution is mapped to π(i), by a slight
overloading of the definition of π(·). In what follows, we proceed similarly to the proof of Theorem
1 in [15].
Theorem D.2. Fix n, 0 < β, and δ < 1/16 and consider a set ν of n Gaussian random variables
with variance 1 such that for i∗ ∈ [n], ρi∗ = N (β, 1) and ρi = N (µi, 1) for µi ≤ −β for all i 6= i∗.
Let π be a uniformly chosen permutation of [n] and π(ν) be the permutation applied to instance ν.
Let T be the random variable denoting the total number of samples at termination by an algorithm.
Any δ-PAC algorithm to detect π(i∗) on π(ν) requires

EπEπ(ν) [T ] ≥ 1

16

∑
k 6=i∗

1

∆2
i∗,k

samples in expectation from arms in [n]\{i∗}.

Proof. Fix a permutation π. Let π(ν) be the permutation applied to ν and π(i) be the index of i
under the permuted instance, π(ν). Let A be any algorithm that detects and returns π(i∗) on π(ν)
with probability at least 1− δ. We will take PA and EA to denote probability and expectation with
respect any internal randomness in A. Throughout, we will take ρi = N (µi, 1) to denote the ith
distribution of ν. µi∗ > 0 and µi < 0 for all i 6= i∗. Additionally, let ∆ij = µi − µj
Fix k 6= i∗. To bound the necessary number of samples for arm k, we turn to the Simulator [9]. We
begin by defining an alternate instance ν′k = {ρ′1, · · · , ρ′n} as

ρ′j =


ρj , j 6= i∗

ρk, j = i∗

ρi∗ , j = k

Note that ν′k is identical to ν except that the distributions of i∗ and k are swapped.

Let E be the event that A returns π(i∗). We may bound the total variation distance between the joint
distribution on A× π(ν) and A× π(ν′k) as

TV (PA×π(ν),PA×π(ν′k)) = sup
A

∣∣∣PA×π(ν)(A)− PA×π(ν′k)(A)
∣∣∣

≥
∣∣∣PA×π(ν)(E)− PA×π(ν′k)(E)

∣∣∣
≥ 1− 2δ.

Let Ωt denote the multiset of the transcript of samples up to time t.

Ωt = {is ∈ [n] for 1 ≤ s ≤ t}

and define the events

Wj(Ωt) :=

{∑
it∈Ωt

1(it = j) ≤ τ

}
for a τ to be defined later. With the definitions of Wj(Ωt), we define a simulator Sim(ν,Ωt) with
respect to ν. Let Sim(ν,Ωt)i denote the distribution of arm i on Sim(ν,Ωt).

Sim(ν,Ωt)j =


ρj , if j /∈ {i∗, k}
ρj , if j ∈ {i∗, k} and Wi∗(Ωt) ∩Wk(Ωt)

ρi∗ , if j ∈ {i∗, k} and (Wi∗(Ωt) ∩Wk(Ωt))
c
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Furthermore, we define Sim(ν′k,Ωt) with respect to ν′k as

Sim(ν′k,Ωt)j =


ρ′j , if j /∈ {i∗, k}
ρ′j , if j ∈ {i∗, k} and Wi∗(Ωt) ∩Wk(Ωt)

ρi∗ , if j ∈ {i∗, k} and (Wi∗(Ωt) ∩Wk(Ωt))
c

For ease of notation, let Sim(π(ν),Ωt) be the same simulator defined on π(ν) and with respect to
events Wπ(i∗)(Ωt) and Wπ(k)(Ωt). Note that in the simulator of ν′k, if (Wi∗(Ωt) ∩Wk(Ωt))

c is true,
then i∗ and k draw samples according to instance ν not ν′k.

Definition 4. (Truthfulness of an event W , [15]) For an algorithm A, we say that an event W is
truthful on a simulator Sim(η) with respect to an instance η if for all events E in the filtration FT
generated by playing algorithm A on instance η

Pη(E ∩W ) = PSim(η)(E ∩W )

By our definition of both simulators, if (Wi∗(Ωt) ∩ Wk(Ωt))
c is true, then Sim(ν,Ωt)i =

Sim(ν′k,Ωt)i ∀i ∈ [n]. Contrarily, if Wi∗(Ωt) ∩ Wk(Ωt) is true, then Sim(ν,Ωt) = ν
and Sim(ν′k,Ωt) = ν′k. Similarly, on Wπ(i∗)(Ωt) ∩ Wπ(k)(Ωt), Sim(π(ν),Ωt) = π(ν) and
Sim(π(ν′k),Ωt) = π(ν′k). Therefore, by the proof of Theorem 1 of [15], Wπ(k)(Ωt) is truthful
on Sim(π(ν),Ωt) and Wπ(i∗)(Ωt) is truthful on Sim(π(ν′k),Ωt).

Let it be the arm queried at time t ∈ N by A. Following the proof of Theorem 1 of [15], we may
bound the KL-Divergence between Sim(π(ν),Ωt) and Sim(π(ν′k),Ωt) as

max
i1,··· ,iT

T∑
t=1

KL
(
Sim(π(ν), {is}ts=1),Sim(π(ν′k), {is}ts=1

)
≤ τKL(π(ν)π(i∗), π(ν′k)π(i∗)) + τKL(π(ν)π(k), π(ν′k)π(k))

= τ
∆2
i∗,k

2
+ τ

∆2
i∗,k

2

= τ∆2
i∗,k.

For any instance η, an algorithm A is defined to be symmetric if

PA,η((i1, · · · , iT ) = (I1, · · · , IT )) = PA,π(η)((π(i1), · · · , π(iT )) = (π(I1), · · · , π(IT ))).

Semantically, this implies that the proportion of timesA pulls any arm i on the non-permuted instance
η is the same as the proportion of times it pulls π(i) on the permuted instance, π(η).

In particular, the expected complexity of a symmetric algorithm is independent of the permutation π.
By Lemma 1 of [9], if any algorithm B (not necessarily symmetric) achieves an expected stopping
time τ where the expectation is taken over all the randomness in the permutation and in the instance,
then there is a symmetric algorithm that achieves the same expected stopping time. Hence, we
may assume that A is symmetric and capture the same set of possible stopping times. If A is not
symmetric, we may form an algorithm A′ by permuting the input, passing it to A, getting the output
of A on the permuted input, and then undoing the permutation before return an answer.

Since Wπ(k)(Ωt) and Wπ(i∗)(Ωt) are truthful on Sim(π(ν),Ωt) and Sim(π(ν′k),Ωt) respectively, by
Lemma 2 of [9], we have that

PA,π(ν)(Wπ(k)(Ωt)) + PA,π(ν′k)(Wπ(i∗)(Ωt))

≥ TV (PA,π(ν),PA,π(ν′k))−Q (KL(Sim(π(ν),Ωt),Sim(π(ν′k),Ωt)))

for Q(x) = min{1− 1/2e−x,
√
x/2}. Since A is symmetric, for any permutation π, we have that

PA,π(ν)(Wπ(k)(Ωt))+PA,π(ν′k)(Wπ(i∗)(Ωt)) = PA,ν(Wk(Ωt))+PA,ν′k(Wi∗(Ωt)) = 2PA,ν(Wk(Ωt)).

The first equality holds since event Wi depend only on the number of times that arm i is pulled.
Since A is symmetric, the probability that A pulls arm i at most τ times on instance ν is equal to
the probability that A pulls π(i) at most τ times on instance π(ν). The second equality is true using
symmetry as well since instances ν and ν′k are themselves equal up to a permutation.
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Combining the above with the previous bounds on the total variation and KL divergence, we have that

PA×ν(Nk > τ) = PA×ν(Wk(Ωt)) ≥
1

2

1− 2δ −

√
τ∆2

i∗,k

2


Plugging in τ = 1/(2∆2

i∗,k), we see that PA×ν(Nk > 1/(2∆2
i∗,k)) ≥ 1/2(1/2 − 2δ). Since k

was arbitrary, we may repeat this argument for each k in [n]\{i∗}. Combining this with Markov’s
inequality, we see that

EA×ν

∑
k 6=i∗

Nk

 ≥ 1

4
(1/2− 2δ)

∑
k 6=i∗

1

∆2
i∗,k

>
1

16

∑
k 6=i∗

1

∆2
i∗,k

where the final inequality follows from δ < 1/16. The above holds for any δ-PAC algorithm A.

We now state our strong lower bound on the expected number of samples for any algorithm that can
find an isolated arm.
Theorem D.3. Fix n, 0 < β, and δ < 1/16 and consider a set ν of n Gaussian random variables
with variance 1 such that for a uniformly random chosen i∗ ∈ [n], ρi∗ = N(β, 1) and ρi = N (µi, 1)
for µi ≤ −β for all i 6= i∗. Let π be a uniformly chosen permutation of [n] and π(ν) be the
permutation applied to instance ν. Any δ-PAC algorithm to detect π(i∗) on π(ν) requires

1

16

∑
k 6=i∗

1

∆2
i∗,k

+
1

2β2
log(1/2.4δ)

samples in expectation, where the expectation is taken both over the randomness in the permutation,
the randomness in π(ν), and any internal randomness to the algorithm.

Proof. By Lemma D.1, arm i∗ must be sampled 1
2β2 log(1/2.4δ) times. By Theorem D.2, arms in

[n]\{i∗} must collectively be sampled 1
16

∑
k 6=i∗

1
∆2
i∗,k

times. Joining these two results gives the

stated result.

D.2 Step 2. Deciding if an instance is isolated

Next, we consider a composite hypothesis test that is related to the question of finding an isolated arm.
As we will show, this test has the interesting property that the alternate hypothesis may be declared in
significantly fewer samples than the null.
Definition 5 (β-Isolated Hypothesis Test). Fix 0 < ε and 0 < β. Consider an instance ν =
{ρ1, · · · , ρn} where ρi = N (µi, 1). By sampling individual distributions ρi, one wishes to perform
the following composite hypothesis test:

Null Hypothesis H0: µi < −β for all i ∈ [n].

Alternate Composite Hypothesis H1: ∃i∗ : µi∗ = β > 0 and µi ≤ −β for all i 6= i∗.

For any instance ν, we say “H1 is true on ν” if ∃i∗ : µi∗ = β > 0 and otherwise we say “H0 is true
on ν.” Next, we bound the sample complexity of any algorithm to perform the β-isolated hypothesis
test with probability at least 1− δ in the case that H0 is true.

Figure 2 shows an two example instance. One where H0 is true and one where H1 is true.
Lemma D.4. Fix n, β, and δ and consider a set ν of n standard normal random variables where
H0 is true. Any algorithm to correctly declare H0 in the β-isolated hypothesis test problem with
probability at least 1− δ requires

n∑
i=1

2

(β − µi)2
log

(
1

2.4δ

)
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samples in expectation.

Proof. Notice that for each i ∈ [n], we may construct an alternate instance νi by changing the
distribution of ρi to be N (β, 1) and leaving others unchanged. On νi, H1 is instead true. To
distinguish between ν and νi, necessary to declare H0 versus H1, by Lemma 1 of [6], any δ-PAC
algorithm requires Eν [Ni] ≥ 2

(β−µi)2 log(1/2.4δ) where Eν denotes expectation with respect to the
instance ν and Ni denotes the number of samples of arm i. Repeating this argument for each i ∈ [n]
gives the desired result.

To lower bound the expected sample complexity of any algorithm to perform the β-isolated hypothesis
test in the setting where H1 is true, we consider a reduction to the problem studied in Step 1,
Section D.1. For the reduction to an algorithm that can find an isolated arm, we show that if there
is an algorithm to declare H1 in fewer than O

(∑n
i=1

1
∆2
i∗,k

)
samples, then one can design an

algorithm akin to binary search that returns i∗ in fewer than O
(∑n

i=1
1

∆2
i∗,k

)
samples, contradicting

Lemma D.2.

Lemma D.5. Fix n, β, and δ < 1/16. Let π be a random permutation. Consider an instance ν where
H1 is true. In this setting, any algorithm to correctly declare H1 in the β-Isolated Hypothesis Testing
problem on π(ν) with probability at least 1− δ requires 1

32

∑
j 6=i∗ ∆−2

i∗,k samples in expectation.

Proof. Fix δ > 0 and let i∗ denote the single distribution such that ρi∗ = N (β, 1) where β > 0.
In particular, only i∗ has a positive mean. Assume for contradiction that there is an algorithm
A(π(ν), δ, β) that correctly declares H1 on π(ν) in at most 1

32

∑
k 6=i∗ ∆−2

i∗,k samples in expectation
with probability at least 1 − δ on any instance π(ν) of n distributions if H1 is true. Otherwise, if
H0 is true, assume that A correctly declares H0 in an arbitrary number of samples in expectation,
NH0(ν) lower bounded by Lemma D.4. As in the proof of Theorem D.2, if any algorithm B (not
necessarily symmetric) achieves an expected stopping time τ where the expectation is taken over
all the randomness in the permutation and in the instance, by Lemma 1 of [9], there is a symmetric
algorithm that achieves the same expected stopping time. Hence, we may assume thatA is symmetric
and capture the same set of possible stopping times. For the remainder of this proof, we assume A is
symmetric. Therefore, its expected complexity is independent of the permutation π. Without loss
of generality, assume that n = 2k for some k ∈ N. Otherwise, we may hallucinate (2dlog2(n)e − n)
normal distributions, N (−β, 1), and form an instance ν′ comprised of these additional distribution
and those in ν. If so, anytime A requests a sample from a distribution in ν′\ν, draw a sample from
N (−β, 1) and pass it to A, only tracking the number of samples drawn from ν.

Step a). In what follows, we use A to develop a method for isolated-arm identification. To do so, we
show that one may use A to perform binary search for the distribution i∗ such that ρi∗ = N (β, 1)
and this leads to a contradiction of Theorem D.2. For ease of exposition, for a set S ⊂ [n], let
ν(S) := {i ∈ S : ρi}, the subset of instance ν of distributions whose indices are in S.

If H1 is true on ν(S), by assumption, with probability at least 1− δ,A correctly declares H1 on ν(S)
in at most 1

32

∑
i∈S\{i∗}∆−2

i∗,k samples in expectation. Similarly, if H0 is true on ν(S), the sample
complexity is NH0

(ν(S)) in expectation.
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Algorithm 3 Binary search for Isolated Arm Identification

Require: δ > 0, β > 0, instance ν such that H1 is true, algorithm A
1: Let Low = 1 and High = n
2: for i = 1, · · · , log2(n) do
3: 1) Choose sets S1, S2 uniformly at random such that S1 ∪ S2 = S, S1 ∩ S2 = ∅, and

P(i ∈ S1) = P(i ∈ S2) for all i ∈ S
4: 2) In parallel, run A1 = A(ν(S1), β, δ/2 log2(n)) and A2 = A(ν(S2), β, δ/2 log2(n))
5: 3) If either terminates, terminate the other
6: if A1 declares H1 or A2 declares H0 then
7: S = S1

8: else
9: S = S2

return i∗ ∈ S (note: |S| = 1 at this point)

In step 1, we choose 2 random subsets of S , S1 and S2 that partition S such that each arm is assigned
with equal probability to either S1 or S2 independently.

In step 2) if the loop, we separately runA in parallel on ν(S1) and ν(S2), each with failure probability
δ/2 log(n). We alternate between passing a sample to A1 and to A2.

In Step 3), we terminate A1 if A2 terminates and vice versa. If, for instance, A1 terminates and
declares H0, we may infer H1 on S2. Alternately, if A1 declares H1 on S1, we may infer H0 on S2

as there is a single positive mean, µi∗ . This process continues until |S1| = |S2| = 1, when there is a
single distribution remaining in each. At this point, if A1 declares H1, then the single arm i ∈ S1 is
the positive mean i∗. Otherwise, the single arm j ∈ S2 is.

First, we show that this algorithm is correct with probability at least 1− δ. The algorithm errs if and
only if in any round i, either A1 or A2 errs, each with occurs with probability at most δ/2 log2(n).
Union bounding over the log2(n) rounds, we see that the algorithm errs with probability at most δ.
For the remainder of the proof, we will assume that in no round does either A1 or A2 incorrectly
declare H0 or H1 if the reverse is true for the given instances ν(S1) and ν(S2).

Now we introduce some notation for the remainder of this proof. As the set S , S1, and S2 change in
each round, let S(r), S1(r), and S2(r) denote their values in round r for r = 1, · · · , log2(n). Define
A1(r) and A2(r) similarly. We stop A1(r) if A2(r) terminates and vice versa.

Let Tr denote the random variable of the total number of samples of drawn in round r. Let Tr,1 be
the number of samples drawn by A1(r), and Tr,2 be the number of samples drawn by A2(r).

Next, define S∗(r) be the set in {S1(r),S2(r)} that contains i∗, i.e. let S∗(r) denote S1(r) if
i∗ ∈ S1(r) and S2(r) otherwise for all r. Similarly, let A∗(r) denote A1(r) if i∗ ∈ S1(r) and A2(r)
otherwise. Define Tr,A∗ to be the random number of samples given to A∗(r). Hence, Tr,A∗ = Tr,1
or Tr,A∗ = Tr,2.

By Step 2, A1(r) and A2(r) are run in parallel. Hence, Tr,1 = Tr,2 deterministically. Furthermore,
Tr = Tr,1 + Tr,2 deterministically. Therefore,

Tr,A∗ =
Tr,1 + Tr,2

2
=
Tr
2
.

Therefore, the expected number of samples in round r, taken over the randomness in the set S∗(r),
the randomness in the instance ν(S∗(r)), and any randomness in A∗(r) is

ES∗(1),··· ,S∗(r),ν(S∗(r))[Tr] = 2ES∗(1),··· ,S∗(r),ν(S∗(r)) [Tr,A∗ ]

= 2ES∗(1),··· ,S∗(r)
[
Eν(S∗(r)) [Tr,A∗ |S∗(r)]

]
= 2ES∗(1),··· ,S∗(r)

min

 1

32

∑
j∈S∗(r)\{i∗}

1

∆2
i∗,j

, NH0
(ν(S∗(r)c))
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≤ 2ES∗(1),··· ,S∗(r)

 1

32

∑
j∈S∗(r)\{i∗}

1

∆2
i∗,j


= 2ES∗(1),··· ,S∗(r−1)

ES∗(r)
 1

32

∑
j 6=i∗

1[j ∈ S∗(r)] 1

∆2
i∗,j

∣∣∣∣S∗(r − 1)


= 2ES∗(1),··· ,S∗(r−1)

 1

32
·
(

1

2

)∑
j 6=i∗

1[j ∈ S∗(r − 1)]
1

∆2
i∗,j


...

= 2ES∗(1)

 1

32
·
(

1

2

)r−1 ∑
j 6=i∗

1[j ∈ S∗(1)]
1

∆2
i∗,j


=

1

16
·
(

1

2

)r ∑
j 6=i∗

1

∆2
i∗,j

.

Therefore, we may bound the expected total number of samples for the above binary search algorithm
to return i∗ as

E

log2(n)∑
r=1

Tr

 =

log2(n)∑
r=1

E [Tr] ≤
1

16

∑
j 6=i∗

1

∆2
i∗,j

log2(n)∑
r=1

(
1

2

)r
≤ 1

16

∑
j 6=i∗

1

∆2
i∗,j

.

However, this contradicts Theorem D.2 for δ < 1/16. Hence no such algorithm A exists and any
algorithm to declare H1 on instance ν requires at least 1

32

∑
j 6=i∗

1
∆2
i∗,j

samples in expectation.

Theorem D.6. Fix n, β, and δ < 1/16 and consider an instance ν. If H0 is true on ν, any algorithm
requires at least

n∑
j=1

2

(β − µj)2
log

(
1

2.4δ

)
samples in expectation to perform the β-isolated Hypothesis Test. If H1 is true on ν, any algorithm
requires at least

1

4β2
log

(
1

2.4δ

)
+

1

64

∑
j 6=i∗

1

∆2
i∗,j

samples in expectation to perform the β-isolated Hypothesis Test.

Proof. If H0 is true for ν, the result follows immediately from Lemma D.4. Otherwise, assume
H1 is true for ν and let i∗ be the single distribution such that ρi∗ = N (β, 1). Similar to the proof
of Lemma D.1, one may consider an alternate instance ν′ where ρi∗ = N (−β, 1) and all other
distributions are unchanged. Therefore, on ν′, H0 is true and any algorithm that is correct with
probability at least 1− δ must be able to distinguish between these two instances. By Lemma 1 of [6],
any algorithm that is correct with probability at least 1− δ must therefore sample i∗ 1

2β2 log
(

1
2.4δ

)
times in expectation. Combining this with the result of Lemma D.5, any algorithm that is correct
with probability at least 1− δ must collect at least

max

 1

32

∑
j 6=i∗

1

∆2
i∗,j

,
1

2β2
log

(
1

2.4δ

) ≥ 1

4β2
log

(
1

2.4δ

)
+

1

64

∑
j 6=i∗

1

∆2
i∗,j

samples in expectation.
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D.3 Step 3: Reducing ALL-ε to isolated instance detection

In this section, we prove that for any instance ν for ALL-ε such that |Gβε(ν)| = 1 requires at least

O
(∑n

2=1
1

∆2
i

)
samples in expectation. To do so, we prove a reduction from finding all ε-good arms

to the β-Isolated Hypothesis Testing. In particular, we show that if one has a generic method to
find all ε-good arms (with slack γ = 0), then one may use this to develop a method to perform the
β-Isolated Hypothesis Test. Therefore, lower bounds on the this test apply to the problem of finding
all ε-good arms as well.

Lemma D.7. Fix δ ≤ 1/16, n ≥ 2/δ, ε > 0, β ∈ (0, ε/2). Let ν be an instance of n arms such that
the ith is distributed asN (µi, 1), |G2βε | = 1, and there exists an arm inGcε such that µ1−ε−µi = β.
Select a permutation π : [n] → [n] uniformly from the set of n! permutations, and consider the
permuted instance π(ν). Any algorithm that returns Gε(π(ν)) on π(ν) with correctly probability at
least 1− δ requires at least

1

64

n∑
i=2

1

∆2
i

+
1

4β2
ε

log

(
1

2.4δ

)
samples in expectation, where the expectation is taken jointly over the randomness in ν and π.

Proof. Fix 0 < δ < 1/16, n > 2/δ, ε > 0, 0 < β < ε/2, and an arbitrary constant c ∈ R. Consider
a given instance ν = {ρ1, · · · , ρn} such that µ1 ∈ {−β, β}, and µ2, · · · , µn < −β. We wish to
perform the β-isolated hypothesis test on π(ν). Assume for contradiction that there exists a generic
algorithm A(ν′, ε, δ) such that if given a generic instance ν′ where |G2βε(ν

′)| = 1, it returns Gε(ν′)
with probability at least 1 − δ in at most 1

64

∑n
i=2

1
∆2
i

samples where µ′1 is the largest mean in ν′.
Consider the following procedure that uses A to perform the hypothesis test:

Algorithm 4 Using All-ε for β-isolated hypothesis test

Require: δ > 0, ε > 0, 0 < β, instance π(ν), constant c, and algorithm A
1: Step 1: Choose an index î ∈ [n] uniformly
2: Step 2: Let ν′ be the instance

ν′ =

{
ρπ(i) + c if i 6= î

N (c− ε, 1) if i = î

3: Step 3: G = A(ν′, ε, δ/2)

4: if î ∈ G then:
5: Declare H0 and terminate
6: else
7: Declare H1 and terminate

Note that as n ≥ 2/δ, P(̂i = π(1)) ≤ δ/2. The method replaces ρî with N (c − ε, 1). All other
means µi are shifted up by c. The test then runs A on this new instance ν′ with failure probability
δ/2. If H0 is true on π(ν), all distributions have means less than −β, and î therefore is ε-good on
instance ν′. If H1 is true on π(ν), then ρπ(1) = N (β, 1) and î is not ε-good on instance ν′. This
method correctly performs the test if î 6= π(1) and A does not fail, the joint event of which occurs
with probability at most 2δ. Therefore, this test is correct with probability at least 1− δ.

Let TA(ν′) denote the random variable of the number of samples drawn by A on instance ν′ and
let T denote the random variable of the total number of samples drawn by this procedure before it
terminates and declares H0 or H1 on ν′. Therefore, Eπ,ν [T ] = Eπ,ν [TA(ν′)].

By Lemma 1 of [9], averaging over all permutations is equivalent to first permuting the instance ν and
then passing it to A and undoing the permutation when returning the answer. We therefore assume
that A is symmetric in that its expected sample complexity of A is invariant to the permutation π.
Otherwise, we may use A to form a symmetric algorithm. Therefore, Eπ,ν [T ] = Eπ,ν [TA(ν′)] =
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Eν [TA(ν′)]. By Theorem D.6, if H1 is true,

Eπ,ν [T ] ≥ 1

64

n∑
i=2

1

∆2
i

+
1

4β2
log

(
1

2.4δ

)
.

Hence,

Eν [TA(ν′)] ≥ 1

64

n∑
i=2

1

∆2
i

+
1

4β2
log

(
1

2.4δ

)
.

Lastly, as the constant c was chosen arbitrarily, and β is an number in (0, ε/2) this argument applies
to any ALL-ε instance ν′ such that βε ∈ (0, ε/2) and |G2βε | = 1 for n appropriate choice of c.

With the above proof, we restate the following moderate confidence lower bound on the sample
complexity of returning all ε-good stated in Section 4. In particular, this bound highlights moderate
confidence terms that are independent of δ. Moderate confidence terms have been studied in works
such as [9, 25]. Despite being independent of δ, these terms can have important effects in real world
scenarios. The following bound demonstrates that there are instances for which moderate confidence
terms are necessary for finding all ε-good arms. Moderate confidence terms likewise appear in the
upper bound of the complexity of FAREAST, Theorem 4.2.
Theorem D.8. Fix δ ≤ 1/16, n ≥ 2/δ, and ε > 0. Let ν be an instance of n arms such that the ith is
distributed as N (µi, 1), |G2βε | = 1, and βε < ε/2. Select a permutation π : [n] → [n] uniformly
from the set of n! permutations, and consider the permuted instance π(ν). Any algorithm that returns
Gε(π(ν)) on π(ν) with correctly probability at least 1− δ requires at least

c2

n∑
i=1

max

(
1

(µ1 − ε− µi)2 ,
1

(µ1 + αε − µi)2

)
log

(
1

2.4δ

)
+ c2

n∑
i=1

1

(µ1 + βε − µi)2

samples in expectation over the randomness in ν and π for a universal constant c2.

Proof. We may equivalently consider the same instance with all means shifted down by ε − 2β
since a method for that instance could be used to return all ε good arms in the stated instance. By
Lemma D.7, c2 n

β2 samples are necessary in expectation. By Theorem 2.1,

2

n∑
i=1

max

(
1

(µ1 − ε− µi)2 ,
1

(µ1 + αε − µi)2

)
log

(
1

2.4δ

)
samples are necessary in expectation. By Lemma D.7,

1

64

n∑
i=2

1

∆2
i

+
1

4β2
ε

log

(
1

2.4δ

)
≥ 1

64

n∑
i=2

1

(µ1 + βε − µi)2
+

1

4β2
ε

log

(
1

2.4δ

)

≥ 1

64

n∑
i=1

1

(µ1 + βε − µi)2

samples are necessary in expectation taken over the randomness in the permutation and in the instance.
In particular, the maximum and therefore the average is a valid bound. Therefore, any algorithm
requires

n∑
i=1

max

(
1

(µ1 − ε− µi)2 ,
1

(µ1 + αε − µi)2

)
log

(
1

2.4δ

)
+

1

128

n∑
i=1

1

(µ1 + βε − µi)2

samples in expectation.

E An optimal method for finding all additive and multiplicative ε-good arms

E.1 The FAREAST Algorithm

Below, we present an algorithm called FAREAST (Fast Arm Removal Elimination Algorithm for
a Sampled Threshold) that achieves the lower bound when γ = 0. Similar to (ST)2, it relies on

51



anytime-correct confidence widths, Cδ(t) :=
√

4 log(log2(2t)/δ)
t . The algorithm proceeds in rounds,

and creates a filter for good arms and a filter for bad arms. The good filter detects arms in Gε of
Mε and adds them to a set Gk. Similarly, the bad filter detects arms in Gcε or M c

ε and adds them
to a set Bk. At any given time, we may represent the set of arms that have not been declared as
either in Gε/Mε or Gcε/M

c
ε as (Gk ∪Bk)c. In either the additive or multiplicative case, the algorithm

terminates when it can certify that Gε ⊂ Gk and Gk ∩Gcε+γ = ∅ or Mε ⊂ Gk and Gk ∩M c
ε+γ = ∅,

respectively– i.e., when Gk contains all additive or multiplicative ε-good arms and none worse than
(ε+ γ)-good.

In each round, the bad filter uses MedianElimination [12] which given an instance ν, a value of ε,
and a failure probability κ, returns an ε-good arm with probability at least 1− κ. In the kth round,
for an arm i in (Gk ∪Bk)c, the bad filter uses MedianElimination to find a 2−k good arm ik with
failure probability κ = O(1) and then samples both arms i and ik Õ(22k log(1/δ)) times. Let µ̂i and
µ̂ik denote the empirical means. For instance, in the additive case, if µ̂ik − µ̂i ≥ ε+ 2−k+1, we may
declare that i ∈ Gcε, and the bad filter adds i to the set Bk. This allows the bad filter to commit to a
single arm and sample it sufficiently to remove arms in Gcε.

The good filter is a simple elimination scheme. It maintains an upper bound Ut and lower bound Lt on
µ1−ε. If an arm’s upper bound drops below Lt (line 20), the good filter eliminates that arm, otherwise,
if an arm’s lower bound rises above Ut (19), the good filter adds the arm to Gk, but only eliminates
this arm if its upper bound falls below the highest lower bound. This ensures that µ1 is never
eliminated and Ut and Lt are always valid bounds This scheme works as an independent algorithm
and achieves the sample complexity as (ST)2, though worse empirical performance. We analyze this
method in Appendix E.5. Indeed, this gives an additional high probability guarantee on the number of
samples drawn by FAREAST in both the additive and multiplicative regimes. As the sampling is split
across rounds, the good filter always samples the least sampled arm, breaking ties arbitrarily. The
number of samples given to the good filter in each round is such that both filters receive identically
many samples. Note that this is a random quantity since the number of arms in (Gk ∪Bk)c in round
k is random. Despite this, we prove a lower bound on the number of samples drawn per round which
ensures the Good Filter always receives a positive number of samples in each round. Note that by
design elimination only occurs when all arms in the active set have received equal numbers of samples.
This is crucial as it prevents the good filter from over-sampling bad arms and vice versa. In our
proof, we show that in some round, unknown to the algorithm, Gk = Gε, ie all good arms have been
found, and this takes no more than O

(∑n
i=1 max

{
(µ1 − ε− µi)−2, (µ1 + αε − µi)−2

}
log(n/δ)

)
samples, matching the lower bound.

The algorithm stops on either of three conditions. First, if Gk ∪ Bk = [n], every arm has been
declared as either in Gε or Gcε (or Mε or M c

ε ). Second, if A ⊂ Gk, the Good Filter has found
every arm in Gε and FAREAST can terminate. This is the same stopping condition as EAST itself. In
either case, FAREAST returns the set Gk = Gε exactly. The third condition allows for γ slack. The
good filter maintains upper and lower bounds Ut and Lt on the threshold in both the additive an
multiplicative cases. In the additive case, if Ut − Lt < γ/2, then all arms in Gcε+γ have been added
to Bk, and FAREAST may return Gk ∪ A. The condition for the multiplicative case is similar, though
slightly more complicated. Throughout, we will use red text to denote pieces specific to the additive
case and blue text to denote pieces specific to the multiplicative case.
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FAREAST
Input: ε, δ, Instance ν, slack γ ≥ 0. If multiplicative, ε ∈ (0, 1/2]
Let G0 = ∅ be the set of arms declared as good and B0 = ∅ the set of arms declared as bad.
Let A = [n] be the active set, Ni = 0 track the total number of samples of arm i by the Good Filter.
Let t = 0 denote the total number of times that line 19 is true in the Good Filter.
Let Cδ/2n(t) be an anytime δ/2n-correct confidence width on t samples.
Let HME(n, ε, κ) = dc′ nε2 log(1/κ)e be the complexity of MedianElimination.
for k = 1, 2, · · ·

1

2

3

4

5

6

7

8

Let δk = δ/2k2, τk =
⌈
22k+3 log

(
8n
δk

)⌉
, Initialize Gk = Gk−1 and Bk = Bk−1

// Bad Filter: find bad arms in Gcε or Mc
ε

Let ik = MedianElimination(ν, 2−k, 1/16), sample ik τk times, and compute µ̂ik
for i /∈ Gk−1 ∪Bk−1:

9

10

11

12

Sample µi τk times and compute µ̂i
If µ̂ik − µ̂i ≥ ε+ 2−k+1 or (1− ε)µ̂ik − µ̂i > 2−(k+1)(2− ε):

13

14

Add i to Bk15

// Good Filter: find good arms in Gε or Mε

for s = 1, · · · , HME(n, 2
−k, 1/16) + τk · (|(Gk−1 ∪Bk−1)

c|+ 1):
16

17

Pull arm Is ∈ argminj∈A{Nj} and set NIs ← NIs + 1.
if minj∈A{Nj} = maxj∈A{Nj}:

18

19

t = t+ 1
For i ∈ A denote µ̂i(t) the average of the first t samples of arm i.
Let Ut = maxj∈A µ̂i(t) + Cδ/2n(t)− ε or Ut = (1− ε)

(
maxj∈A µ̂i(t) + Cδ/2n(t)

)
Let Lt = maxj∈A µ̂i(t)− Cδ/2n(t)− ε or Lt = (1− ε)

(
maxj∈A µ̂i(t)− Cδ/2n(t)

)
for i ∈ A:

20

21

22

23

24

if µ̂i(t)− Cδ/2n(t) ≥ Ut:25

Add i to Gk26

if µ̂i(t) + Cδ/2n(t) ≤ Lt: // Bad arms are removed from A27

Remove i from A28

if i ∈ Gk and µ̂i(t) + Cδ/2n(t) ≤ maxj∈A µ̂(t)− Cδ/2n(t): // Good arms removed29

Remove i from A30

If A ⊂ Gk or Gk ∪Bk = [n]:31

Output: the set Gk // Stopping condition for returning Gε exactly.32

If Ut − Lt < 1
2
γ or Ut − Lt < γ

2−εLt:33

Output: the set A ∪Gk // Stopping condition for γ > 0.34

Remark 1. Note that the active setA defined in line 4 of FAREAST is only used and updated internally
by the Good Filter. In particular, it is not necessarily true that (Gk ∪Bk)c = A. Furthermore, a bad
arm i ∈ Gcε maybe removed from A even though it is not in Bk and vice versa as the Good Filter
only seeks to detect good arms in Gε and the Bad Filter only seeks to detect arms in Gcε . The same is
true in the multiplicative case.
Remark 2. It is possible that when the loop in line 17 finishes in any given round, some arms in A
have received more samples than others. Because Is ∈ arg minj∈A{Nj} in line 18, this difference is
no more than 1, and the arms with fewer samples are the first to be sampled in the next round. The
condition on line 19 ensures that all arms have equal numbers of samples by the Good Filter (e.g.,
the Ni’s) when the Good Filter identifies good arms or eliminates arms from A.

Now, we restate Theorem 4.2 for reference.
Theorem E.1. Fix 0 < ε, 0 < δ < 1/8, slack γ ∈ [0, 8] and an instance ν of n arms such that
max(∆i, |ε−∆i|) ≤ 8 for all i. There exists an eventE such that P(E) ≥ 1−δ, and onE, FAREAST
terminates and returns G such that Gε ⊂ G ⊂ Gε+γ in at most

c4

n∑
i=1

min

{
max

{
1

(µ1 − ε− µi)2
log

(
n

δ
log2

(
n

δ(µ1 − ε− µi)2

))
,

1

(µ1 + αε − µi)2
log

(
n

δ
log2

(
n

δ(µ1 + αε − µi)2

))
,

1

(µ1 + βε − µi)2
log

(
n

δ
log2

(
n

δ(µ1 + βε − µi)2

))}
,

1

γ2
log

(
n

δ
log2

(
n

δγ2

))}
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samples for a constant c4. Furthermore

E[1ET ] ≤ c3
∑
i∈Gε

max

{
1

(µ1 − ε− µi)2
log

(
n

δ
log2

(
n

δ(µ1 − ε− µi)2

))
,

1

(µ1 + αε − µi)2
log

(
n

δ
log2

(
n

δ(µ1 + αε − µi)2

))}
+ c3

∑
i∈Gcε

n

(µ1 − ε− µi)2
+

1

(µ1 − ε− µi)2
log

(
n

δ
log2

(
n

δ(µ1 − ε− µi)2

))
for a sufficiently large constant c3 where T denotes the number of samples.

Next, we present a theorem bounding the sample complexity of FAREAST for returning multiplicative
ε-good arms. Recall that α̃ε := mini∈Mε µi − (1 − ε)µ1 and β̃ε := mini∈Mc

ε
(1 − ε)µ1 − µi, the

distance for the smallest good arm and best arm that is not good to the threshold (1− ε)µ1.
Theorem E.2. Fix ε ∈ (0, 1/2], γ ∈ [0,min(1, 6/µ1)), 0 < δ < 1/8 and an instance ν of n arms
such that max(∆i, |εµ1 − ∆i|) ≤ 6. Assume that the highest mean is non-negative, i.e., µ1 ≥ 0.
There exists an event E such that P(E) ≥ 1− δ, and on E, FAREAST terminates and returns G such
that Mε ⊂ G ⊂Mε+γ in at most

c5

n∑
i=1

min

{
max

{
1

((1− ε)µ1 − µi)2
log

(
n

δ
log2

(
n

δ((1− ε)µ1 − µi)2

))
,

(µ1 + α̃ε
1−ε − µi)2

log

(
n

δ
log2

(
n

δ(µ1 + α̃ε
1−ε )

2

))
,

1

(µ1 + β̃ε
1−ε − µi)2

log

n
δ

log2

 n

δ(µ1 + β̃ε
1−ε − µi)2

 ,

(1− ε+ γ)2

γ2µ2
1

log

(
n

δ
log2

(
(1− ε+ γ)2n

δγ2µ2
1

))}
samples for a sufficiently large constant c5. Furthermore

E[1ET ] ≤c6
n∑
i=1

max

{
1

((1− ε)µ1 − µi)2
log

(
n

δ
log2

(
n

δ((1− ε)µ1 − µi)2

))
,

1(
µ1 + α̃ε

1−ε − µi
)2 log

n
δ

log2

 n

δ
(
µ1 + α̃ε

1−ε − µi
)2





+ c6
∑
i∈Mc

ε

n

((1− ε)µ1 − µi)2

for a sufficiently large constant c6, where T denotes the number of samples.

E.2 Key ideas of the proof

The proof revolves around a central idea: there is an event in unknown round KGood in which the
final arm from Gε or Mε is added to Gk. We may split the total number of samples drawn as the
number taken through round KGood and the number taken from KGood + 1 until termination if the
algorithm does not terminate in round KGood. Note that the Good filter and Bad filter are given the
same number of samples in each round. The proof of FAREAST in the multiplicative regime is similar
and deferred to Appendix E.4.

We begin by bounding the number of samples given to the Good filter when this event occurs that
Gk = Gε. Next, since this happens at a random time within round KGood, we bound the total number
of additional samples in this round. Collectively, this gives us control over the number of samples
drawn through round KGood.
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Next, we bound the number of samples from KGood + 1 until termination. To do so, we analyze the
expected number of samples drawn by the Bad filter before all arms in Gcε have been added to Bk.
The total number of samples from KGood + 1 until termination is no worse than twice this value. The
proof is split into 12 steps and logically are organized as follows:

1. Step 0: We show that Gk ⊂ Gε and Bk ⊂ Gcε . In particular, this is implies that Gk ∪Bk =
[n] =⇒ Gk = Gε so FAREAST terminates correctly.

2. Step 1: We split the total number of samples drawn by FAREAST into two sums that we will
control individually.

3. Steps 2-4: We control the number of samples given to the Good filter before Gk = Gε.
4. Steps 5-6: Using the result of steps 2-4, we bound the total number of samples through

round KGood

5. Steps 7-8: We use the result of step 6 to bound the total expected number of samples drawn
by FAREAST, simplifying slightly in the process.

6. Step 9: We bound the number of samples that the Bad filter draws in adding a single bad
arm to Bk.

7. Step 10: Repeating the argument in step 9, for every i ∈ Gcε, we bound the total number of
samples from round KGood + 1 until termination. We finish by combining the bound on the
number of samples drawn through KGood with the bound from KGood + 1 until termination.
This controls the expected sample complexity of FAREAST.

8. Step 11: We provide a high probability bound on the sample complexity of FAREAST.

E.3 Proof of Theorem 4.2, FAREAST in the additive regime

Proof. Notation for the proof: Throughout, recall ∆i = µ1 − µi. Recall that t counts the number
of times the conditional in line 19 is true. By Line 19 of FAREAST, all arms in A have received t
samples when the loop in line 23 is executed for the tth time. Within any round k, let A(t) and
Gk(t) denote the sets A and Gk at this time since both sets can change in lines 27 and 29 and 25
respectively. Let tk denote the maximum value of t in round k. By Lines 18 and 19 of FAREAST, the
total number of samples given to the good filter when the conditional in line 19 is true for the tth time
is
∑t
s=1 |A(s)|.

For i ∈ Gε, let Ti denote the random variable of the number of times arm i is sampled by the good
filter before it is added to Gk in Line 25. For i ∈ Gcε , let Ti denote the random variable of the number
of times arm i is sampled by the good filter before it is removed from A in Line 27. For any arm
i, let T ′i denote the random variable of the of the number of times i is sampled by the good filter
before µ̂i(t) + Cδ/2n(t) ≤ maxj∈A µ̂j(t)− Cδ/2n(t). Lastly, let Tγ denote the random variable of
the number of times any arm is sampled by the good filter before Ut − Lt < γ/2.

Define the event

E1 =

 ⋂
i∈[n]

⋂
t∈N
|µ̂i(t)− µi| ≤ Cδ/2n(t)

 .

Using standard anytime confidence bound results, and recalling that that Cδ(t) :=
√

4 log(log2(2t)/δ)
t ,

we have

P(Ec1) = P

 ⋃
i∈[n]

⋃
t∈N
|µ̂i − µi| > Cδ/2n(t)


≤

n∑
i=1

P

(⋃
t∈N
|µ̂i − µi| > Cδ/2n(t)

)
≤

n∑
i=1

δ

2n
=
δ

2

Next, recall that µ̂i(t) denotes the empirical average of t samples of ρi. Consider the event,

E2 =
⋂
i∈Gε

⋂
k∈N
|(µ̂ik (τk)− µ̂i (τk))− (µik − µi)| ≤ 2−k
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By Hoeffding’s inequality,

P
(
|(µ̂j (τk)− µ̂i (τk))− (µj − µi)| > 2−k

∣∣ik = j
)
≤ δ

4nk2
.

Then

P
(
|(µ̂j (τk)− µ̂i (τk))− (µj − µi)| > 2−k

)
=

n∑
j=1

P
(
|(µ̂j (τk)− µ̂i (τk))− (µj − µi)| > 2−k

∣∣ik = j
)
P(ik = j)

≤ δ

4nk2

n∑
j=1

P(ik = j)

=
δ

4nk2

Therefore, union bounding over the rounds k ∈ N, P(Ec2) ≤
∑
i∈Gε

∑∞
k=1

δ
4nk2 ≤ δ

2 . Hence,
P (E1 ∩ E2) ≥ 1− δ.

E.3.1 Step 0: Correctness.

On E1 ∩ E2, first we prove that if there exists a random round k at which Gk ∪ Bk = [n] then
Gk = Gε. Additionally, we prove that on E1 ∩ E2, if A ⊂ Gk, then Gk = Gε. Therefore, for either
stopping condition for FAREAST in line 31, on the event E1 ∩ E2, FAREAST correctly returns the set
Gε.

Claim 0: On E1 ∩ E2, for all k ∈ N, Gk ⊂ Gε.
Proof. Firstly we show 1 ∈ A for all t ∈ N, namely the best arm is never removed from A. Note for
any i

µ̂1 + Cδ/2n(t) ≥ µ1 ≥ µi ≥ µ̂i(t)− Cδ/2n(t) > µ̂i(t)− Cδ/2n(t)− ε.
In particular this shows, µ̂1 +Cδ/2n(t) > maxi∈A µ̂i(t)−Cδ/2n(t)− ε = Lt and µ̂1 +Cδ/2n(t) ≥
maxi∈A µ̂i(t)− Cδ/2n(t) showing that 1 will never exit A in line 28.

Secondly, we show that at all times t, µ1 − ε ∈ [Lt, Ut]. By the above, since µ1 never leaves A,

Ut = max
i∈A

µ̂i(t) + Cδ/2n(t)− ε ≥ µ̂1(t) + Cδ/2n(t)− ε ≥ µ1 − ε

and for any i,
µ1 − ε ≥ µi − ε ≥ µ̂i(t)− Cδ/2n(t)− ε

Hence µ1 − ε ≥ maxi µ̂i(t)− Cδ/2n(t)− ε = Lt.

Next, we show thatGk ⊂ Gε for all k ≥ 1, t ≥ 1. Suppose not. Then ∃, k, t ∈ N and ∃i ∈ Gcε∩Gk(t)
such that,

µi ≥ µ̂i(t)− Cδ/2n(t) ≥ Ut ≥ µ1 − ε > µi,

with the last inequality following from the previous assertion, giving a contradiction.

Claim 1: On E1 ∩ E2, for all k ∈ N, Bk ⊂ Gcε.
Proof. Next, we show Bk ⊂ Gcε. Suppose not. Either a good arm was added to the bad set by the
bad filter or by the good filter. First, consider the case, that the bad filter added an arm in Gε to Bk
for some k. By definition, B0 = ∅ and Bk−1 ⊂ Bk for all k. Then there must exist k ∈ N and an
i ∈ Gε such that i ∈ Bk and i /∈ Bk−1. Following line 14 of the algorithm, this occurs if and only if

µ̂ik − µ̂i ≥ ε+ 2−k+1.

On the event E2, the above implies

µik − µi + 2−k ≥ ε+ 2−k+1,

and simplifying, we see that ε + 2−k ≤ µik − µi ≤ µ1 − µi which contradicts the assertion that
i ∈ Gε.
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Next, consider the case that the good filter incorrectly adds a good arm i ∈ Gε to Bk in some round
k. Then there must be a t ∈ N such that.

µi
E1
≤ µ̂i + Cδ/2n(t) < Lt

E1
≤ µ1 − ε

which contradicts i ∈ Gε. Hence, in both cases Bk ⊂ Gcε for all k. Combining
the above claims, we see that E1 ∩ E2 implies (Gk ∪Bk = [n]) and Gk ∩Bk = ∅ =⇒ Gk = Gε.
Since P(E1 ∩ E2) ≥ 1− δ, if FAREAST terminates, with probability at least 1− δ, it correctly returns
the set Gε.

Claim 2: Next, we show that on E1, Gε ⊂ A(t) ∪G(t) for all t ∈ N.

In particular this implies that if A ⊂ G, then Gε ⊂ G. Combining this with the previous claim gives
G ⊂ Gε ⊂ G, hence G = Gε. On this condition, FAREAST terminates by line 33 and returns the set
A ∪ G = G. Note that by definition, Gε ⊂ G(ε+γ) for all γ ≥ 0. Therefore FAREAST terminates
correctly on this condition.

Proof. Suppose for contradiction that there exists i ∈ Gε such that i /∈ A(t) ∪G(t). This occurs
only if i is eliminated in line 28. Hence, there exists a t′ ≤ t such that µ̂i(t′) + Cδ/n(t′) < Lt′ .
Therefore, on the event E1,

µ1 − ε
E1
≥ Lt′ = max

j∈A
µ̂j(t

′)− Cδ/n(t′)− ε > µ̂i(t
′) + Cδ/n(t′)

E1
≥ µi

which contradicts i ∈ Gε.
Claim 3: Finally, we show that on E1, if Ut − Lt ≤ γ/2, then A ∪G ⊂ G(ε+γ).

Combining with Claim 3 that Gε ⊂ A ∪G, if FAREAST terminates on this condition by line 33, it
does so correctly and returns all arms in Gε.

Proof. Assume Ut − Lt ≤ γ/2. Since all arms in A(t) have received exactly t samples, this implies
that

( max
i∈A(t)

µ̂i(t) + Cδ/n(t)− ε)− ( max
i∈A(t)

µ̂i(t)− Cδ/n(t)− ε) = 2Cδ/n(t) ≤ γ/2.

Suppose for contradiction that there exists i ∈ Gc(ε+γ) such that i ∈ A ∪G. Since Gε ∩Gc(ε+γ) = ∅
and we have previously shown than G(t) ⊂ Gε for all t, we have that i ∈ A\G. Therefore, by the

condition in line 27, µ̂i(t) + Cδ/n(t) ≥ Lt. Hence, µi + 2Cδ/n(t)
E1
≥ µ̂i(t) + Cδ/n(t) ≥ Lt. By

assumption, we have that Ut − γ/2 ≤ Lt, and the event E1 implies that Ut ≥ µ1 − ε. Therefore,
µi + 2Cδ/n(t) ≥ Ut − γ/2 ≥ µ1 − ε− γ/2. Combining this with the inequality 2Cδ/n ≤ γ/2, we
have that

γ ≥ 2Cδ/n(t) + γ/2 ≥ µ1 − ε− µi
i∈Gc(ε+γ)

> γ

which is a contradiction.

E.3.2 Step 1: An expression for the total number of samples drawn and introducing several
helper random variables

Next, we write an expression for the total number of samples drawn by FAREAST. In particular, we
introduce two sums that we will spend the remainder of the proof controlling. Additionally, we show
that the conditional in line 19 in the good filter is true at least once in each round. Based on this, we
more precisely define the random variables Ti and T ′i introduces in the notation section in subsection
E.3. Additionally, we introduce the time Tγ at which Ut − Lt < 1

2γ.

Recall that the largest value of t in round k is denoted tk. Let Eγk be the event that Ut − Lt ≥ γ/2
for all t in round k:

Eγk := {Ut − Lt ≥ γ/2 : t ∈ (tk−1, tk]}.
Note that if Eγk−1 is false, then FAREAST terminates in round k − 1 by line 33. We may write the
total number of samples drawn by the algorithm as

T =

∞∑
k=1

21
[
A 6⊂ Gk−1 and Gk−1 ∪Bk−1 6= [n] and Eγk−1

]
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(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
Deterministically, 1

[
A 6⊂ Gk−1 and Gk−1 ∪Bk−1 6= [n] and Eγk−1

]
≤ 1 [Gk−1 ∪Bk−1 6= [n]]

Applying this,

T ≤
∞∑
k=1

21 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
=

∞∑
k=1

21 [Gk−1 6= Gε]1 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
(10)

+

∞∑
k=1

21 [Gk−1 = Gε]1 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
(11)

In round k, line 18 of the Good Filter, whereby an arm is sampled, is evaluated(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
≥
(
HME(n, 2−k, 1/16) + 2τk

)
≥ n

times since HME(n, 2−k, 1/16)) ≥ n for all k and |(Gk−1 ∪ Bk−1)c| ≥ 1 unless Gk−1 ∪ Bk−1 =
[n] which implies termination in round k − 1. Each time line 18 is called, NIs ← NIs + 1.
Since | arg minj∈A{Nj}| ≤ |A| ≤ n, line 18 is called at most n times before minj∈A{Nj} =
maxj∈A{Nj}. When this occurs, the conditional in line 19 is true and t← t+ 1.

If mini∈A(t){Ni} = maxi∈A(t){Ni}, then Ni = t for any i ∈ A(t). By Step 0, only arms in Gε are
added to Gk. Therefore, Ti is defined as

Ti = min

{
t :
i ∈ Gk(t+ 1) if i ∈ Gε
i /∈ A(t+ 1) if i ∈ Gcε

}
E1= min

{
t :
µ̂i − Cδ/2n(t) ≥ Ut if i ∈ Gε

µ̂i + Cδ/2n(t) ≤ Lt if i ∈ Gcε

}
(12)

Define Ti = ∞ if this never occurs. Note that this may happen if FAREAST terminates due to the
conditition in line 32 that Ut − Lt < γ/2. Similarly, recall T ′i denotes the random variable of the of
the number of times i is sampled before µ̂i(t) + Cδ/2n(t) ≤ maxj∈A µ̂j(t)− Cδ/2n(t). Hence,

T ′i = min

{
t : µ̂i(t) + Cδ/2n(t) ≤ max

j∈A(t)
µ̂j(t)− Cδ/2n(t)

}
(13)

Define T ′i = ∞ if this never occurs. Note that this may happen if FAREAST terminates due to the
conditition in line 32 that Ut − Lt < γ/2. Finally, we define the time Tγ such that Ut − Lt < 1

2γ.

Tγ = min

{
t : Ut − Lt <

1

2
γ

}
(14)

By design, no arm is sampled more that Tγ times by the good filter, controlling the cases that Ti or
T ′i are infinite.

E.3.3 Step 2: Bounding Ti and T ′i for i ∈ Gε

Step 2a: For i ∈ Gε, we have that Ti ≤ h(0.25(ε−∆i), δ/2n).

Proof. Note that, 4Cδ/2n(t) ≤ µi − (µ1 − ε), true when t > h
(
0.25(ε−∆i),

δ
2n

)
, implies that for

all j,

µ̂i(t)− Cδ/2n(t)
E1
≥ µi − 2Cδ/2n(t)

≥ µ1 + 2Cδ/2n(t)− ε
≥ µj + 2Cδ/2n(t)− ε
E1
≥ µ̂j(t) + Cδ/2n(t)− ε
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so in particular, µ̂i(t)− Cδ/2n(t) ≥ maxj∈A µ̂j(t) + Cδ/2n(t)− ε = Ut.

Additionally, we define a time Tmax when all good arms have entered Gk.

Step 2b: Defining Tmax := min{t : Gk(t) = Gε} = maxi∈Gε Ti, we also have that Tmax ≤
h(0.25αε, δ/2n) (in other words, if t > h(0.25αε, δ/2n) (i.e. line 23 has been run t times), then we
have that Gk(t) = Gε).

Proof. Recall that αε = mini∈Gε µi − µ1 + ε = mini∈Gε ε − ∆i. By Step 1a,
Ti ≤ h

(
0.25(ε−∆i),

δ
2n

)
. Furthermore, h(·, ·) is monotonic in its first argument,

such that if 0 < x′ < x, then h(x′, δ) > h(x, δ) for any δ > 0. Therefore
Tmax = maxi∈Gε Ti ≤ maxi∈Gε h

(
0.25(ε−∆i),

δ
2n

)
= h

(
0.25αε,

δ
2n

)
.

Step 2c: For i ∈ Gε, we have that T ′i ≤ h(0.25∆i, δ/2n).

Proof. Note that 4Cδ/2n(t) ≤ µ1 − µi, true when t > h
(
0.25∆i,

δ
2n

)
, implies that

µ̂i(t) + Cδ/2n(t)
E1
≤ µi + 2Cδ/2n(t)

≤ µ1 − 2Cδ/2n(t)

E1
≤ µ̂1(t)− Cδ/2n(t).

As shown in Step 0, 1 ∈ A(t) for all t ∈ N, and in particular µ̂1(t) ≤ maxi∈A(t) µ̂i(t). Hence,
µ̂i(t) + Cδ/2n(t) ≤ maxj∈A(t) µ̂j(t)− Cδ/2n(t).

E.3.4 Step 3: Bounding Ti for i ∈ Gcε
Next, we bound Ti for i ∈ Gcε. i ∈ Gcε is eliminated from A if it has received at least Ti samples.

Claim: Ti ≤ h
(
0.25(ε−∆i),

δ
2n

)
for i ∈ Gcε

Proof. Note that, 4Cδ/2n(t) ≤ µ1 − ε− µi, true when t > h
(
0.25(ε−∆i),

δ
2n

)
, implies that

µ̂i(t) + Cδ/2n(t)
E1
≤ µi + 2Cδ/2n(t)

≤ µ1 − 2Cδ/2n(t)− ε
E1
≤ µ̂1(t)− Cδ/2n(t)− ε

As shown in Step 0, 1 ∈ A(t) for all t ∈ N, and in particular µ̂1(t) ≤ maxi∈A(t) µ̂i(t). Therefore
µ̂i(t) + Cδ/2n(t) ≤ maxj∈A µ̂j(t)− Cδ/2n(t)− ε = Lt.

E.3.5 Step 4: bounding the total number of samples given to the good filter at time t = Tmax

Note that for a time t = T , the total number of samples given to the good filter is
∑T
s=1 |A(s)|.

Therefore, the total number of samples up to time Tmax is
∑Tmax

t=1 |A(t)|.
Let Si = min{t : i 6∈ A(t+ 1)}. Hence,

Tmax∑
t=1

|A(t)| =
Tmax∑
t=1

n∑
i=1

1[i ∈ A(t)] =

n∑
i=1

Tmax∑
t=1

1[i ∈ A(t)] =

n∑
i=1

min {Tmax, Si}

For arms i ∈ Gcε, Si = Ti by definition. For i ∈ Gε, Si = max(Ti, T
′
i ) by line 28 of the algorithm.

Then

n∑
i=1

min {Tmax, Si} =
∑
i∈Gε

min {Tmax,max(Ti, T
′
i )}+

∑
i∈Gcε

min {Tmax, Ti}

≤
∑
i∈Gε

min {Tmax,max(Ti, T
′
i )}+ |Gcε ∩Gε+αε |Tmax +

∑
i∈Gcε+αε

Ti
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=
∑
i∈Gε

max {Ti,min(T ′i , Tmax)}+ |Gcε ∩Gε+αε |Tmax +
∑

i∈Gcε+αε

Ti

(a)

≤
∑
i∈Gε

max

{
h

(
0.25(ε−∆i),

δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
0.25αε,

δ

2n

)]}
+

∑
i∈Gcε+αε

h

(
0.25(ε−∆i),

δ

2n

)
+ |Gcε ∩Gε+αε |h

(
0.25αε,

δ

2n

)
.

Equality (a) follows from Tmax ≤ h
(
0.25αε,

δ
2n

)
by Step 1b, Ti ≤ h

(
0.25(ε−∆i),

δ
2n

)
in Steps

2a and 3, and T ′i ≤ h
(
0.25∆i,

δ
2n

)
in Step 2c.

E.3.6 Step 5: Bounding the number of samples in round k versus k − 1

Now we show that the total number of samples taken in round k is no more than 9 times the number
taken in the previous round.

Claim: For k > 1 (
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
≤ 9

(
HME(n, 2−k+1, 1/16) + τk−1 + τk−1|(Gk−2 ∪Bk−2)c|

)
Proof. In round k,

(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
samples are drawn. Since

Gk−1 ⊂ Gk andBk−1 ⊂ Bk ∀k deterministically, we see that |(Gk−1∪Bk−1)c| ≥ |(Gk∪Bk)c| ∀k.
By definition,
HME(n, 2−k−1, 1/16) = 4HME(n, 2−k, 1/16).

Next, recall τk =
⌈
22k+3 log

(
8
δk

)⌉
. We bound τk/τk−1 as

τk
τk−1

=

⌈
22k+3 log

(
8
δk

)⌉
⌈
22k+1 log

(
8

δk−1

)⌉ =

⌈
22k+3 log

(
16nk2

δ

)⌉
⌈
22k+1 log

(
16n(k−1)2

δ

)⌉
≤

22k+3 log
(

16nk2

δ

)
+ 1

22k+1 log
(

16n(k−1)2

δ

) ≤ 4 log
(

16nk2

δ

)
log
(

16n(k−1)2

δ

) + 1

≤ 4
log
(

16n
δ

)
+ 2 log(k)

log
(

16n
δ

)
+ 2 log(k − 1)

+ 1 = (∗)

If k = 2, (∗) ≤ 1 + 4 ∗ log(32)/ log(8) ≤ 9. Otherwise,

(∗) =
4(log

(
16n
δ

)
+ 2 log(k))

log
(

16n
δ

)
+ 2 log(k − 1)

+ 1

≤ 4 log(k)

log(k − 1)
+ 1

≤ 4 · 2 + 1 = 9

Putting these pieces together,(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
≤
(
4HME(n, 2−k+1, 1/16) + 9τk−1 + 9τk−1|(Gk−2 ∪Bk−2)c|

)
≤ 9

(
HME(n, 2−k+1, 1/16) + τk−1 + τk−1|(Gk−2 ∪Bk−2)c|

)
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E.3.7 Step 6: Bounding Equation (10)

Here, we introduce the round KGood, when GKGood = Gε at some point within the round. Using
the result of the previous step, we may bound the total number of samples taken though this round,
controlling Equation (10).

With the result of Step 5, we prove the following inequality.

Claim:
∞∑
k=1

21 [Gk−1 6= Gε]1 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
(15)

≤ c
∑
i∈Gε

max

{
h

(
0.25(ε−∆i),

δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
0.25αε,

δ

2n

)]}
+ c|Gcε ∩Gε+αε |h

(
0.25αε,

δ

2n

)
+ c

∑
i∈Gcε+αε

h

(
0.25(ε−∆i),

δ

2n

)
for a constant c.

Proof. Recall tk = max{t : t ∈ k} denotes the maximum value of t in round k and Tmax =
max∈Gε Ti denotes the minimum t such that Gk(t) = Gε. Define the random round

KGood := min{k : Gk = Gε} = min{k : tk ≥ Tmax}

By definition of KGood,
∞∑
k=1

21[Gk−1 6= Gε]1 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
=

KGood∑
k=1

21 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
.

Next, applying Step 5, if KGood > 1,
KGood∑
k=1

21 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
≤ 18

KGood−1∑
k=1

1 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
.

Observe that by lines 17 and 20 of FAREAST, for any round r and for any t > tr−1,
r−1∑
k=1

1 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
≤

t∑
s=1

|A(s)|.

By definition, for the round KGood− 1, we see that t(KGood−1) < Tmax. Applying the above inequality
with the inequality proven in Step 4,

18

KGood−1∑
k=1

1 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
≤ 18

Tmax∑
s=1

|A(s)|

≤ 18
∑
i∈Gε

max

{
h

(
0.25(ε−∆i),

δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
0.25αε,

δ

2n

)]}
+ 18

∑
i∈Gcε+αε

h

(
0.25(ε−∆i),

δ

2n

)
+ 18|Gcε ∩Gε+αε |h

(
0.25αε,

δ

2n

)
.

Otherwise, if KGood = 1, exactly 4c′n log(16) + 32n log(16n/δ) samples are given to the good filter
in round 1. One may use Lemma F.2 to invert h(·, ·) and show that the summation on the right had
side of the above inequality is within a constant of this and the claim holds in this case as well for a
different constant, potentially larger than 18.
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E.3.8 Step 7: Bounding Equation (11)

Next, we bound
∑∞
k=1 21 [Gk−1 = Gε]1 [Gk−1 ∪Bk−1 6= [n]]

(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
.

∞∑
k=1

21 [Gk−1 = Gε]1 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
=

∞∑
k=1

21 [Gk−1 = Gε]1 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gε ∪Bk−1)c|

)
=

∞∑
k=1

21 [Gk−1 = Gε]1 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|Gcε\Bk−1|

)
=

∞∑
k=KGood+1

21 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|Gcε\Bk−1|

)
E1,E2
=

∞∑
k=KGood+1

21 [Bk−1 6= Gcε]
(
HME(n, 2−k, 1/16) + τk + τk|Gcε\Bk−1|

)
=

∞∑
k=KGood+1

21 [Bk−1 6= Gcε]
(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

21 [Bk−1 6= Gcε] (τk|Gcε\Bk−1|)

=

∞∑
k=KGood+1

21 [Bk−1 6= Gcε]
(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

2τk|Gcε\Bk−1|

=

∞∑
k=KGood+1

21 [Bk−1 6= Gcε]
(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

∑
i∈Gcε

2τk1[i /∈ Bk−1]

≤
∞∑

k=KGood+1

2|Gcε\Bk−1|
(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

∑
i∈Gcε

2τk1[i /∈ Bk−1]

=

∞∑
k=KGood+1

∑
i∈Gcε

21[i /∈ Bk−1]
(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

∑
i∈Gcε

2τk1[i /∈ Bk−1]

=

∞∑
k=KGood+1

∑
i∈Gcε

21[i /∈ Bk−1]
(
2τk +HME(n, 2−k, 1/16)

)
=
∑
i∈Gcε

∞∑
k=KGood+1

21[i /∈ Bk−1]
(
2τk +HME(n, 2−k, 1/16)

)
≤
∑
i∈Gcε

∞∑
k=1

21[i /∈ Bk−1]
(
2τk +HME(n, 2−k, 1/16)

)
(16)

E.3.9 Step 8: Bounding the expected total number of samples drawn by FAREAST

Now we take expectations over the number of samples drawn. These expectations are conditional on
the high probability event E1 ∩ E2. The bound in step 5 holds deterministically conditioned on this
event.

Note τk and HME(n, 2−k, 1/16) are deterministic constants for any k. Let all expectations are be
jointly over the random instance ν and the randomness in FAREAST.

E[T |1[E1 ∩ E2] = 1] ≤
∞∑
k=1

2E
[
1[Gk ∪Bk 6= [n]]

∣∣1[E1 ∩ E2] = 1
] (
τk +HME(n, 2−k, 1/16) + τk

∣∣(Gk−1 ∪Bk−1)c
∣∣)
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=

∞∑
k=1

2E
[
1 [Gk−1 6= Gε]1[Gk−1 ∪Bk−1 6= [n]]

∣∣1[E1 ∩ E2] = 1
]

(
τk +HME(n, 2−k, 1/16) + τk

∣∣(Gk−1 ∪Bk−1)c
∣∣)

+

∞∑
k=1

2E
[
1 [Gk−1 = Gε]1[Gk−1 ∪Bk−1 6= [n]]

∣∣1[E1 ∩ E2] = 1
]

(
τk +HME(n, 2−k, 1/16) + τk

∣∣(Gk−1 ∪Bk−1)c
∣∣)

Step 6

≤ c
∑
i∈Gε

max

{
h

(
0.25(ε−∆i),

δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
0.25αε,

δ

2n

)]}
+ c

∑
i∈Gcε+αε

h

(
0.25(ε−∆i),

δ

2n

)
+ c|Gcε ∩Gε+αε |h

(
0.25αε,

δ

2n

)

+

∞∑
k=1

2E
[
1 [Gk−1 = Gε]1[Gk−1 ∪Bk−1 6= [n]]

∣∣1[E1 ∩ E2] = 1
]

(
τk +HME(n, 2−k, 1/16) + τk

∣∣(Gk−1 ∪Bk−1)c
∣∣)

Step 7

≤ c
∑
i∈Gε

max

{
h

(
0.25(ε−∆i),

δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
0.25αε,

δ

2n

)]}
+ c

∑
i∈Gcε+αε

h

(
0.25(ε−∆i),

δ

2n

)
+ c|Gcε ∩Gε+αε |h

(
0.25αε,

δ

2n

)

+
∑
i∈Gcε

∞∑
k=1

2Eν
[
1[i /∈ Bk−1]

∣∣1[E1 ∩ E2] = 1
] (

2τk +HME(n, 2−k, 1/16)
)

(a)
= c

∑
i∈Gε

max

{
h

(
0.25(ε−∆i),

δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
0.25αε,

δ

2n

)]}
+ c

∑
i∈Gcε+αε

h

(
0.25(ε−∆i),

δ

2n

)
+ c|Gcε ∩Gε+αε |h

(
0.25αε,

δ

2n

)

+
∑
i∈Gcε

∞∑
k=1

2Eν
[
1[i /∈ Bk−1]

∣∣E1] (2τk +HME(n, 2−k, 1/16)
)

where (a) follows from Eν
[
1[i /∈ Bk−1]

∣∣E1 ∩ E2] = Eν
[
1[i /∈ Bk−1]

∣∣E1] for i ∈ Gcε, since the
event {i ∈ Bk−1} is independent of E2 for all i ∈ Gcε . This can be observed since E2 deals only with
independent samples taken of arms in Gε.

E.3.10 Step 9: Bounding
∑∞
k=1 Eν

[
1[i /∈ Bk−1]

∣∣E1] (2τk +HME(n, 2−k, 1/16)
)

for i ∈ Gcε
Next, we bound the expectation remaining from step 8. In particular, this is the number of samples
drawn by the bad filter to add arm i ∈ Gcε to Bk.

First, we bound the probability that for a given i ∈ Gcε and a given k i /∈ Bk. Note that by
Borel-Cantelli, this implies that the probability that i is never added to any Bk is 0.

Claim 1: For i ∈ Gcε, k ≥
⌈
log2

(
4

∆i−ε

)⌉
=⇒ Eν

[
1[i /∈ Bk]

∣∣E1] ≤ ( 1
8

)k−⌈log2

(
4

∆i−ε

)⌉

Proof. i ∈ Bk if either the good filter or the bad filter added it. Note that the behavior of the bad
filter is independent of the event E1. Hence,

Eν
[
1[i /∈ Bk]

∣∣E1] = Eν
[
1[µ̂i + Cδ/2n(tk) ≥ Ltk ]1[µ̂ik − µ̂i < ε+ 2−k+1]

∣∣E1]
≤ Eν

[
1[µ̂ik − µ̂i < ε+ 2−k+1]

∣∣E1]
= Eν

[
1[µ̂ik − µ̂i < ε+ 2−k+1]

]
.
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Intuitively, the time at which an arm in Gcε enters Bk, which occurs if either the good filter adds it
or the bad filter does, in expectation is at most the time at which the bad filter does on its own in
expectation.

If i ∈ Bk−1 then i ∈ Bk by definition. Otherwise, if i /∈ Bk−1, by Hoeffding’s Inequality conditional
on the value of ik and a sum over conditional probabilities as in step 0, with probability at least
1− δ

4nk2

|(µ̂ik − µ̂i)− (µik − µi)| ≤ 2−k

If MedianElimination also succeeds, the joint event of which occurs with probability
15
16

(
1− δ

4nk2

)
by independence6,

µ̂ik − µ̂i ≥ µik − µi − 2−k ≥ µ1 − µi − 2−k+1 = ∆i − 2−k+1.

Then for k ≥
⌈
log2

(
4

∆i−ε

)⌉
,

µ̂ik − µ̂i ≥ ∆i − 2−k+1 ≥ 1

2
(∆i + ε) ≥ ε+ 2−k+1,

which implies that i ∈ Bk by line 15 of FAREAST. In particular,
E
[
1[µ̂ik − µ̂i ≥ ε+ 2−k+1]

∣∣i /∈ Bk−1

]
≥ 15

16

(
1− δ

4nk2

)
. Furthermore, i /∈ B0 by defini-

tion. Additionally, recall that 1[µ̂ik − µ̂i < ε + 2−k+1] is independent of E1. Then for
k ≥

⌈
log2

(
4

∆i−ε

)⌉
,

E
[
1[µ̂ik − µ̂i < ε+ 2−k+1]

]
= E

[
1[µ̂ik − µ̂i < ε+ 2−k+1](1[i /∈ Bk−1] + 1[i ∈ Bk−1])

∣∣E1]
= E

[
1[µ̂ik − µ̂i < ε+ 2−k+1]1[i /∈ Bk−1]

∣∣E1]
+ E

[
1[µ̂ik − µ̂i < ε+ 2−k+1]1[i ∈ Bk−1]

∣∣E1]
Deterministically, 1[i /∈ Bk]1[i ∈ Bk−1] = 0. Therefore,

E
[
1[µ̂ik − µ̂i < ε+ 2−k+1]1[i /∈ Bk−1]

∣∣E1]
+ E

[
1[µ̂ik − µ̂i < ε+ 2−k+1]1[i ∈ Bk−1]

∣∣E1]
= E

[
1[µ̂ik − µ̂i < ε+ 2−k+1]1[i /∈ Bk−1]

∣∣E1]
= E

[
1[µ̂ik − µ̂i < ε+ 2−k+1]1[i /∈ Bk−1]|i /∈ Bk−1E1

]
P(i /∈ Bk−1

∣∣E1)

+ E
[
1[µ̂ik − µ̂i < ε+ 2−k+1]1[i /∈ Bk−1]

∣∣i ∈ Bk−1, E1
]
P(i ∈ Bk−1

∣∣E1)

= E
[
1[µ̂ik − µ̂i < ε+ 2−k+1]1[i /∈ Bk−1]|i /∈ Bk−1, E1

]
P(i /∈ Bk−1

∣∣E1)

= E
[
1[µ̂ik − µ̂i < ε+ 2−k+1]

∣∣i /∈ Bk−1, E1
]
E
[
1[i /∈ Bk−1]

∣∣E1]
= E

[
1[µ̂ik − µ̂i < ε+ 2−k+1]

∣∣i /∈ Bk−1

]
E
[
1[i /∈ Bk−1]

∣∣E1]
≤
(

1

16
+

δ

4nk2

)
E
[
1[i /∈ Bk−1]

∣∣E1]
≤
(

1

16
+

δ

4nk2

)
E
[
1[µ̂ik − µ̂i < ε+ 2−k+2]

]
where the final inequality follows by the same argument upper bounding E

[
1[i /∈ Bk]

∣∣E1]. For

k <
⌈
log2

(
4

∆i−ε

)⌉
, trivially, E [1[i /∈ Bk]] ≤ 1. Recall δ ≤ 1/8. For k ≥

⌈
log2

(
4

∆i−ε

)⌉
,

E
[
1[i /∈ Bk]

∣∣E1] ≤ k∏
s=
⌈
log2

(
4

∆i−ε

)⌉
(

1

16
+

δ

2ns2

)
≤
(

1

8

)k−⌈log2

(
4

∆i−ε

)⌉
.

6Note that the success of MedianElimination and the concentration of (µ̂ik − µ̂i) around (µik − µi) are
independent of the events E1 and E2 conditioned on in Step 8.
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Claim 2: For j ∈ Gcε,
∑∞
k=1 2Eν

[
1[i /∈ Bk−1]

∣∣E1] (2τk +HME(n, 2−k, 1/16)
)
≤ c′′ n

(∆i−ε)2 +

c′′h
(
0.25(∆i − ε), δ2n

)
Proof. This sum decomposes into two terms.
∞∑
k=1

Eν
[
1[i /∈ Bk−1]

∣∣E1] (2τk +HME(n, 2−k, 1/16)
)

=

⌊
log2

(
4

∆i−ε

)⌋∑
k=1

Eν
[
1[i /∈ Bk−1]

∣∣E1](HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

+

∞∑
k=
⌈
log2

(
4

∆i−ε

)⌉Eν
[
1[i /∈ Bk−1]

∣∣E1](HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)
We begin by bounding the first term.⌊

log2

(
4

∆i−ε

)⌋∑
k=1

Eν [1[i /∈ Bk−1]]

(
HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

≤

⌊
log2

(
4

∆i−ε

)⌋∑
k=1

(
HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

≤

⌊
log2

(
4

∆i−ε

)⌋∑
k=1

(
c′n22k log(16) + 2 + 22k+4 log

(
16nk2

δ

))

≤ 2 log2

(
4

∆i − ε

)
+

(
c′n log(16) + 16 log

(
16n

δ

)) ⌊log2

(
4

∆i−ε

)⌋∑
k=1

22k

+ 32

⌊
log2

(
4

∆i−ε

)⌋∑
k=1

22k log (k)

≤ 2 log2

(
4

∆i − ε

)
+

(
c′n log(16) + 16 log

(
16n

δ

)
+ 32 log log2

(
4

∆i − ε

)) ⌊log2

(
4

∆i−ε

)⌋∑
k=1

22k

≤ 2 log2

(
4

∆i − ε

)
+

16

(∆i − ε)2

(
c′n log(16) + 32 log

(
16n

δ
log2

(
4

∆i − ε

)))
Next, we plug in the bound from claim 1 controlling the probability that i /∈ Bk.

Using Claim 1, we bound the second sum as follows:
∞∑

r=
⌈
log2

(
4

∆i−ε

)⌉Eν
[
1[i /∈ Bk−1]

∣∣E1](HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

≤
∞∑

k=
⌈
log2

(
4

∆i−ε

)⌉
(

1

8

)k−⌈log2

(
4

∆i−ε

)⌉
−1(

c′n22k log(16) + 2 + 22k+4 log

(
16nk2

δ

))

= c′n log(16)

∞∑
k=1

(
1

8

)k−1

2
2
(
k+
⌈
log2

(
4

∆i−ε

)⌉)
+ 2

∞∑
k=1

(
1

8

)k−1

+ 16

∞∑
k=1

(
1

8

)k−1

2
2
(
k+
⌈
log2

(
4

∆i−ε

)⌉)
log

16n
(
k +

⌈
log2

(
4

∆i−ε

)⌉)2

δ
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≤ 3 + c′n log(16)

∞∑
k=1

2−3k+32
2
(
k+log2

(
4

∆i−ε

)
+1
)

+ 16

∞∑
k=1

2−3k+32
2
(
k+log2

(
4

∆i−ε

)
+1
)

log

16n
(
k +

⌈
log2

(
4

∆i−ε

)⌉)2

δ


= 3 +

(
29c′n log(16)

(∆i − ε)2
+

213

(∆i − ε)2
log

(
16n

δ

)) ∞∑
k=1

2−k

+
213

(∆i − ε)2

∞∑
k=1

2−k log

((
k +

⌈
log2

(
4

∆i − ε

)⌉)2
)

≤ 3 +
29c′n log(16)

(∆i − ε)2
+

213

(∆i − ε)2
log

(
16n

δ

)
+

214

(∆i − ε)2

∞∑
k=1

2−k log

(
k +

⌈
log2

(
4

∆i − ε

)⌉)
= (∗∗)

We may bound the final summand,
∑∞
k=1 2−k log

(
k +

⌈
log2

(
4

∆i−ε

)⌉)
as follows:

∞∑
k=1

2−k log

(
k +

⌈
log2

(
4

∆i − ε

)⌉)
≤ log

(
e

2
log2

(
256

(∆i − ε)2

))
Plugging this back into (∗∗), we have that

(∗∗) ≤ 3 +
29cn log(16)

(∆i − ε)2
+

213

(∆i − ε)2
log

(
16n

δ

)
+

214

(∆i − ε)2
log

(
e

2
log2

(
256

(∆i − ε)2

))
Combining the above with the bound on the first sum, we have that

∞∑
k=1

Eν
[
1[i /∈ Bk−1]

∣∣E1] (2τk +HME(n, 2−k, 1/16)
)

≤ c′′
(

n

(∆i − ε)2
+

c

(∆i − ε)2
log

(
2n

δ
log2

(
4

(∆i − ε)2

)))
=

c′′n

(∆i − ε)2
+ c′′h

(
0.25(∆i − ε),

δ

2n

)
for a sufficiently large, universal constant c′′ and c from the definition of h(·, ·).

E.3.11 Step 10: Applying the result of Step 9 to the result of Step 8

We may repeat the result of step 9 for every i ∈ Gcε and plug this into the result of Step 8. From this
point, we simplify to return the final result.

By Step 8, the total number of samples T drawn by FAREAST is bounded in expectation by

E[T |E1 ∩ E2] ≤ c
∑
i∈Gε

max

{
h

(
0.25(ε−∆i),

δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
0.25αε,

δ

2n

)]}
+ c

∑
i∈Gcε+αε

h

(
0.25(ε−∆i),

δ

2n

)
+ c|Gcε ∩Gε+αε |h

(
0.25αε,

δ

2n

)

+ 2
∑
i∈Gcε

∞∑
k=1

Eν
[
1[i /∈ Bk−1]

∣∣E1] (2τk +HME(n, 2−k, 1/16)
)
.

Applying the bound from Step 9 to each i ∈ Gcε, we have that

E[T |E1 ∩ E2] ≤ c
∑
i∈Gε

max

{
h

(
0.25(ε−∆i),

δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
0.25αε,

δ

2n

)]}
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+ c
∑

i∈Gcε+αε

h

(
0.25(ε−∆i),

δ

2n

)
+ c|Gcε ∩Gε+αε |h

(
0.25αε,

δ

2n

)

+ 2c′′
∑
i∈Gcε

n

(∆i − ε)2
+ h

(
0.25(∆i − ε),

δ

2n

)
.

For i ∈ Gcε ∩Gε+αε , αε = minj∈Gε ε−∆j ≥ ∆i− ε. By monotonicity of h(·, ·), h
(
0.25αε,

δ
2n

)
≤

c′′n
(∆i−ε)2 + c′′h

(
∆i − ε, δ2n

)
. Therefore,

E[T |E1 ∩ E2] ≤ c
∑
i∈Gε

max

{
h

(
0.25(ε−∆i),

δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
0.25αε,

δ

2n

)]}
+ (2c′′ + c)

∑
i∈Gcε

n

(∆i − ε)2
+ h

(
0.25(∆i − ε),

δ

2n

)
.

Next, we use Lemma F.3 to bound the minimum of h(·, · · · ) functions.

c
∑
i∈Gε

max

{
h

(
0.25(ε−∆i),

δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
0.25αε,

δ

2n

)]}
+ (2c′′ + c)

∑
i∈Gcε

n

(∆i − ε)2
+ h

(
0.25(∆i − ε),

δ

2n

)

≤ c
∑
i∈Gε

max

{
h

(
0.25(ε−∆i),

δ

2n

)
, h

(
∆i + αε

8
,
δ

2n

)}
+ (2c′′ + c)

∑
i∈Gcε

n

(∆i − ε)2
+ h

(
0.25(∆i − ε),

δ

2n

)

Finally, we use Lemma F.2 to bound the function h(·, ·). Since δ ≤ 1/2, δ/n ≤ 2e−e/2. Further,
max(∆i, |ε−∆i|) ≤ 8 for all i, we have that 0.25∆i ≤ 2, 0.25|ε−∆i| ≤ 2, and 0.25 min(αε, βε) ≤
2. Therefore,

E[T |E1 ∩ E2] ≤ c
∑
i∈Gε

max

{
h

(
0.25(ε−∆i),

δ

2n

)
, h

(
∆i + αε

8
,
δ

2n

)}
+ (2c′′ + c)

∑
i∈Gcε

n

(∆i − ε)2
+ h

(
0.25(∆i − ε),

δ

2n

)

≤ c
∑
i∈Gε

max

{
64

(ε−∆i)2
log

(
4n

δ
log2

(
384n

δ(ε−∆i)2

))
,

256

(∆i + αε)2
log

(
4n

δ
log2

(
768n

δ(∆i + αε)2

))}
+ (2c′′ + c)

∑
i∈Gcε

n

(∆i − ε)2
+

64

(ε−∆i)2
log

(
4n

δ
log2

(
384n

δ(ε−∆i)2

))

≤ c3
∑
i∈Gε

max

{
1

(ε−∆i)2
log

(
n

δ
log2

(
n

δ(ε−∆i)2

))
,

1

(∆i + αε)2
log

(
n

δ
log2

(
n

δ(∆i + αε)2

))}
+ c3

∑
i∈Gcε

n

(∆i − ε)2
+

1

(ε−∆i)2
log

(
n

δ
log2

(
n

δ(ε−∆i)2

))

= c3
∑
i∈Gε

max

{
1

(µ1 − ε− µi)2
log

(
n

δ
log2

(
n

δ(µ1 − ε− µi)2

))
,
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1

(µ1 + αε − µi)2
log

(
n

δ
log2

(
n

δ(µ1 + αε − µi)2

))}
+ c3

∑
i∈Gcε

n

(µ1 − ε− µi)2
+

1

(µ1 − ε− µi)2
log

(
n

δ
log2

(
n

δ(µ1 − ε− µi)2

))
for a sufficiently large constant c4.

E.3.12 Step 11: High probability sample complexity bound

Finally, the Good Filter is equivalent to EAST, Algorithm 5, except split across rounds. Note that the
Good Filter is union bounded over 2n events whereas the bounds in EAST are union bounded over n
events. The Good Filter and Bad Filter are given the same number of samples in each round, and
the Good Filter can terminate within a round, conditioned on E1 ∩ E2. Therefore, we can bound the
complexity of FAREAST in terms of that of EAST run at failure probability δ/2. If FAREAST terminates
in the second round or later, the arguments in Steps 4 and 5 can be used to show that FAREAST draws
no more than a factor of 18 more samples than EAST, though this estimate is highly pessimistic.
If FAREAST terminates in round 1 (when gaps are large), we may still show that this is within a
constant factor of the complexity of EAST, but the story is more complicated. In the first round, the
bad filter draws at most c′n log(16) + 32n log(8n/δ) samples where c′ is the constant from Median
Elimination. Since we have assumed that max(∆i, |ε −∆i|) ≤ 8, this sum is likewise within a
constant factor of the complexity of EAST. Hence, by Theorem E.3,

T ≤ c4
n∑
i=1

min

{
max

{
1

(µ1 − ε− µi)2
log

(
n

δ
log2

(
n

δ(µ1 − ε− µi)2

))
,

1

(µ1 + αε − µi)2
log

(
n

δ
log2

(
n

δ(µ1 + αε − µi)2

))
,

1

(µ1 + βε − µi)2
log

(
n

δ
log2

(
n

δ(µ1 + βε − µi)2

))}
1

γ2
log

(
n

δ
log2

(
n

δγ2

))}
samples.

E.4 Proof of Theorem E.2, FAREAST in the multiplicative regime

Proof. Notation for the proof: Throughout, recall ∆i = µ1 − µi. Recall that t counts the number
of times the conditional in line 19 is true. By Line 19 of FAREAST, all arms in A have received t
samples when the loop in line 23 is executed for the tth time. Within any round k, let A(t) and
Gk(t) denote the sets A and Gk at this time since both sets can change in lines 27 and 29 and 25
respectively. Let tk denote the maximum value of t in round k. By Lines 18 and 19 of FAREAST, the
total number of samples given to the good filter when the conditional in line 19 is true for the tth time
is
∑t
s=1 |A(s)|.

For i ∈Mε, let Ti denote the random variable of the number of times arm i is sampled before it is
added to Gk in Line 25. For i ∈M c

ε , let Ti denote the random variable of the number of times arm i
is sampled before it is removed from A in Line 27. For any arm i, let T ′i denote the random variable
of the of the number of times i is sampled before µ̂i(t) + Cδ/2n(t) ≤ maxj∈A µ̂j(t)− Cδ/2n(t).

Define the event

E1 =

 ⋂
i∈[n]

⋂
t∈N
|µ̂i(t)− µi| ≤ Cδ/2n(t)

 .

Using standard anytime confidence bound results, and recalling that that Cδ(t) :=
√

4 log(log2(2t)/δ)
t ,

we have

P(Ec1) = P

 ⋃
i∈[n]

⋃
t∈N
|µ̂i − µi| > Cδ/2n(t)
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≤
n∑
i=1

P

(⋃
t∈N
|µ̂i − µi| > Cδ/2n(t)

)
≤

n∑
i=1

δ

2n
=
δ

2

Next, recall that µ̂i(t) denotes the empirical average of t samples of ρi. Consider the event,

E2 =
⋂
i∈Mε

⋂
k∈N
|((1− ε)µ̂ik (τk)− µ̂i (τk))− ((1− ε)µik − µi)| ≤ 2−(k+1)(2− ε)

By Hoeffding’s inequality,

P
(
|((1− ε)µ̂ik (τk)− µ̂i (τk))− ((1− ε)µik − µi)| ≤ 2−(k+1)(2− ε)

∣∣ik = j
)
≤ δ

4nk2
.

Then

P
(
|((1− ε)µ̂ik (τk)− µ̂i (τk))− ((1− ε)µik − µi)| ≤ 2−(k+1)(2− ε)

)
=

n∑
j=1

P
(
|((1− ε)µ̂ik (τk)− µ̂i (τk))− ((1− ε)µik − µi)| ≤ 2−(k+1)(2− ε)

∣∣ik = j
)
P(ik = j)

≤ δ

4nk2

n∑
j=1

P(ik = j)

=
δ

4nk2

Therefore, union bounding over the rounds k ∈ N, P(Ec2) ≤
∑
i∈Mε

∑∞
k=1

δ
4nk2 ≤ δ

2 . Hence,
P (E1 ∩ E2) ≥ 1− δ.

E.4.1 Step 0: Correctness.

On E1 ∩ E2, first we prove that if there exists a random round k at which Gk ∪ Bk = [n] then
Gk = Mε. Additionally, we prove that on E1 ∩ E2, if A ⊂ Gk, then Gk = Mε. Therefore, for either
stopping condition for FAREAST in line 31, on the event E1 ∩ E2, FAREAST correctly returns the set
Mε.

Claim 0: On E1 ∩ E2, for all k ∈ N, Gk ⊂Mε.

Proof. Firstly we show 1 ∈ A for all t ∈ N, namely the best arm is never removed from A. Note for
any i such that µ̂i(t)− Cδ/2n(t) ≥ 0,

µ̂1 + Cδ/2n(t) ≥ µ1 ≥ µi ≥ µ̂i(t)− Cδ/2n(t) > (1− ε)(µ̂i(t)− Cδ/2n(t)).

For i such that µ̂i(t)− Cδ/2n(t) < 0, if µ̂1 + Cδ/2n(t) ≥ 0, then

µ̂1 + Cδ/2n(t) ≥ 0 > (1− ε)(µ̂i(t)− Cδ/2n(t)).

Note that µ̂1 + Cδ/2n(t) < 0 implies on the event E1 that µ1 < 0, which contradicts the assumption
that µ1 ≥ 0 made in the theorem. In particular this shows, µ̂1 +Cδ/2n(t) > (1− ε)(maxi∈A µ̂i(t)−
Cδ/2n(t)) = Lt and µ̂1 +Cδ/2n(t) ≥ maxi∈A µ̂i(t)−Cδ/2n(t) showing that 1 will never exit A in
line 28.

Secondly, we show that at all times t, (1− ε)µ1 ∈ [Lt, Ut]. By the above, since µ1 never leaves A,

Ut = (1− ε)(max
i∈A

µ̂i(t) + Cδ/2n(t)) ≥ (1− ε)(µ̂1(t) + Cδ/2n(t)) ≥ (1− ε)µ1

and for any i,
(1− ε)µ1 ≥ (1− ε)µi ≥ (1− ε)(µ̂i(t)− Cδ/2n(t))

Hence (1− ε)µ1 ≥ (1− ε)(maxi µ̂i(t)− Cδ/2n(t)) = Lt.

Next, we show that Gk ⊂ Mε for all k ≥ 1, t ≥ 1. Suppose not. Then ∃, k, t ∈ N and ∃i ∈
M c
ε ∩Gk(t) such that,

µi ≥ µ̂i(t)− Cδ/2n(t) ≥ Ut ≥ (1− ε)µ1 > µi,
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with the last inequality following from the previous assertion, giving a contradiction.

Claim 1: On E1 ∩ E2, for all k ∈ N, Bk ⊂M c
ε .

Proof. Next, we show Bk ⊂M c
ε . Suppose not. Then either the good filter or the bad filter added an

arm in Mε to Bk. Take i ∈Mε. In the former, this implies that

µi
E1
≤ µ̂i(t) + Cδ/2n(t) < Lt

E1
≤ (1− ε)µ1

which contradicts i ∈Mε. Consider the alternate case that the bad filter adds i to Bk for some k. By
definition, B0 = ∅ and Bk−1 ⊂ Bk for all k. Then there must exist k ∈ N and an i ∈Mε such that
i ∈ Bk and i /∈ Bk−1. Following line 14 of the algorithm, this occurs if and only if

(1− ε)µ̂ik − µ̂i > 2−(k+1)(2− ε).
On the event E2, the above implies

(1− ε)µik − µi + 2−(k+1)(2− ε) > 2−(k+1)(2− ε),
and simplifying, we see that 0 < (1−ε)µik−µi ≤ (1−ε)µ1−µi which contradicts the assertion that
i ∈Mε. Combining the above claims, we see that E1 ∩ E2 implies (Gk ∪Bk = [n]) and Gk ∩Bk =
∅ =⇒ Gk = Mε. Since P(E1 ∩ E2) ≥ 1− δ, if FAREAST terminates, with probability at least 1− δ,
it correctly returns the set Mε.

Claim 2: Next, we show that on E1, Mε ⊂ A(t) ∪G(t) for all t ∈ N.

In particular this implies that if A ⊂ G, then Mε ⊂ G. Combining this with the previous claim gives
G ⊂Mε ⊂ G, hence G = Mε. On this condition, FAREAST terminates by line 33 and returns the set
A ∪ G = G. Note that by definition, Mε ⊂ M(ε+γ) for all γ ≥ 0. Therefore FAREAST terminates
correctly on this condition.

Proof. Suppose for contradiction that there exists i ∈ Mε such that i /∈ A(t) ∪G(t). This occurs
only if i is eliminated in line 28. Hence, there exists a t′ ≤ t such that µ̂i(t′) + Cδ/n(t′) < Lt′ .
Therefore, on the event E1,

(1− ε)µ1

E1
≥ Lt′ = (1− ε)

(
max
j∈A

µ̂j(t
′)− Cδ/n(t′)

)
> µ̂i(t

′) + Cδ/n(t′)
E1
≥ µi

which contradicts i ∈Mε.

Claim 3: Finally, we show that on E1, if Ut − Lt ≤ γ
2−εLt, then A ∪G ⊂M(ε+γ).

Combining with Claim 3 that Mε ⊂ A ∪G, if FAREAST terminates on this condition by line 33, it
does so correctly and returns all arms in Mε and none in M c

(ε+γ).

Proof. By Claim 0, G ⊂ Mε ⊂ Mε+γ . Hence, G ∩M c
(ε+γ) = ∅. Therefore, we wish to show that

A ∩M c
(ε+γ) = ∅ which implies that G ∩ A ⊂Mε+γ . Assume Ut − Lt < γ

2−εLt. Recall that

Ut = (1− ε)
(

max
i∈A

µ̂i(t) + Cδ/2n(t)

)
and

Lt = (1− ε)
(

max
i∈A

µ̂i(t)− Cδ/2n(t)

)
All arms in A(t) have received exactly t samples. Hence, Ut − Lt = 2(1 − ε)Cδ/2n(t). On E1,
Lt ≤ (1− ε)µ1 This implies that

2(1− ε)Cδ/2n(t) <
γ

2− ε
Lt ≤

1− ε
2− ε

γµ1,

and in particular,
2Cδ/2n(t) <

γµ1

2− ε
.

Therefore, we wish to show that when the above is true, then for any i ∈ M c
ε+γ , Lt − (µ̂i(t) +

Cδ/n(t)) > 0, implying that i /∈ A.

Lt − (µ̂i(t) + Cδ/n(t)) = (1− ε)
(

max
j∈A

µ̂j − Cδ/n(t)

)
− (µ̂i(t) + Cδ/n(t))
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≥ (1− ε)
(

max
j∈A

µj − 2Cδ/n(t)

)
− (µi + 2Cδ/n(t))

(a)

≥ (1− ε)
(
µ1 − 2Cδ/n(t)

)
− ((1− ε− γ)µ1 + 2Cδ/n(t))

= γµ1 − 2(2− ε)Cδ/n(t)

> γµ1 − (2− ε) γµ1

2− ε
= 0

which implies that i /∈ A. Inequality (a) follows jointly from the fact that 1 ∈ A and the fact that all
arms in A have received t samples implies maxj∈A µj − 2Cδ/n(t) = µ1 − 2Cδ/n(t). Additionally,
inequality (a) follows from µi ≤ (1− ε− γ)µ1 since i ∈M c

ε+γ .

E.4.2 Step 1: An expression for the total number of samples drawn and introducing several
helper random variables

Next, we write an expression for the total number of samples drawn by FAREAST. In particular, we
introduce two sums that we will spend the remainder of the proof controlling. Additionally, we show
that the conditional in line 19 in the good filter is true at least once in each round. Based on this, we
more precisely define the random variables Ti and T ′i introduced in the notation section in section
E.4. Additionally, we introduce the time Tγ at which Ut − Lt < γ

2−εLt.

Recall that the largest value of t in round k is denoted tk. Let Eγk be the event that Ut − Lt ≥ γ
2−εLt

for all t in round k:

Eγk :=

{
Ut − Lt ≥

γ

2− ε
Lt : t ∈ (tk−1, tk]

}
.

Note that if Eγk−1 is false, then FAREAST terminates in round k − 1 by line 33. We may write the
total number of samples drawn by the algorithm as

T =

∞∑
k=1

21
[
A 6⊂ Gk−1 and Gk−1 ∪Bk−1 6= [n] and Eγk−1

]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
Deterministically, 1

[
A 6⊂ Gk−1 and Gk−1 ∪Bk−1 6= [n] and Eγk−1

]
≤ 1 [Gk−1 ∪Bk−1 6= [n]].

Applying this,

T ≤
∞∑
k=1

21 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
=

∞∑
k=1

21 [Gk−1 6= Mε]1 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
(17)

+

∞∑
k=1

21 [Gk−1 = Mε]1 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
(18)

In round k, line 18 of the Good Filter, whereby an arm is sampled, is evaluated(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
≥ (2τk +HME(n, 2−k, 1/16)) ≥ n

times since HME(n, 2−k, 1/16)) ≥ n for all k and |(Gk−1 ∪ Bk−1)c| ≥ 1 unless
Gk−1 ∪ Bk−1 = [n] which implies termination in round k − 1. Each time line 18 is called,
NIs ← NIs + 1. Since | arg minj∈A{Nj}| ≤ |A| ≤ n, line 18 is called at most n times before
minj∈A{Nj} = maxj∈A{Nj}. When this occurs, the conditional in line 19 is true and t← t+ 1.
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If mini∈A(t){Ni} = maxi∈A(t){Ni}, then Ni = t for any i ∈ A(t). By Step 0, only arms in Mε are
added to Gk. Therefore, Ti is defined as

Ti = min

{
t :
i ∈ Gk(t+ 1) if i ∈Mε

i /∈ A(t+ 1) if i ∈M c
ε

}
E1= min

{
t :
µ̂i − Cδ/2n(t) ≥ Ut if i ∈Mε

µ̂i + Cδ/2n(t) ≤ Lt if i ∈M c
ε

}
(19)

Define Ti = ∞ if this never occurs. Note that this may happen if FAREAST terminates due to the
conditition in line 32 that Ut − Lt < γ

2−εLt. Similarly, recall T ′i denotes the random variable of the
of the number of times i is sampled before µ̂i(t) + Cδ/2n(t) ≤ maxj∈A µ̂j(t)− Cδ/2n(t). Hence,

T ′i = min

{
t : µ̂i(t) + Cδ/2n(t) ≤ max

j∈A(t)
µ̂j(t)− Cδ/2n(t)

}
(20)

Define T ′i = ∞ if this never occurs. Note that this may happen if FAREAST terminates due to the
conditition in line 32 thatUt−Lt < γ

2−εLt. Finally, we define the time Tγ such thatUt−Lt < γ
2−εLt.

Tγ = min

{
t : Ut − Lt <

γ

2− ε
Lt

}
(21)

By design, no arm is sampled more that Tγ times by the good filter, controlling the cases that Ti or
T ′i are infinite.

E.4.3 Step 2: Bounding Ti and T ′i for i ∈Mε

Step 2a: For i ∈Mε, we have that Ti ≤ h
(
εµ1−∆i

4−2ε , δ2n

)
.

Proof. Note that µi−2Cδ/2n(t) ≥ (1−ε)(µ1+2Cδ/2n(t)) may be rearranged as (4−2ε)Cδ/2n(t) ≤
εµ1 −∆i, and this is true when t > h

(
εµ1−∆i

4−2ε , δ2n

)
. This condition implies that for all j,

µ̂i(t)− Cδ/2n(t)
E1
≥ µi − 2Cδ/2n(t)

≥ (1− ε)(µ1 + 2Cδ/2n(t))

≥ (1− ε)(µj + 2Cδ/2n(t))

E1
≥ (1− ε)(µ̂j(t) + Cδ/2n(t))

so in particular, µ̂i(t)− Cδ/2n(t) ≥ (1− ε)(maxj∈A µ̂j(t) + Cδ/2n(t)) = Ut.

Additionally, we define a time Tmax when all good arms have entered Gk.

Step 2b: Defining Tmax := min{t : Gk(t) = Mε} = maxi∈Mε Ti, we also have that Tmax ≤
h(α̃ε/(4− 2ε), δ/2n) (in other words, if t > h(α̃ε/(4− 2ε), δ/2n) (i.e. line 23 has been run t times,
then we have that Gk(t) = Mε).

Proof. Recall that α̃ε = mini∈Mε
µi − µ1 + ε = mini∈Mε

εµ1 − ∆i. By Step
1a, Ti ≤ h

(
εµ1−∆i

4−2ε , δ2n

)
. Furthermore, h(·, ·) is monotonic in its first argument,

such that if 0 < x′ < x, then h(x′, δ) > h(x, δ) for any δ > 0. Therefore
Tmax = maxi∈Mε

Ti ≤ maxi∈Mε
h
(
εµ1−∆i

4−2ε , δ2n

)
= h

(
α̃ε/(4− 2ε), δ2n

)
.

Step 2c: For i ∈Mε, we have that T ′i ≤ h(0.25∆i, δ/2n).

Proof. Note that 4Cδ/2n(t) ≤ µ1 − µi, true when t > h
(
0.25∆i,

δ
2n

)
, implies that

µ̂i(t) + Cδ/2n(t)
E1
≤ µi + 2Cδ/2n(t)

≤ µ1 − 2Cδ/2n(t)

E1
≤ µ̂1(t)− Cδ/2n(t).

As shown in Step 0, 1 ∈ A(t) for all t ∈ N, and in particular µ̂1(t) ≤ maxi∈A(t) µ̂i(t). Hence,
µ̂i(t) + Cδ/2n(t) ≤ maxj∈A(t) µ̂j(t)− Cδ/2n(t).
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E.4.4 Step 3: Bounding Ti for i ∈M c
ε

Next, we bound Ti for i ∈M c
ε . i ∈M c

ε is eliminated from A if it has received at least Ti samples.

Claim: Ti ≤ h
(

∆i−εµ1

4−2ε , δ2n

)
for i ∈M c

ε

Proof. Note that µi+2Cδ/2n(t) ≤ (1−ε)(µ1−2Cδ/2n(t)) may be rearranged as (4−2ε)Cδ/2n(t) ≤
∆i − εµ1, and this is true when t > h

(
εµ1−∆i

4−2ε , δ2n

)
. This condition implies that

µ̂i(t) + Cδ/2n(t)
E1
≤ µi + 2Cδ/2n(t)

≤ (1− ε)(µ1 − 2Cδ/2n(t))

E1
≤ (1− ε)(µ̂1(t)− Cδ/2n(t))

As shown in Step 0, 1 ∈ A(t) for all t ∈ N, and in particular µ̂1(t) ≤ maxi∈A(t) µ̂i(t). Therefore
µ̂i(t) + Cδ/2n(t) ≤ (1− ε)(maxj∈A µ̂j(t)− Cδ/2n(t)) = Lt.

E.4.5 Step 4: bounding the total number of samples given to the good filter at time t = Tmax

Note that for a time t = T , the total number of samples given to the good filter is
∑T
s=1 |A(s)|.

Therefore, the total number of samples up to time Tmax is
∑Tmax

t=1 |A(t)|.
Let Si = min{t : i 6∈ A(t+ 1)}. Hence,

Tmax∑
t=1

|A(t)| =
Tmax∑
t=1

n∑
i=1

1[i ∈ A(t)] =

n∑
i=1

Tmax∑
t=1

1[i ∈ A(t)] =

n∑
i=1

min {Tmax, Si}

For arms i ∈M c
ε , Si = Ti by definition. For i ∈Mε, Si = max(Ti, T

′
i ) by line 28 of the algorithm.

Then
n∑
i=1

min {Tmax, Si} =
∑
i∈Mε

min {Tmax,max(Ti, T
′
i )}+

∑
i∈Mc

ε

min {Tmax, Ti}

≤
∑
i∈Mε

min {Tmax,max(Ti, T
′
i )}+ |M c

ε ∩Mε+α̃ε |Tmax +
∑

i∈Mc
ε+α̃ε

Ti

=
∑
i∈Mε

max {Ti,min(T ′i , Tmax)}+ |M c
ε ∩Mε+α̃ε/µ1

|Tmax +
∑

i∈Mc
ε+α̃ε/µ1

Ti

(a)

≤
∑
i∈Mε

max

{
h

(
εµ1 −∆i

4− 2ε
,
δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
α̃ε

4− 2ε
,
δ

2n

)]}
+

∑
i∈Mc

ε+α̃ε/µ1

h

(
εµ1 −∆i

4− 2ε
,
δ

2n

)
+ |M c

ε ∩Mε+α̃ε/µ1
|h
(

α̃ε
4− 2ε

,
δ

2n

)
.

Equality (a) follows from Tmax ≤ h
(

α̃ε
4−2ε ,

δ
2n

)
by Step 1b, Ti ≤ h

(
εµ1−∆i

4−2ε , δ2n

)
in Steps 2a and

3, and T ′i ≤ h
(
0.25∆i,

δ
2n

)
in Step 2c.

E.4.6 Step 5: Bounding the number of samples in round k versus k − 1

Now we show that the total number of samples taken in round k is no more than 9 times the number
taken in the previous round.

Claim: For k > 1(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
≤ 9

(
HME(n, 2−k+1, 1/16) + τk−1 + τk−1|(Gk−2 ∪Bk−2)c|

)
Proof. In round k,

(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
samples are drawn. Since

Gk−1 ⊂ Gk andBk−1 ⊂ Bk ∀k deterministically, we see that |(Gk−1∪Bk−1)c| ≥ |(Gk∪Bk)c| ∀k.
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By definition,
HME(n, 2−k−1, 1/16) = 4HME(n, 2−k, 1/16).

Next, recall τk =
⌈
22k+3 log

(
8
δk

)⌉
. We bound τk/τk−1 as

τk
τk−1

=

⌈
22k+3 log

(
8
δk

)⌉
⌈
22k+1 log

(
8

δk−1

)⌉ =

⌈
22k+3 log

(
16nk2

δ

)⌉
⌈
22k+1 log

(
16n(k−1)2

δ

)⌉
≤

22k+3 log
(

16nk2

δ

)
+ 1

22k+1 log
(

16n(k−1)2

δ

) ≤ 4 log
(

16nk2

δ

)
log
(

16n(k−1)2

δ

) + 1

≤ 4
log
(

16n
δ

)
+ 2 log(k)

log
(

16n
δ

)
+ 2 log(k − 1)

+ 1 = (∗)

If k = 2, (∗) ≤ 1 + 4 ∗ log(32)/ log(8) ≤ 9. Otherwise,

(∗) =
4(log

(
16n
δ

)
+ 2 log(k))

log
(

16n
δ

)
+ 2 log(k − 1)

+ 1

≤ 4 log(k)

log(k − 1)
+ 1

≤ 4 · 2 + 1 = 9

Putting these pieces together,(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
≤
(
4HME(n, 2−k+1, 1/16) + 9τk−1 + 9τk−1|(Gk−2 ∪Bk−2)c|

)
≤ 9

(
HME(n, 2−k+1, 1/16) + τk−1 + τk−1|(Gk−2 ∪Bk−2)c|

)

E.4.7 Step 6: Bounding Equation (17)

Here, we introduce the round KGood, when GKGood = Mε at some point within the round. Using
the result of the previous step, we may bound the total number of samples taken though this round,
controlling Equation (17).

With the result of Step 5, we prove the following inequality.

Claim:
∞∑
k=1

21 [Gk−1 6= Mε]1[Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
(22)

≤ c
∑
i∈Mε

max

{
h

(
εµ1 −∆i

4− 2ε
,
δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
0.25

α̃ε
4− 2ε

,
δ

2n

)]}
+ c|M c

ε ∩Mε+α̃ε/µ1
|h
(

α̃ε
4− 2ε

,
δ

2n

)
+ c

∑
i∈Mc

ε+α̃ε/µ1

h

(
εµ1 −∆i

4− 2ε
,
δ

2n

)

Proof. Recall tk = max{t : t ∈ k} denotes the maximum value of t in round k and Tmax =
max∈Mε

Ti denotes the minimum t such that Gk(t) = Mε. Define the random round

KGood := min{k : Gk = Mε} = min{k : tk ≥ Tmax}
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By definition of KGood,
∞∑
k=1

21[Gk−1 6= Mε]1[Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
=

KGood∑
k=1

21[Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
.

Next, applying Step 5, if KGood > 1

KGood∑
k=1

21[Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
≤ 18

KGood−1∑
k=1

1[Gk−2 ∪Bk−2 6= [n]]
(
HME(n, 2−k+1, 1/16) + τk−1 + τk−1|(Gk−2 ∪Bk−2)c|

)
.

Observe that by lines 17 and 20 of FAREAST, for any round r and for any t > tr−1,
r−1∑
k=1

1[Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
≤

t∑
s=1

|A(s)|.

By definition, for the round KGood− 1, we see that t(KGood−1) < Tmax. Applying the above inequality
with the inequality proven in Step 4,

18

KGood−1∑
k=1

|(Gk−1 ∪Bk−1)c|
(
2τk +HME(n, 2−k, 1/16)

)
≤ 18

Tmax∑
s=1

|A(s)|

≤ 18
∑
i∈Mε

max

{
h

(
εµ1 −∆i

4− 2ε
,
δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
α̃ε

4− 2ε
,
δ

2n

)]}
+ 18

∑
i∈Mc

ε+α̃ε/µ1

h

(
εµ1 −∆i

4− 2ε
,
δ

2n

)
+ 18|M c

ε ∩Mε+α̃ε/µ1
|h
(

α̃ε
4− 2ε

,
δ

2n

)
.

Otherwise, if KGood = 1, exactly 4c′n log(16) + 32n log(16n/δ) samples are given to the good filter
in round 1. One may use Lemma F.2 to invert h(·, ·) and show that the summation on the right had
side of the above inequality is within a constant of this and the claim holds in this case as well for a
different constant, potentially larger than 18.

E.4.8 Step 7: Bounding Equation (18)

Next, we bound
∑∞
k=1 21 [Gk−1 = Mε]1 [Gk−1 ∪Bk−1 6= [n]]

(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
.

∞∑
k=1

21 [Gk−1 = Mε]1 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪Bk−1)c|

)
=

∞∑
k=1

21 [Gk−1 = Mε]1 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Mε ∪Bk−1)c|

)
=

∞∑
k=1

21 [Gk−1 = Mε]1 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|M c

ε \Bk−1|
)

=

∞∑
k=KGood+1

21 [Gk−1 ∪Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|M c

ε \Bk−1|
)

E1,E2
=

∞∑
k=KGood+1

21 [Bk−1 6= M c
ε ]
(
HME(n, 2−k, 1/16) + τk + τk|M c

ε \Bk−1|
)

=

∞∑
k=KGood+1

21 [Bk−1 6= M c
ε ]
(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

21 [Bk−1 6= M c
ε ] (τk|M c

ε \Bk−1|)
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=

∞∑
k=KGood+1

21 [Bk−1 6= M c
ε ]
(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

2τk|M c
ε \Bk−1|

=

∞∑
k=KGood+1

21 [Bk−1 6= M c
ε ]
(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

∑
i∈Mc

ε

2τk1[i /∈ Bk−1]

≤
∞∑

k=KGood+1

2|M c
ε \Bk−1|

(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

∑
i∈Mc

ε

2τk1[i /∈ Bk−1]

=

∞∑
k=KGood+1

∑
i∈Mc

ε

21[i /∈ Bk−1]
(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

∑
i∈Mc

ε

2τk1[i /∈ Bk−1]

=

∞∑
k=KGood+1

∑
i∈Mc

ε

21[i /∈ Bk−1]
(
2τk +HME(n, 2−k, 1/16)

)
=
∑
i∈Mc

ε

∞∑
k=KGood+1

21[i /∈ Bk−1]
(
2τk +HME(n, 2−k, 1/16)

)
≤
∑
i∈Mc

ε

∞∑
k=1

21[i /∈ Bk−1]
(
2τk +HME(n, 2−k, 1/16)

)
(23)

E.4.9 Step 8: Bounding the expected total number of samples drawn by FAREAST

Now we take expectations over the number of samples drawn. These expectations are conditional on
the high probability event E1 ∩ E2. The bound in step 5 holds deterministically conditioned on this
event.

Note τk and HME(n, 2−k, 1/16) are deterministic constants for any k. Let all expectations are be
jointly over the random instance ν and the randomness in FAREAST.

E[T |1[E1 ∩ E2] = 1] =
∞∑
k=1

2E
[
1[Gk ∪Bk 6= [n]]

∣∣1[E1 ∩ E2] = 1
] (
HME(n, 2−k, 1/16) + τk + τk

∣∣(Gk−1 ∪Bk−1)c
∣∣)

=

∞∑
k=1

2E
[
1 [Gk−1 6= Mε]1[Gk ∪Bk 6= [n]]

∣∣1[E1 ∩ E2] = 1
]

(
HME(n, 2−k, 1/16) + τk + τk

∣∣(Gk−1 ∪Bk−1)c
∣∣)

+

∞∑
k=1

2E
[
1 [Gk−1 = Mε]1[Gk ∪Bk 6= [n]]

∣∣1[E1 ∩ E2] = 1
]

(
HME(n, 2−k, 1/16) + τk + τk

∣∣(Gk−1 ∪Bk−1)c
∣∣)

Step 6

≤ c
∑
i∈Mε

max

{
h

(
εµ1 −∆i

4− 2ε
,
δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
α̃ε

4− 2ε
,
δ

2n

)]}
+ c

∑
i∈Mc

ε+α̃ε/µ1

h

(
εµ1 −∆i

4− 2ε
,
δ

2n

)
+ c|M c

ε ∩Mε+α̃ε/µ1
|h
(

α̃ε
4− 2ε

,
δ

2n

)

+

∞∑
k=1

2E
[
1 [Gk−1 = Mε]1[Gk ∪Bk 6= [n]]

∣∣1[E1 ∩ E2] = 1
]

(
HME(n, 2−k, 1/16) + τk + τk

∣∣(Gk−1 ∪Bk−1)c
∣∣)

Step 7

≤ c
∑
i∈Mε

max

{
h

(
εµ1 −∆i

4− 2ε
,
δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
α̃ε

4− 2ε
,
δ

2n

)]}
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+ c
∑

i∈Mc
ε+α̃ε/µ1

h

(
εµ1 −∆i

4− 2ε
,
δ

2n

)
+ c|M c

ε ∩Mε+α̃ε/µ1
|h
(

α̃ε
4− 2ε

,
δ

2n

)

+
∑
i∈Mc

ε

∞∑
k=1

2Eν
[
1[i /∈ Bk−1]

∣∣1[E1 ∩ E2] = 1
] (

2τk +HME(n, 2−k, 1/16)
)

(a)
= c

∑
i∈Mε

max

{
h

(
εµ1 −∆i

4− 2ε
,
δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
α̃ε

4− 2ε
,
δ

2n

)]}
+ c

∑
i∈Mc

ε+α̃ε/µ1

h

(
εµ1 −∆i

4− 2ε
,
δ

2n

)
+ c|M c

ε ∩Mε+α̃ε |h
(
α̃ε/µ1

4− 2ε
,
δ

2n

)

+
∑
i∈Mc

ε

∞∑
k=1

2Eν [1[i /∈ Bk−1]|1[E1]]
(
2τk +HME(n, 2−k, 1/16)

)
where (a) follows from Eν

[
1[i /∈ Bk−1]

∣∣1[E1 ∩ E2]
]

= Eν
[
1[i /∈ Bk−1]

∣∣1[E1]
]

for i ∈M c
ε , since

the event {i ∈ Bk−1} is independent of E2 for all i ∈M c
ε . This can be observed since E2 deals only

with independent samples taken of arms in Mε.

E.4.10 Step 9: Bounding
∑∞
k=1 Eν [1[i /∈ Bk−1]|1[E1]]

(
2τk +HME(n, 2−k, 1/16)

)
for i ∈M c

ε

Next, we bound the expectation remaining from step 8. In particular, this is the number of samples
drawn by the bad filter to add arm i ∈M c

ε to Bk.

First, we bound the probability that for a given i ∈ M c
ε and a given k i /∈ Bk. Note that by

Borel-Cantelli, this implies that the probability that i is never added to any Bk is 0.

Claim 1: For i ∈M c
ε , k ≥

⌈
log2

(
2−ε

∆i−εµ1

)⌉
=⇒ Eν [1[i /∈ Bk]|1[E1]] ≤

(
1
8

)k−⌈log2

(
2−ε

∆i−εµ1

)⌉

Proof. If i ∈ Bk, either the good or the bad filter may have added it. The behavior of the bad filter on
arms inn M c

ε is independent of E1. Hence.

Eν [1[i /∈ Bk]|1[E1]] = Eν
[
1[µ̂i + Cδ/2n(t) ≥ Ltk ]1[µ̂ik − µ̂i ≤ 2−(k+1)(2− ε)]|1[E1]

]
≤ Eν

[
1[µ̂ik − µ̂i ≤ 2−(k+1)(2− ε)]|1[E1]

]
= Eν

[
1[µ̂ik − µ̂i ≤ 2−(k+1)(2− ε)]

]
If i ∈ Bk−1 then i ∈ Bk by definition. Otherwise, if i /∈ Bk−1, by Hoeffding’s Inequality conditional
on the value of ik and a sum over conditional probabilities as in step 0, with probability at least
1− δ

4nk2

|((1− ε)µ̂ik − µ̂i)− ((1− ε)µik − µi)| ≤ 2−(k+1)

If MedianElimination also succeeds, the joint event of which occurs with probability
15
16

(
1− δ

4nk2

)
by independence7,

(1− ε)µ̂ik − µ̂i ≥ (1− ε)µik − µi − 2−(k+1)

≥ (1− ε)µ1 − µi − 2−(k+1)(2− ε)
= ∆i − εµ1 − 2−(k+1)(2− ε).

Then for k ≥
⌈
log2

(
2−ε

∆i−εµ1

)⌉
,

(1− ε)µ̂ik − µ̂i ≥ ∆i − εµ1 − 2−(k+1)(2− ε) ≥ 2−(k+1)(2− ε),

7Note that the success of MedianElimination and the concentration of (µ̂ik − µ̂i) around (µik − µi) are
independent of the events E1 and E2 conditioned on in Step 8.
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which implies that i ∈ Bk by line 15 of FAREAST. In particular,

E
[
1[i ∈ Bk]

∣∣i /∈ Bk−11[E1]
]
≥ E

[
µ̂ik − µ̂i > 2−(k+1)(2− ε)

∣∣i /∈ Bk−1,1[E1]
]
≥ 15

16

(
1− δ

4nk2

)
.

Furthermore, i /∈ B0 by definition. Then for k ≥
⌈
log2

(
2−ε

∆i−εµ1

)⌉
,

E [1[i /∈ Bk]|1[E1]] = E [1[i /∈ Bk](1[i /∈ Bk−1] + 1[i ∈ Bk−1])|1[E1]]

= E [1[i /∈ Bk]1[i /∈ Bk−1]|1[E1]] + E [1[i /∈ Bk]1[i ∈ Bk−1]|1[E1]]

Deterministically, 1[i /∈ Bk]1[i ∈ Bk−1] = 0. Therefore,

E [1[i /∈ Bk]1[i /∈ Bk−1]|1[E1]] + E [1[i /∈ Bk]1[i ∈ Bk−1]|1[E1]]

= E [1[i /∈ Bk]1[i /∈ Bk−1]|1[E1]]

= E [1[i /∈ Bk]1[i /∈ Bk−1]|i /∈ Bk−1,1[E1]]P(i /∈ Bk−1|1[E1])

+ E
[
1[i /∈ Bk]1[i /∈ Bk−1]

∣∣i ∈ Bk−1,1[E1]
]
P(i ∈ Bk−1|1[E1])

= E [1[i /∈ Bk]1[i /∈ Bk−1]|i /∈ Bk−1,1[E1]]P(i /∈ Bk−1|1[E1])

= E
[
1[i /∈ Bk]

∣∣i /∈ Bk−1,1[E1]
]
E [1[i /∈ Bk−1]|1[E1]]

≤
(

1

16
+

δ

4nk2

)
E [1[i /∈ Bk−1]|1[E1]] .

For k <
⌈
log2

(
2−ε

∆i−εµ1

)⌉
, trivially, E [1[i /∈ Bk]|1[E1]] ≤ 1. Recall δ ≤ 1/8. For k ≥⌈

log2

(
2−ε

∆i−εµ1

)⌉
,

E [1[i /∈ Bk]|1[E1]] ≤
k∏

s=
⌈
log2

(
2−ε

∆i−εµ1

)⌉
(

1

16
+

δ

2ns2

)
≤
(

1

8

)k−⌈log2

(
2−ε

∆i−εµ1

)⌉
.

Claim 2: For j ∈ M c
ε ,

∑∞
k=1 2Eν [1[i /∈ Bk−1]|1[E1]]

(
2τk +HME(n, 2−k, 1/16)

)
≤

c′′ 4n(2−ε)2

(∆i−εµ1)2 + c′′h
(

∆i−εµ1

4−2ε , δ2n

)
Proof. This sum decomposes into two terms.
∞∑
k=1

Eν [1[i /∈ Bk−1]|1[E1]]
(
2τk +HME(n, 2−k, 1/16)

)

=

⌊
log2

(
2−ε

∆i−εµ1

)⌋∑
k=1

Eν [1[i /∈ Bk−1]|1[E1]]

(
HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

+

∞∑
k=
⌈
log2

(
2−ε

∆i−εµ1

)⌉Eν [1[i /∈ Bk−1]|1[E1]]

(
HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

We begin by bounding the first term.⌊
log2

(
2−ε

∆i−εµ1

)⌋∑
k=1

Eν [1[i /∈ Bk−1]|1[E1]]

(
HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

≤

⌊
log2

(
2−ε

∆i−εµ1

)⌋∑
k=1

(
HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

≤

⌊
log2

(
2−ε

∆i−εµ1

)⌋∑
k=1

(
c′n22k log(16) + 2 + 22k+4 log

(
16nk2

δ

))
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≤ 2 log2

(
2− ε

∆i − εµ1

)
+

(
c′n log(16) + 16 log

(
16n

δ

)) ⌊log2

(
2−ε

∆i−εµ1

)⌋∑
k=1

22k

+ 32

⌊
log2

(
2−ε

∆i−εµ1

)⌋∑
k=1

22k log (k)

≤ 2 log2

(
2− ε

∆i − εµ1

)
+

(
c′n log(16) + 16 log

(
16n

δ

)
+ 32 log log2

(
2− ε

∆i − εµ1

)) ⌊log2

(
2−ε

∆i−εµ1

)⌋∑
k=1

22k

≤ 2 log2

(
2− ε

∆i − εµ1

)
+

(2− ε)2

(∆i − εµ1)2

(
c′n log(16) + 32 log

(
16n

δ
log2

(
2− ε

∆i − εµ1

)))
Next, we plug in the bound from claim 1 controlling the probability that i /∈ Bk.

Using Claim 1, we bound the second sum as follows:
∞∑

r=
⌈
log2

(
2−ε

∆i−εµ1

)⌉Eν [1[i /∈ Bk−1]|1[E1]]

(
HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

≤
∞∑

k=
⌈
log2

(
2−ε

∆i−εµ1

)⌉
(

1

8

)k−⌈log2

(
2−ε

∆i−εµ1

)⌉
−1(

c′n22k log(16) + 2 + 22k+4 log

(
16nk2

δ

))

= c′n log(16)

∞∑
k=1

(
1

8

)k−1

2
2
(
k+
⌈
log2

(
2−ε

∆i−εµ1

)⌉)
+ 2

∞∑
k=1

(
1

8

)k−1

+ 16

∞∑
k=1

(
1

8

)k−1

2
2
(
k+
⌈
log2

(
2−ε

∆i−εµ1

)⌉)
log

16n
(
k +

⌈
log2

(
2−ε

∆i−εµ1

)⌉)2

δ


+ 16

∞∑
k=1

2−3k+32
2
(
k+log2

(
2−ε

∆i−εµ1

)
+1
)

log

16n
(
k +

⌈
log2

(
2−ε

∆i−εµ1

)⌉)2

δ


= 3 +

(
c′n log(16)

25(2− ε)2

(∆i − εµ1)2
+

29(2− ε)2

(∆i − εµ1)2
log

(
16n

δ

)) ∞∑
k=1

2−k

+
29(2− ε)2

(∆i − εµ1)2

∞∑
k=1

2−k log

((
k +

⌈
log2

(
2− ε

∆i − εµ1

)⌉)2
)

≤ 3 + c′n log(16)
25(2− ε)2

(∆i − εµ1)2
+

29(2− ε)2

(∆i − εµ1)2
log

(
16n

δ

)
+

210(2− ε)2

(∆i − εµ1)2

∞∑
k=1

2−k log

(
k +

⌈
log2

(
2− ε

∆i − εµ1

)⌉)
= (∗∗)

We may bound the final summand,
∑∞
k=1 2−k log

(
k +

⌈
log2

(
2−ε

∆i−εµ1

)⌉)
as follows:

∞∑
k=1

2−k log

(
k +

⌈
log2

(
2− ε

∆i − εµ1

)⌉)
≤ log

(
e

2
log2

(
16(2− ε)2

(∆i − εµ1)2

))
Plugging this back into (∗∗), we have that

(∗∗) ≤ 3 + c′n log(16)
25(2− ε)2

(∆i − εµ1)2
+

29(2− ε)2

(∆i − εµ1)2
log

(
16n

δ

)
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+
210(2− ε)2

(∆i − εµ1)2
log

(
e

2
log2

(
16(2− ε)2

(∆i − εµ1)2

))
Combining the above with the bound on the first sum, we have that

∞∑
k=1

Eν [1[i /∈ Bk−1]1[E1]]
(
2τk +HME(n, 2−k, 1/16)

)
≤ c′′

(
4n(2− ε)2

(∆i − εµ1)2
+

4c(2− ε)2

(∆i − εµ1)2
log

(
2n

δ
log2

(
4− 2ε

(∆i − εµ1)2

)))
=

4c′′n(2− ε)2

(∆i − εµ1)2
+ c′′h

(
∆i − εµ1

4− 2ε
,
δ

2n

)
for a sufficiently large, universal constant c′′ and c from the definition of h(·, ·).

E.4.11 Step 10: Applying the result of Step 9 to the result of Step 8

We may repeat the result of step 9 for every i ∈M c
ε and plug this into the result of Step 8. From this

point, we simplify to return the final result.

By Step 8, the total number of samples T drawn by FAREAST is bounded in expectation by

E[T |E1 ∩ E2] ≤ c
∑
i∈Mε

max

{
h

(
εµ1 −∆i

4− 2ε
,
δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
α̃ε/µ1

4− 2ε
,
δ

2n

)]}
+ c

∑
i∈Mc

ε+α̃ε/µ1

h

(
εµ1 −∆i

4− 2ε
,
δ

2n

)
+ c|M c

ε ∩Mε+α̃ε |h
(

α̃ε
4− 2ε

,
δ

2n

)

+ 2
∑
i∈Mc

ε

∞∑
k=1

Eν [1[i /∈ Bk−1]|1[E1]]
(
2τk +HME(n, 2−k, 1/16)

)
.

Applying the bound from Step 9 to each i ∈M c
ε , we have that

E[T |E1 ∩ E2] ≤ c
∑
i∈Mε

max

{
h

(
0.25(ε−∆i),

δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
α̃ε

4− 2ε
,
δ

2n

)]}
+ c

∑
i∈Mc

ε+α̃ε/µ1

h

(
0.25(ε−∆i),

δ

2n

)
+ c|M c

ε ∩Mε+α̃ε/µ1
|h
(

α̃ε
4− 2ε

,
δ

2n

)

+ 2c′′
∑
i∈Mc

ε

4n(2− ε)2

(∆i − εµ1)2
+ h

(
∆i − εµ1

4− 2ε
,
δ

2n

)
.

For i ∈ M c
ε ∩ Mε+α̃ε/µ1

, α̃ε = minj∈Mε
εµ1 − ∆j ≥ ∆i − εµ1. By monotonicity of h(·, ·),

h
(

α̃ε
4−2ε ,

δ
2n

)
≤ c′′n(4−2ε)

(∆i−εµ1)2 + c′′h
(

∆i−εµ1

4−2ε , δ2n

)
. Therefore,

E[T |E1 ∩ E2] ≤ c
∑
i∈Mε

max

{
h

(
∆i − εµ1

4− 2ε
,
δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
α̃ε

4− 2ε
,
δ

2n

)]}
+ (2c′′ + c)

∑
i∈Mc

ε

n(4− 2ε)

(∆i − εµ1)2
+ h

(
∆i − εµ1

4− 2ε
,
δ

2n

)
.

Lastly, note that 1
3(1−x) ≤

1
2−x for x ≤ 1/2. By monotonicity of h, we may lower bound the

denominators 1
4−2ε and 1

2(2−ε+γ) as 1
6(1−ε) and 1

6(1−ε+γ) respectively. Since ε ∈ (0, 1/2], 1
4−2ε ≤

1/4. Plugging this in, we see that

E[T |E1 ∩ E2] ≤ c
∑
i∈Mε

max

{
h

(
∆i − εµ1

4
,
δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
α̃ε

6(1− ε)
,
δ

2n

)]}
+ (2c′′ + c)

∑
i∈Mc

ε

4n

(∆i − εµ1)2
+ h

(
∆i − εµ1

4
,
δ

2n

)
.
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Next, we use Lemma F.3 to bound the minimum of h(·, ·) functions.

c
∑
i∈Mε

max

{
h

(
∆i − εµ1

4
,
δ

2n

)
,min

[
h

(
0.25∆i,

δ

2n

)
, h

(
α̃ε

6(1− ε)
,
δ

2n

)]}
+ (2c′′ + c)

∑
i∈Mc

ε

4n

(∆i − εµ1)2
+ h

(
∆i − εµ1

4
,
δ

2n

)

= c
∑
i∈Mε

max

{
h

(
∆i − εµ1

4
,
δ

2n

)
, h

(
∆i + α̃ε

1−ε
12

,
δ

2n

)}

+ (2c′′ + c)
∑
i∈Mc

ε

4n

(∆i − εµ1)2
+ h

(
∆i − εµ1

4
,
δ

2n

)

Finally, we use Lemma F.2 to bound the function h(·, ·). Since δ ≤ 1/2, δ/n ≤ 2e−e/2. Further,
|εµ1−∆i| ≤ 6 for all i and ε ≤ 1/2 implies that 1

6(1−ε) |εµ1−∆i| ≤ 2 and 1
6(1−ε) min(α̃ε, β̃ε) ≤ 2.

∆i ≤ 8 for all i, gives 0.25∆i ≤ 2. Lastly, γ ≤ 6/µ1 implies that γµ1

6(1−ε+γ) ≤ 2. Therefore,

E[T |E1 ∩ E2] ≤ c
∑
i∈Mε

max

{
h

(
∆i − εµ1

4
,
δ

2n

)
, h

(
∆i + α̃ε

1−ε
12

,
δ

2n

)}

+ (2c′′ + c)
∑
i∈Mc

ε

4n

(∆i − εµ1)2
+ h

(
∆i − εµ1

4
,
δ

2n

)

≤ c
∑
i∈Mε

max

{
64

(εµ1 −∆i)2
log

(
4n

δ
log2

(
384n

δ(εµ1 −∆i)2

))
,

576(
∆i + α̃ε

1−ε

)2 log

4n

δ
log2

 1728n

δ
(

∆i + α̃ε
1−ε

)2





+ (2c′′ + c)
∑
i∈Mc

ε

4n

(∆i − εµ1)2
+

64

(εµ1 −∆i)2
log

(
4n

δ
log2

(
384n

δ(εµ1 −∆i)2

))

≤ c6
n∑
i=1

max

{
1

(εµ1 −∆i)2
log

(
n

δ
log2

(
n

δ(εµ1 −∆i)2

))
,

1(
∆i + α̃ε

1−ε

)2 log

n
δ

log2

 n

δ
(

∆i + α̃ε
1−ε

)2





+ c6
∑
i∈Mc

ε

n

(∆i − εµ1)2

= c6

n∑
i=1

max

{
1

((1− ε)µ1 − µi)2
log

(
n

δ
log2

(
n

δ((1− ε)µ1 − µi)2

))
,

1(
µ1 + α̃ε

1−ε − µi
)2 log

n
δ

log2

 n

δ
(
µ1 + α̃ε

1−ε − µi
)2





+ c6
∑
i∈Mc

ε

n

((1− ε)µ1 − µi)2

for a sufficiently large constant c6.
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E.4.12 Step 11: High probability sample complexity bound

Finally, the Good Filter is equivalent to EAST, Algorithm 5, except split across rounds. EAST is an
elimination algorithm. Note that the Good Filter is union bounded over 2n events whereas the bounds
in EAST are union bounded over n events. The Good Filter and Bad Filter are given the same number
of samples in each round, and the Good Filter can terminate within a round, conditioned on E1 ∩ E2.
Therefore, we can bound the complexity of FAREAST in terms of that of EAST run at failure probability
δ/2. If FAREAST terminates in the second round or later, the arguments in Steps 4 and 5 can be used to
show that FAREAST draws no more than a factor of 18 more samples than EAST, though this estimate
is highly pessimistic. If FAREAST terminates in round 1 (when gaps are large), we may still show that
this is within a constant factor of the complexity of EAST, but the story is more complicated. In the first
round, the bad filter draws at most c′n log(16)+16(n+1) log(8n/δ) samples where c′ is the constant
from Median Elimination. Since we have assumed that max(∆i, |εµ1 −∆i|) ≤ 6(1 − ε) ≤ 6,
this sum is likewise within a constant factor of the complexity of EAST. Hence with probability at
least 1− δ, by Theorem E.4,

T ≤ c5
n∑
i=1

min

{
max

{
1

((1− ε)µ1 − µi)2
log

(
n

δ
log2

(
n

δ((1− ε)µ1 − µi)2

))
,

(µ1 + α̃ε
1−ε − µi)2

log

(
n

δ
log2

(
n

δ(µ1 + α̃ε
1−ε )

2

))
,

1

(µ1 + β̃ε
1−ε − µi)2

log

n
δ

log2

 n

δ(µ1 + β̃ε
1−ε − µi)2

 ,

(1− ε+ γ)2

γ2µ2
1

log

(
n

δ
log2

(
(1− ε+ γ)2n

δγ2µ2
1

))}
samples for a sufficiently large constant c5.

E.5 An elimination algorithm for all ε

First, we state an elimination algorithm EAST (Elimination Algorithm for a Sampled Threshold)
and bound its sample complexity. EAST is equivalent to the good filter in FAREAST. At all times,
EAST maintains an active set A and samples all arms i ∈ A, progressively eliminating arms from
A until termination occurs. Additionally, EAST maintains upper and lower bounds, denoted Ut and
Lt, on the the threshold, µ1 − ε in the additive case and (1 − ε)µ1 in the multiplicative case. If
µ̂i(t) + Cδ/n(t) < Lt, EAST may infer that i /∈ Gε (resp. i /∈Mε) and accordingly removes i from
A. If µ̂i(t) − Cδ/n(t) > Ut, EAST may infer that i ∈ Gε (resp. i ∈ Mε) and adds i to a set G of
good arms it has found so far. However, a good arm i ∈ G is only removed from A, if EAST can
also certify that it is not the best arm, namely if µ̂i(t) + Cδ/n(t) < maxj µ̂j(t) − Cδ/n(t). This
ensures that µ1 − ε ∈ [Lt, Ut] at all times in the additive case, and similarly, (1− ε)µ1 ∈ [Lt, Ut] in
the multiplicative case. If A ⊂ G, EAST may declare that G = Gε (resp. G = Mε) and terminates.
Otherwise, the algorithm terminates when Ut − Lt < γ/2 and returns A ∪ G in the additive case
or when Ut − Lt < γ

2−εLt in the multiplicative case. This limits the number of samples of any
arm and ensures that no arm worse than (ε + γ)-good is returned. We give pseudocode for EAST
in Algorithm 5. Pieces specific to the additive case are shown in red, and pieces specific to the
multiplicative case are shown in blue.

Recall that αε = mini∈Gε ε−∆i and βε = mini∈Gcε ∆i − ε.
Theorem E.3. Fix ε > 0, 0 < δ ≤ 1/2, γ ∈ [0, 8] and an instance ν such that max(∆i, |ε−∆i|) ≤ 8
for all i. In the case that Gε = [n], let αε = min(αε, βε). With probability at least 1 − δ, EAST
returns a set G such that Gε ⊂ G ⊂ G(ε+γ) in at most

n∑
i=1

min

{
max

{
64

(µ1 − ε− µi)2
log

(
2n

δ
log2

(
768n

δ(µ1 − ε− µi)2

))
,

256

(µ1 + αε − µi)2
log

(
2n

δ
log2

(
768n

δ(µ1 + αε − µi)2

))
,
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Algorithm 5 EAST : Elimination Algorithm for a Sampled Threshold

Require: ε, δ > 0, slack γ ≥ 0, (if multiplicative, 0 < ε ≤ 1/2)
1: Let A ← [n] be the active set, and G← ∅ be the set of ε-good arms found so far, Let t← 0
2: while A 6⊂ G and Ut − Lt ≥ γ/2 or Ut − Lt ≥ γ

2−εLt do
3: Pull each arm i ∈ A and update its empirical mean µ̂i(t) , Update t← t+ 1
4: Update Ut ← maxj µ̂j(t) + Cδ/n(t)− ε or Ut ← (1− ε)

(
maxj µ̂j(t) + Cδ/n(t)

)
5: Update Lt ← maxj µ̂j(t)− Cδ/n(t)− ε or Lt ← (1− ε)

(
maxj µ̂j(t)− Cδ/n(t)

)
6: for i ∈ A do
7: if µ̂i(t)− Cδ/n(t) > Ut then
8: add i to G . Arm i is good
9: if µ̂i(t) + Cδ/n(t) < Lt then

10: Remove i from A . Arms in Gcε or M c
ε are removed

11: if i ∈ G and µ̂i(t) + Cδ/n(t) < maxj µ̂j(t)− Cδ/n(t) then
12: Remove i from A . Arms in Gε or Mε are removed

return G ∪ A

256

(µ1 + βε − µi)2
log

(
2n

δ
log2

(
768n

δ(µ1 + βε − µi)2

))}
,

64

γ2
log

(
2n

δ
log2

(
192n

δγ2

))}
samples.

Additionally, in the multiplicative case, recall that α̃ε = mini∈Gε ε−∆i and β̃ε = mini∈Gcε ∆i − ε.
Next, we a theorem bounding the complexity of EAST in the multiplicative regime.
Theorem E.4. Fix ε, δ ∈ (0, 1/2], γ ∈ [0,min(1, 6/µ1)) and an instance ν such that
max(∆i, |εµ1 − ∆i|) ≤ 6 for all i. Assume that µ1 ≥ 0. In the case that Mε = [n], let
α̃ε = min(α̃ε, β̃ε). With probability at least 1−δ, EAST returns a setG such thatMε ⊂ G ⊂M(ε+γ)

in at most
n∑
i=1

min

{
max

{
64

((1− ε)µ1 − µi)2
log

(
2n

δ
log2

(
192n

δ((1− ε)µ1 − µi)2

))
,

576

(µ1 + α̃ε
1−ε − µi)2

log

(
2n

δ
log2

(
1728n

δ(µ1 + α̃ε
1−ε )

2

))
,

576

(µ1 + β̃ε
1−ε − µi)2

log

2n

δ
log2

 1728n

δ(µ1 + β̃ε
1−ε − µi)2

 ,

144(1− ε+ γ)

γ2µ2
1

log

(
2n

δ
log2

(
432(1− ε+ γ)n

δγ2µ2
1

))}
samples.

E.6 Proof of Theorem E.3 EAST in the additive regime

Proof. Notation for the proof: Throughout, recall ∆i = µ1−µi. Recall that t counts the number of
times each arm in A has been sampled and thus the number of times that the conditionals in Lines 10
and 11 have been evaluated. Let A(t) denote the state A at this time before the arms have been
eliminated from A in lines 10 and 11. Let G(t) be defined similarly. Therefore, the total number of
samples drawn by EAST up to time t is

∑t
s=1 |A(s)|.

For i ∈ Gε, let Ti denote the random variable of the number of times arm i is sampled before it
is added to G in Line 8. For i ∈ Gcε, let Ti denote the random variable of the number of times
arm i is sampled before it is removed from A in Line 10. For any arm i, let T ′i denote the random
variable of the of the number of times i is sampled before µ̂i(t)+Cδ/n(t) ≤ maxj∈A µ̂j(t)−Cδ/n(t).
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Define the event

E =

 ⋂
i∈[n]

⋂
t∈N
|µ̂i(t)− µi| ≤ Cδ/n(t)

 .

Using standard anytime confidence bound results, and recalling that that Cδ(t) :=
√

4 log(log2(2t)/δ)
t ,

we have

P(Ec) = P

 ⋃
i∈[n]

⋃
t∈N
|µ̂i − µi| > Cδ/n(t)


≤

n∑
i=1

P

(⋃
t∈N
|µ̂i − µi| > Cδ/n(t)

)
≤

n∑
i=1

δ

n
= δ

Hence, P (E) ≥ 1− δ.

E.6.1 Step 0: Correctness

Claim 0: On E , first we prove that G(t) ⊂ Gε for all t ∈ N.

In particular, this shows that EAST never incorrectly add arms in Gcε to the set G.

Proof. We begin by showing that on E the best arm is never removed from A for all t. Note for any i

µ̂1 + Cδ/n(t) ≥ µ1 ≥ µi ≥ µ̂i(t)− Cδ/n(t) > µ̂i(t)− Cδ/n(t)− ε.

In particular this shows, µ̂1 + Cδ/n(t) > maxi∈A µ̂i(t)− Cδ/n(t)− ε = L∗t and µ̂1 + Cδ/n(t) ≥
maxi∈A µ̂i(t)− Cδ/n(t) showing that 1 will never exit A in line 11.

Secondly, we show that at all times t, µ1 − ε ∈ [Lt, Ut]. By the above, since µ1 never leaves A,

Ut = max
i∈A

µ̂i(t) + Cδ/n(t)− ε ≥ µ̂1(t) + Cδ/n(t)− ε ≥ µ1 − ε

and for any i,
µ1 − ε ≥ µi − ε ≥ µ̂i(t)− Cδ/n(t)− ε

Hence µ1 − ε ≥ maxi µ̂i(t)− Cδ/n(t)− ε = Lt.

Next, we show that G(t) ⊂ Gε for all t ≥ 1. Suppose not. Then ∃, t ∈ N and ∃i ∈ Gcε ∩G(t) such
that,

µi ≥ µ̂i(t)− Cδ/n(t) ≥ Ut ≥ µ1 − ε > µi,

with the last inequality following from the previous assertion, giving a contradiction.

Claim 1: Next, we show that on E , Gε ⊂ A(t) ∪G(t) for all t ∈ N.

In particular this implies that if A ⊂ G, then Gε ⊂ G. Combining this with the previous claim
gives G ⊂ Gε ⊂ G, hence G = Gε. On this condition, EAST terminates by line 2 and returns the
set A ∪ G = G. Note that by definition, Gε ⊂ G(ε+γ) for all γ ≥ 0. Therefore EAST terminates
correctly on this condition.

Proof. Suppose for contradiction that there exists i ∈ Gε such that i /∈ A(t) ∪G(t). This occurs
only if i is eliminated in line 10. Hence, there exists a t′ ≤ t such that µ̂i(t′) + Cδ/n(t′) < Lt′ .
Therefore, on the event E ,

µ1 − ε
E
≥ Lt′ = max

j∈A
µ̂j(t

′)− Cδ/n(t′)− ε > µ̂i(t
′) + Cδ/n(t′)

E
≥ µi

which contradicts i ∈ Gε.
Claim 2: Finally, we show that if Ut − Lt ≤ γ/2, then A ∪G ⊂ G(ε+γ).

Combining with the previous that Gε ⊂ A∪G, if EAST terminates on this condition by line 2, it does
so correctly.
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Proof. Assume Ut − Lt ≤ γ/2. This implies that

( max
i∈A(t)

µ̂i(t) + Cδ/n(t)− ε)− ( max
i∈A(t)

µ̂i(t)− Cδ/n(t)− ε) = 2Cδ/n(t) ≤ γ/2.

Suppose for contradiction that there exists i ∈ Gc(ε+γ) such that i ∈ A ∪G. Since Gε ∩Gc(ε+γ) = ∅
and we have previously shown than G(t) ⊂ Gε for all t, we have that i ∈ A\G. Therefore, by the

condition in line 10, µ̂i(t) + Cδ/n(t) ≥ Lt. Hence, µi + 2Cδ/n(t)
E
≥ µ̂i(t) + Cδ/n(t) ≥ Lt. By

assumption, we have that Ut − γ/2 ≤ Lt, and the event E implies that Ut ≥ µ1 − ε. Therefore,
µi + 2Cδ/n(t) ≥ Ut − γ/2 ≥ µ1 − ε− γ/2. Combining this with the inequality 2Cδ/n ≤ γ/2, we
have that

γ ≥ 2Cδ/n(t) + γ/2 ≥ µ1 − ε− µi
i∈Gc(ε+γ)

> γ

which is a contradiction.

Therefore, on the event E , if EAST terminates due to either condition in line 2, it returns A ∪G such
that Gε ⊂ A∪G ⊂ G(ε+γ). Since P(E) ≥ 1− δ, EAST terminates correctly with probability at least
1− δ.

E.6.2 Step 1: Controlling the total number of samples given by EAST to arms in Gε

To keep track of the number of samples that arms are given by EAST, we introduce random variables
Ti and T ′i for all i ∈ [n]. When arm i has been given max(Ti, T

′
i ) samples it is removed from A in

line 11.

By Step 0, only arms in Gε are added to G. Therefore, Ti is defined as

Ti = min

{
t :
i ∈ Gk(t+ 1) if i ∈ Gε
i /∈ A(t+ 1) if i ∈ Gcε

}
E
= min

{
t :
µ̂i − Cδ/n(t) ≥ Ut if i ∈ Gε

µ̂i + Cδ/n(t) ≤ Lt if i ∈ Gcε

}
(24)

Similarly, recall T ′i denotes the random variable of the of the number of times i is sampled before
µ̂i(t) + Cδ/n(t) ≤ maxj∈A µ̂j(t)− Cδ/n(t). Hence,

T ′i = min

{
t : µ̂i(t) + Cδ/n(t) ≤ max

j∈A(t)
µ̂j(t)− Cδ/n(t)

}
(25)

Claim 0: For i ∈ Gε, we have that Ti ≤ h(0.25(ε−∆i), δ/n).

Proof. Note that, 4Cδ/n(t) ≤ µi − (µ1 − ε), true when t > h
(
0.25(ε−∆i),

δ
n

)
, implies that for all

j,

µ̂i(t)− Cδ/n(t)
E
≥ µi − 2Cδ/n(t)

≥ µ1 + 2Cδ/n(t)− ε
≥ µj + 2Cδ/n(t)− ε
E
≥ µ̂j(t) + Cδ/n(t)− ε

so in particular, µ̂i(t)− Cδ/n(t) ≥ maxj∈A µ̂j(t) + Cδ/n(t)− ε = Ut.

Claim 1: For i ∈ Gε, we have that T ′i ≤ h(0.25∆i, δ/n).

Proof. Note that 4Cδ/n(t) ≤ µ1 − µi, true when t > h
(
0.25∆i,

δ
n

)
, implies that

µ̂i(t) + Cδ/n(t)
E
≤ µi + 2Cδ/n(t)

≤ µ1 − 2Cδ/n(t)

E
≤ µ̂1(t)− Cδ/n(t).

As shown in Step 0, 1 ∈ A(t) for all t ∈ N, and in particular µ̂1(t) ≤ maxi∈A(t) µ̂i(t). Hence,
µ̂i(t) + Cδ/n(t) ≤ maxj∈A(t) µ̂j(t)− Cδ/n(t).
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E.6.3 Step 2: Controlling the total number of samples given by EAST to arms in Gcε

Claim: Next, we show that Ti ≤ h
(
0.25(ε−∆i),

δ
n

)
for i ∈ Gcε

Proof. Note that, 4Cδ/n(t) ≤ µ1 − ε− µi, true when t > h
(
0.25(ε−∆i),

δ
n

)
, implies that

µ̂i(t) + Cδ/n(t)
E
≤ µi + 2Cδ/n(t)

≤ µ1 − 2Cδ/n(t)− ε
E
≤ µ̂1(t)− Cδ/n(t)− ε

As shown in Step 0, 1 ∈ A(t) for all t ∈ N, and in particular µ̂1(t) ≤ maxi∈A(t) µ̂i(t). Therefore
µ̂i(t) + Cδ/n(t) ≤ maxj∈A µ̂j(t)− Cδ/n(t)− ε = Lt.

E.6.4 Step 3: Bounding the total number of samples drawn by EAST

With the results of Steps 1 and 2, we may bound the total sample complexity of EAST. Note that
independently of the event E , EAST terminates if Ut − Lt ≤ γ/2. Let the random variable of the
maximum number of samples given to any arm before this occurs be Tγ . Additionally, EAST may
terminate if A ⊂ G. Let the random variable of maximum number of samples given to any arm
before this occurs be Tαεβε . Note that due to the sampling procedure, the total number of samples
drawn by EAST at termination may be written as

∑min(Tγ ,Tαεβε )
t=1 |A(t)|.

Now we bound
∑min(Tγ ,Tαεβε )
t=1 |A(t)|. Let Si = min{t : i 6∈ A(t+ 1)}. Hence,

min(Tγ ,Tαεβε )∑
t=1

|A(t)| =
min(Tγ ,Tαεβε )∑

t=1

n∑
i=1

1[i ∈ A(t)] =

n∑
i=1

min(Tγ ,Tαεβε )∑
t=1

1[i ∈ A(t)] =

n∑
i=1

min {Tγ , Tαεβε , Si}

For arms i ∈ Gcε, Si = Ti by definition. For i ∈ Gε, Si = max(Ti, T
′
i ) by line 11 of the algorithm.

Then
n∑
i=1

min {Tγ , Tαεβε , Si} =
∑
i∈Gε

min {Tγ , Tαεβε ,max(Ti, T
′
i )}+

∑
i∈Gcε

min {Tγ , Tαεβε , Ti}

=
∑
i∈Gε

min {Tγ ,min {Tαεβε ,max(Ti, T
′
i )}}+

∑
i∈Gcε

min {Tγ , Tαεβε , Ti}

=
∑
i∈Gε

min {Tγ ,max {Ti,min(T ′i , Tαεβε)}}+
∑
i∈Gcε

min {Tγ , Tαεβε , Ti}

We may define Tγ := min{t : Ut − Lt ≤ γ/2}. Note that 4Cδ/n(t) ≤ γ, true when t >
h(0.25γ, δ/n) implies that

Ut − Lt = ( max
i∈A(t)

µ̂i(t) + Cδ/n(t)− ε)− ( max
i∈A(t)

µ̂i(t)− Cδ/n(t)− ε) = 2Cδ/n(t) ≤ γ/2.

Therefore, we have that Tγ ≤ h(0.25γ, δ/n).

Next, we may define Tαεβε = min{t : A(t) ⊂ Gε}. By step 0, on the event E , A ⊂ G implies that
G = Gε. Therefore, Tαεβε may be equivalently defined as Tαεβε = min{t : G(t) = Gε and Gcε ∩
A = ∅}. Recalling the definition of Ti, we see that Tαεβε = maxi(Ti).

Recall that by steps 1 and 2, Ti ≤ h
(
0.25(ε−∆i),

δ
n

)
and T ′i ≤ h

(
0.25∆i,

δ
n

)
. Furthermore, by

monotonicity of h(·, ·), this implies that Tαεβε = h(0.25 min(αε, βε), δ/n). Plugging this in, we see
that∑
i∈Gε

min {Tγ ,max {Ti,min(T ′i , Tαεβε)}}+
∑
i∈Gcε

min {Tγ , Tαεβε , Ti}

=
∑
i∈Gε

min {Tγ ,max {Ti,min(T ′i , Tαεβε)}}+
∑
i∈Gcε

min {Tγ , Ti}

≤
∑
i∈Gε

min

{
max

{
h

(
0.25(ε−∆i),

δ

n

)
,min

[
h

(
0.25∆i,

δ

n

)
, h

(
0.25 min(αε, βε),

δ

n

)]}
,
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h

(
0.25γ,

δ

n

)}
+
∑
i∈Gcε

min

{
h

(
0.25(ε−∆i),

δ

n

)
, h

(
0.25 min(αε, βε),

δ

n

)}

=

n∑
i=1

min

{
max

{
h

(
0.25(ε−∆i),

δ

n

)
,min

[
h

(
0.25∆i,

δ

n

)
, h

(
0.25 min(αε, βε),

δ

n

)]}
,

h

(
0.25γ,

δ

n

)}
where the final equality holds by definition for arms in Gε. Next, by Lemma F.3, we may bound the
minimum of h(·, ·) functions.

n∑
i=1

min

{
max

{
h

(
∆i − ε

4
,
δ

n

)
,min

[
h

(
∆i

4
,
δ

n

)
, h

(
min(αε, βε)

4
,
δ

n

)]}
,

h

(
γ

4
,
δ

n

)}
=

n∑
i=1

min

{
max

{
h

(
∆i − ε

4
,
δ

n

)
,

min

[
h

(
∆i

4
,
δ

n

)
,max

[
h

(
αε
4
,
δ

n

)
, h

(
βε
4
,
δ

n

)]]}
,

h

(
γ

4
,
δ

n

)}
≤

n∑
i=1

min

{
max

{
h

(
∆i − ε

4
,
δ

n

)
,

max

[
h

(
∆i + αε

8
,
δ

n

)
, h

(
∆i + βε

8
,
δ

n

)]}
,

h

(
γ

4
,
δ

n

)}
=

n∑
i=1

min

{
max

{
h

(
∆i − ε

4
,
δ

n

)
, h

(
∆i + αε

8
,
δ

n

)
, h

(
∆i + βε

8
,
δ

n

)}
,

h

(
γ

4
,
δ

n

)}

Finally, we use Lemma F.2 to bound the function h(·, ·). Since δ ≤ 1/2, δ/n ≤ 2e−e/2. Further,
max(∆i, |ε−∆i|) ≤ 8 for all i, we have that 0.25∆i ≤ 2, 0.25|ε−∆i| ≤ 2, and 0.25 min(αε, βε) ≤
2. Therefore,

n∑
i=1

min

{
max

{
h

(
∆i − ε

4
,
δ

n

)
, h

(
∆i + αε

8
,
δ

n

)
, h

(
∆i + βε

8
,
δ

n

)}
,

h

(
γ

4
,
δ

n

)}
≤

n∑
i=1

min

{
max

{
64

(ε−∆i)2
log

(
2n

δ
log2

(
192n

δ(ε−∆i)2

))
,

256

(∆i + αε)2
log

(
2n

δ
log2

(
768n

δ(∆i + αε)2

))
,

256

(∆i + βε)2
log

(
2n

δ
log2

(
768n

δ(∆i + βε)2

))}
,
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64

γ2
log

(
2n

δ
log2

(
192n

δγ2

))}
=

n∑
i=1

min

{
max

{
64

(µ1 − ε− µi)2
log

(
2n

δ
log2

(
768n

δ(µ1 − ε− µi)2

))
,

256

(µ1 + αε − µi)2
log

(
2n

δ
log2

(
768n

δ(µ1 + αε − µi)2

))
,

256

(µ1 + βε − µi)2
log

(
2n

δ
log2

(
768n

δ(µ1 + βε − µi)2

))}
,

64

γ2
log

(
2n

δ
log2

(
192n

δγ2

))}
.

E.7 Proof of Theorem E.4, EAST in the multiplicative regime

Proof. Notation for the proof: Throughout, recall ∆i = µ1−µi. Recall that t counts the number of
times each arm in A has been sampled and thus the number of times that the conditionals in Lines 10
and 11 have been evaluated. Let A(t) denote the state A at this time before the arms have been
eliminated from A in lines 10 and 11. Let G(t) be defined similarly. Therefore, the total number of
samples drawn by EAST up to time t is

∑t
s=1 |A(s)|.

For i ∈ Mε, let Ti denote the random variable of the number of times arm i is sampled before it
is added to G in Line 8. For i ∈ M c

ε , let Ti denote the random variable of the number of times
arm i is sampled before it is removed from A in Line 10. For any arm i, let T ′i denote the random
variable of the of the number of times i is sampled before µ̂i(t)+Cδ/n(t) ≤ maxj∈A µ̂j(t)−Cδ/n(t).

Define the event

E =

 ⋂
i∈[n]

⋂
t∈N
|µ̂i(t)− µi| ≤ Cδ/n(t)

 .

Using standard anytime confidence bound results, and recalling that that Cδ(t) :=
√

4 log(log2(2t)/δ)
t ,

we have

P(Ec) = P

 ⋃
i∈[n]

⋃
t∈N
|µ̂i − µi| > Cδ/n(t)


≤

n∑
i=1

P

(⋃
t∈N
|µ̂i − µi| > Cδ/n(t)

)
≤

n∑
i=1

δ

n
= δ

Hence, P (E) ≥ 1− δ.

E.7.1 Step 0: Correctness

Claim 0: On E , first we prove that G(t) ⊂Mε for all t ∈ N.

In particular, this shows that EAST never incorrectly add arms in M c
ε to the set G.

Proof. Firstly we show 1 ∈ A for all t ∈ N, namely the best arm is never removed from A. Note for
any i such that µ̂i(t)− Cδ/n(t) ≥ 0,

µ̂1 + Cδ/n(t) ≥ µ1 ≥ µi ≥ µ̂i(t)− Cδ/n(t) > (1− ε)(µ̂i(t)− Cδ/n(t)).

For i such that µ̂i(t)− Cδ/n(t) < 0, if µ̂1 + Cδ/n(t) ≥ 0, then

µ̂1 + Cδ/n(t) ≥ 0 > (1− ε)(µ̂i(t)− Cδ/n(t)).

Note that µ̂1 + Cδ/n(t) < 0 implies on the event E that µ1 < 0, which contradicts the assumption
that µ1 ≥ 0 made in the theorem. In particular this shows, µ̂1 +Cδ/n(t) > (1− ε)(maxi∈A µ̂i(t)−
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Cδ/n(t)) = Lt and µ̂1 + Cδ/n(t) ≥ maxi∈A µ̂i(t) − Cδ/n(t) showing that 1 will never exit A in
line 28.

Secondly, we show that at all times t, (1− ε)µ1 ∈ [Lt, Ut]. By the above, since µ1 never leaves A,

Ut = (1− ε)(max
i∈A

µ̂i(t) + Cδ/n(t)) ≥ (1− ε)(µ̂1(t) + Cδ/n(t)) ≥ (1− ε)µ1

and for any i,
(1− ε)µ1 ≥ (1− ε)µi ≥ (1− ε)(µ̂i(t)− Cδ/n(t))

Hence (1− ε)µ1 ≥ (1− ε)(maxi µ̂i(t)− Cδ/n(t)) = Lt.

Next, we show thatG ⊂Mε for all k ≥ 1, t ≥ 1. Suppose not. Then ∃, k, t ∈ N and ∃i ∈M c
ε ∩G(t)

such that,
µi ≥ µ̂i(t)− Cδ/n(t) ≥ Ut ≥ (1− ε)µ1 > µi,

with the last inequality following from the previous assertion, giving a contradiction.

Claim 1: Next, we show that on E , Mε ⊂ A(t) ∪G(t) for all t ∈ N.

In particular this implies that if A ⊂ G, then Mε ⊂ G. Combining this with the previous claim gives
G ⊂Mε ⊂ G, hence G = Mε. On this condition, EAST terminates and returns the set A ∪G = G.
Note that by definition, Mε ⊂ M(ε+γ) for all γ ≥ 0. Therefore EAST terminates correctly on this
condition.

Proof. Suppose for contradiction that there exists i ∈ Mε such that i /∈ A(t) ∪G(t). This occurs
only if i is eliminated in line 10. Hence, there exists a t′ ≤ t such that µ̂i(t′) + Cδ/n(t′) < Lt′ .
Therefore, on the event E ,

(1− ε)µ1

E
≥ Lt′ = (1− ε)

(
max
j∈A

µ̂j(t
′)− Cδ/n(t′)

)
> µ̂i(t

′) + Cδ/n(t′)
E
≥ µi

which contradicts i ∈Mε.

Claim 2: Finally, we show that on E , if Ut − Lt ≤ γ
2−εLt, then A ∪G ⊂M(ε+γ).

Combining with Claim 1 that Mε ⊂ A ∪G, if EAST terminates on this condition, it does so correctly
and returns all arms in Mε and none in M c

(ε+γ).

Proof. By Claim 0, G ⊂ Mε ⊂ Mε+γ . Hence, G ∩M c
(ε+γ) = ∅. Therefore, we wish to show that

A ∩M c
(ε+γ) = ∅ which implies that G ∩ A ⊂Mε+γ . Assume Ut − Lt < γ

2−εLt. Recall that

Ut = (1− ε)
(

max
i∈A

µ̂i(t) + Cδ/n(t)

)
and

Lt = (1− ε)
(

max
i∈A

µ̂i(t)− Cδ/n(t)

)
All arms in A(t) have received exactly t samples. Hence, Ut − Lt = 2(1 − ε)Cδ/n(t). On E ,
Lt ≤ (1− ε)µ1 This implies that

2(1− ε)Cδ/n(t) <
γ

2− ε
Lt ≤

1− ε
2− ε

γµ1,

and in particular,
2Cδ/n(t) <

γµ1

2− ε
.

Therefore, we wish to show that when the above is true, then for any i ∈ M c
ε+γ , Lt − (µ̂i(t) +

Cδ/n(t)) > 0, implying that i /∈ A.

Lt − (µ̂i(t) + Cδ/n(t)) = (1− ε)
(

max
j∈A

µ̂j − Cδ/n(t)

)
− (µ̂i(t) + Cδ/n(t))

≥ (1− ε)
(

max
j∈A

µj − 2Cδ/n(t)

)
− (µi + 2Cδ/n(t))
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(a)

≥ (1− ε)
(
µ1 − 2Cδ/n(t)

)
− ((1− ε− γ)µ1 + 2Cδ/n(t))

= γµ1 − 2(2− ε)Cδ/n(t)

> γµ1 − (2− ε) γµ1

2− ε
= 0

which implies that i /∈ A. Inequality (a) follows jointly from the fact that 1 ∈ A and the fact that all
arms in A have received t samples implies maxj∈A µj − 2Cδ/n(t) = µ1 − 2Cδ/n(t). Additionally,
inequality (a) follows from µi ≤ (1− ε− γ)µ1 since i ∈M c

ε+γ .

Therefore, on the event E , if EAST terminates due to either condition in line 2, it returns A ∪G such
that Mε ⊂ A ∪ G ⊂ M(ε+γ). Since P(E) ≥ 1 − δ, EAST terminates correctly with probability at
least 1− δ.

E.7.2 Step 1: Controlling the total number of samples given by EAST to arms in Mε

To keep track of the number of samples that arms are given by EAST, we introduce random variables
Ti and T ′i for all i ∈ [n]. When arm i has been given max(Ti, T

′
i ) samples it is removed from A in

line 11.

By Step 0, only arms in Mε are added to G. Therefore, Ti is defined as

Ti = min

{
t :
i ∈ G(t+ 1) if i ∈Mε

i /∈ A(t+ 1) if i ∈M c
ε

}
E
= min

{
t :
µ̂i − Cδ/n(t) ≥ Ut if i ∈Mε

µ̂i + Cδ/n(t) ≤ Lt if i ∈M c
ε

}
(26)

Similarly, recall T ′i denotes the random variable of the of the number of times i is sampled before
µ̂i(t) + Cδ/n(t) ≤ maxj∈A µ̂j(t)− Cδ/n(t). Hence,

T ′i = min

{
t : µ̂i(t) + Cδ/n(t) ≤ max

j∈A(t)
µ̂j(t)− Cδ/n(t)

}
(27)

Claim 0: For i ∈Mε, we have that Ti ≤ h
(
εµ1−∆i

4−2ε , δn

)
.

Proof. Note that µi− 2Cδ/n(t) ≥ (1− ε)(µ1 + 2Cδ/n(t)) may be rearranged as (4− 2ε)Cδ/n(t) ≤
εµ1 −∆i, and this is true when t > h

(
εµ1−∆i

4−2ε , δn

)
. This condition implies that for all j,

µ̂i(t)− Cδ/n(t)
E
≥ µi − 2Cδ/n(t)

≥ (1− ε)(µ1 + 2Cδ/n(t))

≥ (1− ε)(µj + 2Cδ/n(t))

E
≥ (1− ε)(µ̂j(t) + Cδ/n(t))

so in particular, µ̂i(t)− Cδ/n(t) ≥ (1− ε)(maxj∈A µ̂j(t) + Cδ/n(t)) = Ut.

Claim 1: For i ∈Mε, we have that T ′i ≤ h(0.25∆i, δ/n).

Proof. Note that 4Cδ/n(t) ≤ µ1 − µi, true when t > h
(
0.25∆i,

δ
n

)
, implies that

µ̂i(t) + Cδ/n(t)
E
≤ µi + 2Cδ/n(t)

≤ µ1 − 2Cδ/n(t)

E
≤ µ̂1(t)− Cδ/n(t).

As shown in Step 0, 1 ∈ A(t) for all t ∈ N, and in particular µ̂1(t) ≤ maxi∈A(t) µ̂i(t). Hence,
µ̂i(t) + Cδ/n(t) ≤ maxj∈A(t) µ̂j(t)− Cδ/n(t).
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E.7.3 Step 2: Controlling the total number of samples given by EAST to arms in M c
ε

Next, we bound Ti for i ∈M c
ε . i ∈M c

ε is eliminated from A if it has received at least Ti samples.

Claim: Ti ≤ h
(

∆i−εµ1

4−2ε , δn

)
for i ∈M c

ε

Proof. Note that µi + 2Cδ/n(t) ≤ (1− ε)(µ1− 2Cδ/n(t)) may be rearranged as (4− 2ε)Cδ/n(t) ≤
∆i − εµ1, and this is true when t > h

(
∆i−εµ1

4−2ε , δn

)
. This condition implies that

µ̂i(t) + Cδ/n(t)
E
≤ µi + 2Cδ/n(t)

≤ (1− ε)(µ1 − 2Cδ/n(t))

E
≤ (1− ε)(µ̂1(t)− Cδ/n(t))

As shown in Step 0, 1 ∈ A(t) for all t ∈ N, and in particular µ̂1(t) ≤ maxi∈A(t) µ̂i(t). Therefore
µ̂i(t) + Cδ/n(t) ≤ (1− ε)(maxj∈A µ̂j(t)− Cδ/n(t)) = Lt.

E.7.4 Step 3: Bounding the total number of samples drawn by EAST

With the results of Steps 1 and 2, we may bound the total sample complexity of EAST. Note that
independently of the event E , EAST terminates if Ut − Lt ≤ γ

2−εLt. Let the random variable of the
maximum number of samples given to any arm before this occurs be Tγ := min{t : Ut − Lt ≤
γ

2−εLt}. Additionally, EAST may terminate if A ⊂ G. Let the random variable of maximum number
of samples given to any arm before this occurs be Tα̃εβ̃ε . Note that due to the sampling procedure,

the total number of samples drawn by EAST at termination may be written as
∑min(Tγ ,Tα̃εβ̃ε )

t=1 |A(t)|.

Now we bound
∑min(Tγ ,Tα̃εβ̃ε )

t=1 |A(t)|. Let Si = min{t : i 6∈ A(t+ 1)}. Hence,

min(Tγ ,Tα̃εβ̃ε )∑
t=1

|A(t)| =
min(Tγ ,Tα̃εβ̃ε )∑

t=1

n∑
i=1

1[i ∈ A(t)] =

n∑
i=1

min(Tγ ,Tα̃εβ̃ε )∑
t=1

1[i ∈ A(t)] =

n∑
i=1

min
{
Tγ , Tα̃εβ̃ε , Si

}
For arms i ∈M c

ε , Si = Ti by definition. For i ∈Mε, Si = max(Ti, T
′
i ) by line 11 of the algorithm.

Then
n∑
i=1

min
{
Tγ , Tα̃εβ̃ε , Si

}
=
∑
i∈Mε

min
{
Tγ , Tα̃εβ̃ε ,max(Ti, T

′
i )
}

+
∑
i∈Mc

ε

min
{
Tγ , Tα̃εβ̃ε , Ti

}
=
∑
i∈Mε

min
{
Tγ ,min

{
Tα̃εβ̃ε ,max(Ti, T

′
i )
}}

+
∑
i∈Mc

ε

min
{
Tγ , Tα̃εβ̃ε , Ti

}
=
∑
i∈Mε

min
{
Tγ ,max

{
Ti,min(T ′i , Tα̃εβ̃ε)

}}
+
∑
i∈Mc

ε

min
{
Tγ , Tα̃εβ̃ε , Ti

}
Next we bound Tγ .

Claim: On E , Tγ ≤ h
(

γµ1

2(2−ε+γ) ,
δ
n

)
.

Proof: Cδ/n(t) < γµ1

2(2−ε+γ) is true when t ≥ h
(

γµ1

2(2−ε+γ) ,
δ
n

)
. Note that

Cδ/n(t) <
γµ1

2(2− ε+ γ)
⇐⇒ 2Cδ/n(t) <

γ

2− ε
(
µ1 − 2Cδ/n(t)

)
.

This implies that

Ut − Lt = 2(1− ε)Cδ/n(t)

< 2
1− ε
2− ε

γ
(
µ1 − 2Cδ/n(t)

)
≤ 1− ε

2− ε
γ
(
µ̂1(t)− Cδ/n(t)

)
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≤ 1− ε
2− ε

γ

(
max
i∈A

µ̂i − Cδ/n(t)

)
=

γ

2− ε
Lt

Next, we may define Tα̃εβ̃ε = min{t : A(t) ⊂Mε}. By step 0, on the event E , A ⊂ G implies that
G = Mε. Therefore, Tα̃εβ̃ε may be equivalently defined as Tα̃εβ̃ε = min{t : G(t) = Mε and M c

ε ∩
A = ∅}. Recalling the definition of Ti, we see that Tα̃εβ̃ε = maxi(Ti).

Recall that by steps 1 and 2, Ti ≤ h
(
εµ1−∆i

4−2ε , δn

)
and T ′i ≤ h

(
0.25∆i,

δ
n

)
. Furthermore, by

monotonicity of h(·, ·), this implies that Tα̃εβ̃ε = h
(

min(α̃ε,β̃ε)
4−2ε , δn

)
. Plugging this in, we see that∑

i∈Mε

min
{
Tγ ,max

{
Ti,min(T ′i , Tα̃εβ̃ε)

}}
+
∑
i∈Mc

ε

min
{
Tγ , Tα̃εβ̃ε , Ti

}
=
∑
i∈Mε

min
{
Tγ ,max

{
Ti,min(T ′i , Tα̃εβ̃ε)

}}
+
∑
i∈Mc

ε

min {Tγ , Ti}

≤
∑
i∈Mε

min

{
max

{
h

(
εµ1 −∆i

4− 2ε
,
δ

n

)
,min

[
h

(
0.25∆i,

δ

n

)
, h

(
min(α̃ε, β̃ε)

4− 2ε
,
δ

n

)]}
,

h

(
γµ1

2(2− ε+ γ)
,
δ

n

)}
+
∑
i∈Mc

ε

min

{
h

(
εµ1 −∆i

4− 2ε
,
δ

n

)
, h

(
γµ1

2(2− ε+ γ)
,
δ

n

)}

=

n∑
i=1

min

{
max

{
h

(
εµ1 −∆i

4− 2ε
,
δ

n

)
,min

[
h

(
0.25∆i,

δ

n

)
, h

(
min(α̃ε, β̃ε)

4− 2ε
,
δ

n

)]}
,

h

(
γµ1

2(2− ε+ γ)
,
δ

n

)}
where the final equality holds by definition for arms in Mε. Lastly, note that 1

3(1−x) ≤
1

2−x for
x ≤ 1/2. By monotonicity of h, we may lower bound the denominators 1

4−2ε and 1
2(2−ε+γ) as 1

6(1−ε)
and 1

6(1−ε+γ) respectively. Since ε ∈ (0, 1/2], we may likewise lower bound 1
4−2ε as 1/4. Plugging

this in, we see that

n∑
i=1

min

{
max

{
h

(
εµ1 −∆i

4− 2ε
,
δ

n

)
,min

[
h

(
0.25∆i,

δ

n

)
, h

(
min(α̃ε, β̃ε)

4− 2ε
,
δ

n

)]}
,

h

(
γµ1

2(2− ε+ γ)
,
δ

n

)}
≤

n∑
i=1

min

{
max

{
h

(
εµ1 −∆i

4
,
δ

n

)
,min

[
h

(
0.25∆i,

δ

n

)
, h

(
min(α̃ε, β̃ε)

6(1− ε)
,
δ

n

)]}
,

h

(
γµ1

6(1− ε+ γ)
,
δ

n

)}
Next, by Lemma F.3, we may bound the minimum of h(·, ·) functions.

n∑
i=1

min

{
max

{
h

(
∆i − εµ1

4
,
δ

n

)
,min

[
h

(
∆i

4
,
δ

n

)
, h

(
min(α̃ε, β̃ε)

6(1− ε)
,
δ

n

)]}
,

h

(
γµ1

6(1− ε+ γ)
,
δ

n

)}
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=

n∑
i=1

min

{
max

{
h

(
∆i − εµi

4
,
δ

n

)
,

min

[
h

(
∆i

4
,
δ

n

)
,max

[
h

(
α̃ε

6(1− ε)
,
δ

n

)
, h

(
β̃ε

6(1− ε)
,
δ

n

)]]}
,

h

(
γµi

6(1− ε+ γ)
,
δ

n

)}
≤

n∑
i=1

min

{
max

{
h

(
∆i − εµi

4
,
δ

n

)
,

max

h(∆i + α̃ε
1−ε

12
,
δ

n

)
, h

∆i + β̃ε
1−ε

12
,
δ

n

 ,

h

(
γµi

6(1− ε+ γ)
,
δ

n

)}

=

n∑
i=1

min

max

h
(

∆i − εµi
4

,
δ

n

)
, h

(
∆i + α̃ε

1−ε
12

,
δ

n

)
, h

∆i + β̃ε
1−ε

12
,
δ

n

 ,

h

(
γµi

6(1− ε+ γ)
,
δ

n

)}
Finally, we use Lemma F.2 to bound the function h(·, ·). Since δ ≤ 1/2, δ/n ≤ 2e−e/2. Further,
|εµ1−∆i| ≤ 6 for all i and ε ≤ 1/2 implies that 1

6(1−ε) |εµ1−∆i| ≤ 2 and 1
6(1−ε) min(α̃ε, β̃ε) ≤ 2.

∆i ≤ 8 for all i, gives 0.25∆i ≤ 2. Lastly, γ ≤ 6/µ1 implies that γµ1

6(1−ε+γ) ≤ 2. Therefore,

n∑
i=1

min

max

h
(

∆i − εµi
4

,
δ

n

)
, h

(
∆i + α̃ε

1−ε
12

,
δ

n

)
, h

∆i + β̃ε
1−ε

12
,
δ

n

 ,

h

(
γµi

6(1− ε+ γ)
,
δ

n

)}
≤

n∑
i=1

min

{
max

{
64

(εµ1 −∆i)2
log

(
2n

δ
log2

(
192n

δ(εµ1 −∆i)2

))
,

576

(∆i + α̃ε
1−ε )

2
log

(
2n

δ
log2

(
1728n

δ(∆i + α̃ε
1−ε )

2

))
,

576

(∆i + β̃ε
1−ε )

2
log

2n

δ
log2

 1728n

δ(∆i + β̃ε
1−ε )

2

 ,

144(1− ε+ γ)2

γ2µ2
1

log

(
2n

δ
log2

(
432(1− ε+ γ)2n

δγ2µ2
1

))}
=

n∑
i=1

min

{
max

{
64

((1− ε)µ1 − µi)2
log

(
2n

δ
log2

(
192n

δ((1− ε)µ1 − µi)2

))
,

576

(µ1 + α̃ε
1−ε − µi)2

log

(
2n

δ
log2

(
1728n

δ(µ1 + α̃ε
1−ε )

2

))
,

576

(µ1 + β̃ε
1−ε − µi)2

log

2n

δ
log2

 1728n

δ(µ1 + β̃ε
1−ε − µi)2

 ,

144(1− ε+ γ)2

γ2µ2
1

log

(
2n

δ
log2

(
432(1− ε+ γ)2n

δγ2µ2
1

))}
.

93



F Technical Lemmas

Lemma F.1. If a > 1, b > e, and t > max(a log(2b log(ab)), e), then a log(b log(t))
t ≤ 1

Proof. Step 1: Plug in t = a log(2b log(ab)) to the expression a log(b log(t))
t .

a log(b log(a log(2b log(ab)))

a log(2b log(ab))
=

log(b log(a log(2b log(ab)))

log(2b log(ab))

Since log(·) increases monotonically, the above is less than 1 if b log(a log(2b log(ab)) ≤ 2b log(ab).

b log(a log(2b log(ab))) ≤ 2b log(ab)

(b>0)⇐⇒ log(a log(2b log(ab))) ≤ 2 log(ab)

⇐⇒ a log(2b log(ab)) ≤ (ab)2

⇐⇒ log(2b log(ab)) ≤ ab2

⇐⇒ 2b log(ab) ≤ eab
2

which is true if a, b > 1.

Step 2: Next, for t > a log(2b log(ab)), we wish to show that the inequality a log(b log(t))
t ≤ 1 still

holds. To do so, it suffices to show that f(t) = a log(b log(t))
t is decreasing for t > a log(2b log(ab)).

To see this, take the derivative.

f ′(t) =
a

t2 log(t)
− a log(b log(t))

t2
=

a

t2

(
1

log(t)
− log(b(log(t))

)
This is negative when 1

log(t) < log(b(log(t)). Let u = b log(t). The previous is equivalent to the
condition b < u log(u). For t > e, u > b and b > e. Hence b < u log(u) completing the proof.

Lemma F.2. For δ < 2e−e/2, ∆ ≤ 2,

t ≥ 4

∆2
log

(
2

δ
log2

(
12

δ∆2

))
=⇒ Cδ(t) =

√
4 log(log2(2t)/δ)

t
≤ ∆.

Proof. √
4 log(log2(2t)/δ)

t
≤ ∆ ⇐⇒

4 8
∆2 log

(
1

δ log(2) log(2t)
)

t
≤ 1.

If ∆ ≤ 2, then 8/∆2 ≥ 2 > 1. Similarly, if δ < 2e−e/2 < 1
e log(2) , then 1

δ log(2) > e. Hence, by
Lemma F.1, setting a = 8

∆2 and b = 1
δ log(2) , the above is true if

2t ≥ max

(
8

∆2
log

(
2

δ log(2)
log

(
8

δ∆2 log(2)

))
, e

)
.

Trivially, δ log(2) < 2. Hence, δ < 2e−e/2 and ∆ ≤ 2 implies

8

∆2
log

(
2

δ log(2)
log

(
8

δ∆2 log(2)

))
≥ 2 log

(
2

δ
log2

(
2

δ log(2)

))
≥ 2 log(2/δ) > e.

Therefore, we may simplify the maximum as

t ≥ 4

∆2
log

(
2

δ
log2

(
12

δ∆2

))
≥ 4

∆2
log

(
2

δ
log2

(
8

δ∆2 log(2)

))
which implies the desired result.
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Lemma F.3. For any function h(·, ·) : R+ × R+ → R+ that decreases monotonically in its first
argument, we have that for any a, b, c, δ ∈ R+

min (h(a, δ), h(b, δ)) ≤ h
(
a+ b

2
, δ

)
and

min{h(a, δ),max[h(b, δ), h(c, δ)]} ≤ max

{
h

(
a+ b

2
, δ

)
, h

(
a+ c

2
, δ

)}
.

Proof. First, we bound the expression min (h(a, c), h(b, c)).

min (h(a, δ), h(b, δ)) = h (max(a, d), δ) ≤ h ((a+ b)/2, δ)

Next, we bound, expressions of the form min{h(a, δ),max[h(b, δ), h(c, δ)]} using the above inequal-
ity.

min{h(a, δ),max[h(b, δ), h(c, δ)]} = max {min [h(a, δ), h(b, δ)] ,min [h(a, δ), h(c, δ)]}
≤ max {h ((a+ b)/2, δ) , h ((a+ c)/2, δ)} .
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