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Abstract

In this paper, we present a novel classification method called deep diffusion-
invariant Wasserstein distributional classification (DeepWDC). DeepWDC repre-
sents input data and labels as probability measures to address severe perturbations
in input data. It can output the optimal label measure in terms of diffusion in-
variance, where the label measure is stationary over time and becomes equivalent
to a Gaussian measure. Furthermore, DeepWDC minimizes the 2-Wasserstein
distance between the optimal label measure and Gaussian measure, which reduces
the Wasserstein uncertainty. Experimental results demonstrate that DeepWDC can
substantially enhance the accuracy of several baseline deterministic classification
methods and outperforms state-of-the-art-methods on 2D and 3D data containing
various types of perturbations (e.g., rotations, impulse noise, and down-scaling).

1 Introduction

The Wasserstein space has been widely used for various machine learning tasks, including generative
adversarial learning (2)), policy optimization (30), Gaussian processes (17)), statistical learning (14),
data embedding (6} [19), topic modeling (29), Bayesian inference (1)), Gaussian mixture modeling
(11), and optimal transport (13;20; 23)). However, the Wasserstein space has not been actively studied
for developing novel classification models. In conventional classification problems, N pairs of input
data z,, and its corresponding target label 4,, (i.e., {2y, 9 }}\_;) are used for training, where the input
data and target label are considered vector-valued points in the Euclidean space, and an objective
function is formulated to obtain an inference network f based on the Euclidean distance as follows:
ming Y dg (yn = f(2n), n). We aim to answer the following questions in this paper.

How can the stochastic properties of input data and labels be appropriately captured to
handle severe perturbations? To answer this question, we represent both input data and
target labels as probability measures (i.e., probability densities), denoted as u, and 7, re-
spectively, in the Wasserstein space and solve a distance-based classification problem (i.e.,
min ¢ Zn Wa (vp, = f. # [tn], 7)) based on the 2-Wasserstein distance W. Specifically, Euclidean
vectors {x,,, J, } and inference network f are replaced with probability measures { i, 7, }N_, and
push-forward operation f4[], respectively. Because probability measures can be spread out and
multi-modal (19), they provide excellent flexibility for handling stochastic perturbation in data.
Each vector-valued point x is recognized to be sam-
pled from object measure (i,; © ~ fi,. Suppose that
perturbations are randomly added to data points at
test and training time (i.e., (z + €) ~ pZ, for an un-
known random perturbation vector ¢ and perturbed
probability measure p5,). Then, it is reasonable to rep-
resent data using a probability measure y;, rather than
as an individual observed data point x + € because

Qata can have ml}ltip'le lqcations at every observa- T~ fhn (m + 5) i~ be
tions (e.g., red points in Fig[T). In this circumstance, '
we have to minimize the Wasserstein uncertainty of Figure 1: Randomly perturbed data.

perturbed data represented as probability measures
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to become predictable. Therefore, the proposed classification method attempts to represent each
estimated label stochastically as a probability measure fx [i,,] to consider various types of random
perturbations. Such an approach (i.e., considering stochastic data as probability measures in the
Wasserstein space) has been studied for stochastic deep neural networks (DNNs) (S). However,
stochastic DNNGs still represent labels as Euclidean vectors and tend to focus on constructing neural
networks rather than theoretical analysis. By contrast, our method represents labels as probability
measures and theoretically analyzes classification problems according to these label measures.

How can classification tasks be defined in the Wasserstein space in an efficient and optimal
manner? It is nontrivial to employ the Wasserstein space for distance-based classification because
computing Wasserstein distances directly is intractable. There are two representative approaches for
computing Wasserstein distances, which are based on the primal and dual formulations of optimal
transport problems. One approach involves discretizing a data space and finding the discrete optimal
coupling of densities that yields the lowest transport cost (7). Linear programming has been adopted to
solve the primal problem directly (21} [25). However, the total computational cost grows quadratically
as the dimensionality of space and the carnality of data increase. Therefore, this approach cannot
be employed for complex data representations. Another approach based on Kantorovich duality
problem has been widely used in various tasks (2). This approach can represent complex data, but
it focuses on the most general case, where probability measures are arbitrary in the Wasserstein
space. By contrast, in our method, the Wasserstein distance is defined between a label measure v,
and the corresponding fixed Gaussian measure Ny, which enables our method to use a fundamental
property of diffusion semi-groups called hypercontractivity to impose an explicit upper bound on the
2-Wasserstein distance (i.e., Wasserstein ambiguity) and the exponential decay of the distance.
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Figure 2: Deep diffusion-invariant Wasserstein distributional classification (DeepWDC).

Proposed method. Fig[2 presents a conceptual illustration of the proposed method. An input
measure U, is fed into the proposed push-forward operator f%, which is parameterized by the neural

network f?, to produce a label measure v,,. Then, the test function g¥ adversarially trained making
v, invariant to a pre-defined diffusion operator, which is equivalent to minimizing the Wasserstein
uncertainty by tightening the upper bound of Ws. If W = 0, then we obtain the optimal label
measure, which is the Gaussian measure N;. The label of i, is equivalent to that of Ny, if the
intrinsic distance W, , between p,, and Ny, is optimally minimized in the Wasserstein Gaussian
subspace. Thus, our method aims to find the optimal parameters 6 and ¢ for two DNNs. Our
contributions can be summarized as follows:

e We introduce a novel distance-based distributional classification method (DeepWDC), where both
input data and target labels are probability measures in the 2-Wasserstein space. To make classification
problems computationally tractable, we indirectly derive 2-Wasserstein distances by determining
their upper bounds (i.e., Wasserstein ambiguity). We present theoretical evidence supporting the
capability of our method to rapidly reduce Wasserstein ambiguity.

e We prove that minimizing Wasserstein ambiguity is equivalent to making v, (i.e., the estimated
label measure) diffusion-invariant. If v,, is diffusion-invariant, then the density of v, is stationary
over time. During theoretical analysis, we introduce the concept of hypercontractivity of a diffusion
semi-group to relate diffusion invariance to the Wasserstein distance.

e We experimentally demonstrate the robustness of our method against severe random perturbations
(e.g., rotations, downscaling, and non-homogeneous local noises) and verify that it can substantially
outperform state-of-the-art deterministic methods.

Wasserstein Gaussian embedding. Muzellec and Cuturi explored the Gaussian 2-Wasserstein
space (19), where embedded points are represented as non-degenerate Gaussian measures. Because a
Bures metric is explicitly defined in this space, no sub-routines for computing this metric are required.



However, this method focuses on point embedding in the Gaussian Wasserstein subspace rather
than the distributional realization of the feature space. Therefore, solving classification problems is
problematic in this space because the actual density of objects cannot be represented as a unique
elliptic distribution. By contrast, our method imposes an explicit constraint that necessarily transforms
inference measures into Gaussian measures, which are uniquely defined.

Wasserstein distributional learning. In recent studies, data uncertainty has been represented as
distance in the Wasserstein space (8; 215 255 1265 19). To this end, the Wasserstein distance was
employed to define the uncertainty of data, which was referred to as the Wasserstein ambiguity
set (mathematically equivalent to a Wasserstein ball). The uncertainty of data was measured by
considering the closeness of the induced probability density of the data to the prescribed target density
in terms of the distance metric. Our method can be interpreted within this framework, where the
radius of the Wasserstein ambiguity set is proportional to the square root term in (2). Our method
minimizes this Wasserstein ambiguity for classification tasks to handle severe perturbations from a
distributional perspective.

2 The Proposed Method

In this section, we describe the two fundamental concepts of our method, namely, diffusion invariance
and Wasserstein Gaussian subspaces. Then, we define an objective function based on these concepts
for classification tasks in the Wasserstein space. Finally, we present a Wasserstein-distance-based
classifier.

As mentioned in Section|[T} the n-th input data sample and its target label are represented as probability
measures [, and 2, respectively. The label measure v, is estimated using a push-forward operation
faelpn] Gee., vy, = fulun]). Then, an input vector x can be sampled from p,, (i.e., z ~ ), and the
estimated label measures are denoted as v,,. We define the test function g as an element of the class
of smooth real-valued functions with compact support (i.e., g € C§°), where g maps y to a real value
(i.e., g(y) € R). In this paper, fx[u,] and g(y) are implemented as DNNs with parameters 6 and ¢

denoted as fY [11n] and g” (y), respectively.

2.1 Diffusion-Invariant Measure

Our method imposes a diffusion operator on probability measures to derive diffusion-invariant
measures of the estimated label v,, and computes the corresponding Wasserstein ambiguity (i.e., the
upper bound of the 2-Wasserstein distance Ws).

Definition 1. (Diffusion Operator) Given a Markov semi-group P; at time t, the diffusion operator
(i.e., infinitesimal generator) L of P, is defined as

1 o 0
=N — — = v — g _
Lo(y) = lim — (Pg(y) = 9(v)) 2; oy B @) Z AW)g0w), W)
where B and A are the matrix and vector-valued measurable functions, respectively, BY denotes the
(i, j)-th function of B, and A" denotes the i-th component function of A.

The diffusion operator Lg can be considered the average change in g with respect to an infinitesimal
change in time according to the Markov semi-group. If the expectation of the average change in g is
zero, then the data sampled from the probability measure y ~ v,, are considered to be stationary over
time. In this case, v,, becomes invariant to £ (i.e., diffusion invariant) (please refer to Sectionfor
details regarding perturbation analysis).

Definition 2. (Diffusion-invariant Measure) Given the diffusion operator L, the probability measure
vy, is considered to be invariant to L, when B, [Lg(y)] = 0 for any g € C§°.

We set a target label measure 7, to Nzn (i.e., a centered non-degenerate Gaussian measure with
covariance Y,,). This setting is possible because N is an element of the 2-Wasserstein space.
Additionally, we set B and A" in (1) to ¥;; (i.e., the (i, j)-th entry of ¥) and y* (i.e., the i-th
component of y), respectively. Then, the Wasserstein ambiguity is represented by £ as follows:

Proposition 1. Let Lg” (y) is diffusion operator defined in Deﬁnition Then,

W2(fz£[un],l7n) = Wz(fi[un]’/\/'zn) < \/S%pﬂiwa;[un] [1£g7 ()] 2



As shown in (2), we can minimize the 2-Wasserstein distance (i.e., Wa( fi [tn], D) = 0) by mini-
mizing its upper bound (i.e., supy Ey,,, [£g”(y)] = 0), meaning that the estimated label measure
vy, becomes diffusion-invariant, as defined in Definition[2] and is hardly affected by perturbations.
We can make supy By, [£9”(y)] equal to zero if and only if f4,[un] = N, . Thus, the goal of

our method is to make v, = f9[p1,] similar to Ns, (i.e., v, = N, by updating the parameter 6.
In (2)), the upper bound is minimized at a square root rate and can rapidly converge to zero. Section
[3.1] presents the proof of Proposition[T]and further investigations.

The diffusion operator £ in (I]) contains a second-order derivative term. Therefore, it is inefficient
for a neural network g to calculate a Hessian matrix VZ g(y) during training. However, our method
can calculate the diffusion operator without any derivatives. With respect to the proposed diffusion
operator £ with the specific settings B/ = ¥;; and A’ = 3", the Markov semi-group P;g has an

explicit form called Mehler’s formula: P;g° (y) = Ezn; [gﬂ (efty +V1—e2y2 Z)] , where
Nt denotes the standard Gaussian measure. Then, the diffusion operator is calculated as

. pgﬂ y _919 y
By 19" (0)] = FEypg ) [t()t()

1 B 1
= lim ~E, o, Ezem; [gﬁ (e ty + /1= e25;2 Z) — gﬁ(y)} .

t—0 t
Our method has several mathematical advantages over existing methods. For example, the WGAN-
GP method (2) adopts a gradient penalty term for its test function to induce 1-Lipschitzness. However,
this method involves a strong global penalty for the test function. Such a penalty is inevitably
caused by the assumption of the Kantorovich—Rubinstein formula. However, the test function g in
the proposed method only uses the local properties of Markov semi-groups with no assumptions
regarding prior conditions.

3)

2.2 Wasserstein Gaussian Subspaces

We define Wasserstein Gaussian subspaces to compute the intrinsic distance between the estimated
label measure v,, and target label measure 7,,.

Definition 3. The Wasserstein Gaussian subspace Ps 4 is a subspace of the 2-Wasserstein space P,
which consists of centered non-degenerate Gaussian measures, where Ws 4 is a distance metric in
this space.

Suppose that each estimated label vector is mapped to the hypersphere, y, = f(z,) and
Un € S?-1 < R<. In such cases, dp—_pa 1s not the same as dg_ga—1, and we cannot use dp_pa
as a true metric for minimizing the distance between the estimated and target labels. Therefore,
the intrinsic distance dga—1 must be defined to derive accurate objective functions for classification
tasks. To define the intrinsic distance, we introduce the Wasserstein Gaussian subspace (i.e., hy-
persphere), where the target label measure 7, is represented as a Gaussian measure Ny, and the
estimated label measure v, also lies within this subspace. Then, the intrinsic distance is defined

as Z,ﬁb\[:l W o(Vn, U) = Zf:[:l Wa, g (f4#[pn], Nx,.). In Section we analyze the geometric
characteristics of the Wasserstein Gaussian subspace.

2.3 Objective Function
The proposed objective functim}v is defined as follows:

. 1
Hgn mgx N Z Eynwf% [1n] “‘Cgl9 (yn) H + W2,g (f:zé [,un]vNEn) . “)
n=1

Diffusion invariance term Intrinsic distance term

The first term of (H]), which is defined in , ensures the diffusion invariance of the estimated label
measure v, where v,, can be invariant to diffusion operators (Section @ This term also determines
the Wasserstein ambiguity and yields the upper bound for the 2-Wasserstein distance in (2). The
second term of (@), which is defined in (6), minimizes the intrinsic distance between the estimated
label measure v, and target label measure Ny in the Wasserstein Gaussian subspace (Section
[2.2). This term reduces infinite-dimensional problems in the Wasserstein space to finite-dimensional
tractable problems, which can easily optimized by f and g. Our method aims to find the optimal
parameters 6 and ¥ for two neural networks f and g, respectively, that minimize the objective function
in @]) Therefore, our estimated label measures are close to the target label measures and are robust
to stochastic perturbations. In the Supplementary Materials, algorithms are provided to outline the
entire procedure of the proposed method.




2.4 Evaluation Metric

To evaluate the classification performance, we propose the following classifier based on 2-Wasserstein
distance. We calculate the Top-1 average accuracy for /N objects as:

N
A 1 .

Cls(h"n}r]:/:l) - N Z cls | pin, ar/\g/mln Wa g (fzé [Mn],NZm) ) &)
n=1 2k

where cls|t,, Ns: | = 1if Nx. and p, share the same label information. We search for the

probability measure of target label N u: that is the closest to the probability measure of estimated
label f% [11n]. Then, input data f,, is classified into the label of Nx- . If we can find the optimal

parameters (6*,19*) for the neural networks (f, g), then cls({p, }*=;') in (@) is 1. Thus, we can

solve the metric-based classification problem in the Wasserstein space.

3 Theoretical Analysis

In Section 2] we present the basic concepts of the proposed method. In this section, we decompose
each term in (@) by examining the connection between the diffusion operator and 2-Wasserstein
distance, and we detail the theoretical advantages of the proposed method. We first introduce the
main assumptions used in this theoretical analysis subsequently.

Because our method aims to make each push-forward measure v, diffusion invariant with respect to £,
we assume that there is a sequence {0y,n };Z, such that 0y n = supyccee J1L9(y)| qkndNs, (y) <

0o, where ¢y, ,, denotes the density of vy, ,,, and there is a large K € N7 that satisfies Ok,n = 0if
k> Kopand ¥n =0, --- , N. Intuitively, d;, , can be understood as a indicator that how n-th label
measure vy, ,, is diffused according to £ at learning iteration k.

The Supplementary Materials include other minor assumptions with notations and the details of the
entire theoretical analysis, which cannot be presented herein owing to space constraints.

3.1 Hypercontractivity

We examine the relationship between the proposed diffusion operator £ (defined in Section [2.1)) and
the 2-Wasserstein distance W,. For simplicity, the subscript n (e.g., in v/,,) is omitted in this section.
Proposition 2. (Descending of the Wasserstein Ambiguity Set) Let {vi}3°, be a sequence of
probability measures satisfying assumptions. Then, v € Byw,(Ns,V/0r). In other words,
Wa(vk, Ns) < \/0y. Furthermore, Ws (v, Nx) — 0 as k — oc.

This proposition is inspired by the Bakry-Emery in- Wa(RY)

equality (3) and HWI-inequality (22), which describe gy | B Vi)
the fundamental behavior of the Markov diffusion & i «
semi-group. To prove Proposition [2, Fisher infor- -,/k

mation is replaced with the proposed diffusion term = » N;'.& W
supy Eyu, [[£97()|] in @), which clearly high- s

lights the connection between the diffusion operator Wa (%) Voo

L and the 2-Wasserstein distance. Specifically, the 2- E

Wasserstein distance is bounded above by the square Figure 3: Descending of the Wasserstein
root of the diffusion term. Fig[3]presents a concep- Ambiguity Set. The radius of the ambiguity
tual illustration of Proposition 2] The inequality in ~set converges to zero (i.e.,7 = Vo — 0).
Proposition|[T]is different form that in Proposition 2]

Proposition 3. (Exponential Decay of Wasserstein Distance) We define a sub-sequence (k) C NT,
such that (k) = {k'; % ([ {dlve — o] + €(K')) < b0,k <K'}, where ( € Cy, and let |e(k)|
be a dual error satisfying |e(k)| — 0 as k — oo. In this case, the following inequality holds:
Wy (V7 , Nx) < /dpe=27 + €(71), where Ty, denotes an element of T(k).

By setting {(y) to a 1-Lipschitz function, the inequality in Propositioncan be rewritten according
to its definition and the Kantorovich-Rubinstein formula as follows: & (W1 (vk, 1) +€(k)) < do.
Therefore, if the average difference in terms of 1-Wasserstein distance between the initial and updated

measures (i.e., Uy, = fj[’“ [1]) is bounded above by dy, the Wasserstein ambiguity (i.e., radius of
2-Wasserstein balls) exponentially decays to zero. Therefore, with a small error of € and a moderate
update rate of £, the Wasserstein ambiguity decays exponentially.



3.2 Riemannian Geometry of W, ,

We interpret the proposed Wasserstein Gaussian subspaces W , (defined in Section as totally
geodesic submanifolds in the 2-Wasserstein space analogous to the convex set (e.g., a unit cube with
one-hot vectors as elements). In this totally geodesic submanifold, any geodesic that is calculated
using induced Riemannian metrics is also defined in the ambient manifold. Therefore, if the Wasser-
stein Gaussian subspace is a totally geodesic submanifold in the 2-Wasserstein space, then 1V, and
W 4 coincide and have an explicit form (i.e., the Bures metric) defined as follows:

Definition 4. Let X, be defined as ¥, = Cov(X,,), Xy, ~ . Then, the Bures metric between
probability measures v,, and vy, is defined as

dB(z/n,Dn):\/’I‘r(En+in—2(Eéin2é)é). 6)

Proposition 4. (4, [/8) The Wasserstein Gaussian subspace P 4 (R?) is a totally geodesic sub-
manifold in the 2-Wasserstein space Po(R?). Thus, the following distances are equivalent:
dB(VTu ﬁn) = WQ,g(VTu ﬁn) = WQ(V7L7 I;n)fOl‘ any U, Up € PQ,g(Rd)~

In (@), we assume that the label measure v, is Gaussian, which is generally not true at the training
time, and we approximate the intrinsic distance W, 4 to dg. However, according to Propositions
and[das well as (), dp can be an exact estimation of W, 4 if the optimal parameters (6, ) of the
neural networks ( f, g) are found and v, lies in the Wasserstein Gaussian subspace. Using the explicit
form presented in Definition [} we can calculate approximated 2-Wasserstein distances during testing.

3.3 Perturbation Analysis

Let i be an input data measure and p° be a perturbed measure induced by unknown random
perturbations. The corresponding label measures for p and p® are defined as v = fgé [p] and

Ve = fgk [4¥], respectively. It is nontrivial to construct an explicit form of the perturbation function
due to the complexity of neural network. Therefore, we assume that the mass of v is transported
along (Id + eh). Then, the perturbed measure v° can be written as follows:

ve = Id+eh)xlv], € >0, € ~ p(y), (7

where h is a perturbation function defined on the feature space with a magnitude € ~ p., and the corre-
sponding information is assumed to be unknown at both the training and testing times. In this context,
we answer two crucial questions: First, how is the average perturbed distance E.W> ,(v§, Ny)
related to the diffusion operator £ or d;,? Second, what are the theoretical advantages of the proposed
method over conventional deterministic models? The following propositions answer these questions.

Proposition 5. (Wasserstein Perturbation) Let v = (Id + ch)4vy, be a perturbed measure by
eh. Then, there exist numerical constants 0 < K1, ke < 00 such that mean radius of perturbed
Wasserstein ambiguity set v§, € Byy, (N, 1) is bounded as:

EWs(vi, Ns) < V/dr1k2Ele] + b5. (8)

Consider a deterministic model in which label measures are considered as Dirac-delta measures in
the feature space, meaning v = 9, v* = dy4.n, and the target label measure is considered 7 = 6.
In this case, the Wasserstein distance is equivalent to the Euclidean distance and has a deterministic
upper bound defined as E. W, (12, 9,) = E.dg(y +ch, z) < ||h||y Ele] + dg(y, 2). For simplicity,
assume that dk1k2 < 1in (8) and ||h||, < 1. Then, the Wasserstein uncertainty definitions for the
deterministic and stochastic models are given by

Ele] + dg(y, 2) <= V/E[¢] + 0% - )

Deterministic Model Stochastic Model

There are two major implications of (9) that verify the theoretical advantages of our method over
conventional deterministic models. First, it is clear that the proposed method efficiently reduces
the randomness of label information by considering d in (9), whereas deterministic models are
incapable of handling the stochastic properties of perturbations. Second, the Wasserstein ambiguity is
proportional to the square root of E[¢] in our stochastic model, which ensures a minor impact to the
model in the presence of large perturbations (i.e., E[e] > 1). To show the effectiveness of diffusion
term to classification accuracy, we assume the binary classification task with perturbed label measure
v* where the positive and negative target label measures are denoted by Ny, and Ny _.



Corollary 1. (Perturbed Binary Classification.) Let ¥ and ¥ _ be a r-rank SPD matrices, and
e ~ p. = exp(b) be an exponential distribution with parameter b. Then, the probability of V*
classified as positive labels is bounded as follows:

brAE et A mas) —4b8

Plels(v®) =1]<1—e" 4dryry , (10)

where A denote maximum eigenvalues of matrices ¥ and Y._, respectively.

Corollary |1 shows that the probability of correct classification is maximized with the exponential
ratio, if we can find the optimal parameters (6, 9) to attain J; ~ 0. In Proposition@ we consider an
extreme case in which Y;_j is a stochastic process that enforces the path for the Markov semi-group
Py, (defined in Section | for which the corresponding law is a label measure v, = fzf [¢£]. In other
words, each particle exactly follows the Ornstein-Uhlenbeck process, which is known to have an
explicit path. This proposition verifies that the probability of the average norm of the perturbation
. 2 . e s
function v (E || h||3) can be efficiently minimized.

and \

ax max

Proposition 6. (Markov Inequality for the Perturbation Function) Let Y}, ~ v}, denote the Markov-
process related to the Markov semi-group and its corresponding law vy. For the l-th component of
the perturbation function h; € L'(vy), we denote T(y) = ||h(y)\|§ < 00. Then, there are numerical
constants 0 < k3, kg < 00 such that

1 2
v (By[T(Yy)] = a) < ize?&z’“*l)”s (

a

dks + kéy), (11)

fory € RY. Furthermore, limy,_, s v (E[T(Y3)] > a) — a2 drks.

4 Experiments

For empirical validation, we applied our method to two classification problems: 3D point cloud classi-
fication using the ModelNet10 (28) dataset and image classification using the CIFAR10 dataset (12),
where the data suffer from various perturbations. There are different considerations in this work that
can be compared to those in previous works.

o We generated severe structural perturbations, including random rotations, random resizing, and
non-homogeneous local noises. These perturbations are different from those considered in previous
works, such as the generalization of adversarial examples, which simply add noise to original images
and construct the maximum bound in terms of L,-distance in the pixel space.

e We randomly changed the data representation at the fraining and festing times. This setting aims to
model real-world situations in which unknown severe random perturbations potentially exist in data.

The Supplementary Materials elucidate the specifications of the network architectures, perturba-
tion setup and samples, additional experiments, and more ablation studies.

4.1 Implementation Details

Covariance Matrices. Each target Gaussian measures are represented as r-rank degenerate covari-
ance matrices, 2, = MZMC, where M, denotes (r x d) size of random matrix for the c-th class
and all indices are i.i.d uniform random variables. For our 2D image classification experiments,
we used Sym,g of rank-32 covariance matrices to represent centered Gaussian measures. For our
3D image classification experiments, we used Sym,g rank-3 covariance matrices. To calculate
the square roots of the covariance matrices efficiently, we used the GPU-friendly Newton Schulz
algorithm presented in (15). Because computational complexity increases quadratically even us-
ing this algorithm, we limited the maximum number of dimensions of the Gaussian measures to
dim(P, 4) < d(d+1)/2 ~ 8K, where d = 128.

Hyperparameters and Training Setup. We used the ADAM optimizer with a learning rate of 10>
for the network ¢ and a learning rate of 10~ for the network f, as well as for the baseline networks.
All experiments were executed using a single RTX 2080 TI GPU. Our method was implemented
using Pytorchl.4.0/and Python3.6.

Algorithm. Algorithm[T]outlines the entire procedure of the proposed method.

4.2 Comparison with Deterministic Models

2D Image Classification. If the spatial information of 2D images is highly distorted by severe
perturbations, then the accuracy of conventional classification networks decreases significantly. In


Pytorch 1.4.0
Python 3.6

Algorithm 1 DeepWDC

Require: Neural networks f, g with initial weights 6, ¢.
Initialize covariance matrices {3, }N_, with rank-s and sample z,, ~ fi,,.
for k£ = 1 to K (i.e., the total number of training iterations) do
1) Optimize the diffusion invariance term in (4).

1
Vop < VouEa, zoniumvion 2 |9 (€724 (wn) + VI = eI5Z) = g (/% (@) ]
2) Estimate the sample covariance matrices.

Bn(00) + i1 [F%(0n) = Bf% ()] [£% (2n) — Bf*(@0)].
3) Optimize the intrinsic distance term in (4).

- 1. 1\ 3
Vg « Vo, \/’I‘r (zn +5n(00) ~ 2 (ZAEa (0071 )” )
4) Update f by descending its stochastic gradients Vgi + v‘gi.

1
Voo VouBe, zoniamvion 2 [[9% (€72 flwn) + VI= e 25755 Z) = g (f(z0))|]
5) Update g by ascending its stochastic gradients V., .
end for

contrast, our method delivers accurate classification results under these conditions. 2D convolutions
are highly vulnerable to rotations and local perturbations, because information integration is dependent
on the spatial structures of 2D images. For example, each pixel is integrated by convolutional kernels
in which the connectivity between the pixels is conditioned (i.e., 2D grid). However, our method does
not require such pre-conditioning because it uses the holistic (distributional) information of group of
pixels in feature space, which is recognized as a form of high dimensional push-forward probability
density. Therefore, our method can generate robust representations in convolutional feature spaces
even in the presence of severe structural perturbations.

Table 1: 2D image classification accuracy (in %) on the CIFAR10 dataset with perturbations.
Regarding perturbation types and amounts, we set parameters for impulse noise (¢), rotation (6, 65),
random scaling (sc), random shearing (sh), and random crop (cc). For the deterministic perturbation,
we used CIFAR10-C (10) benchmark dataset. “#Param." denotes the number of parameters in the
network. The best results are presented in bold.

Methods (#Param.) {e} {0,sc,sh,e} {02,sc,sh,e} {62,cc} {ba,cco} | CIFARIO-C

ResNet (11.1M) 894  73.6 73.4 769 779 -
DenseNet (6.8)) 86.6  76.3 75.9 789 748 92.6
DeepWDC (6.7M) 959  88.6 93.0 927 877 | 958

3D Point Cloud Classification. For 3D point cloud classification, we considered DGCNN (27)
and PointNet++ (24)) as baselines. We compared our method with the baselines and the results are
summarized in Table[2] As shown in the table, the conventional networks are highly vulnerable to
geometric perturbations and jitters with high variance because such perturbations induced drastic
changes in features. Therefore, accuracy decreased significantly as additional perturbation types are
applied. By contrast, our method exhibits significantly smaller drops in accuracy in the presence of
severe perturbations.

Table 2: 3D point cloud classification accuracy (in %) for the ModelNet10 dataset with pertur-
bations. For perturbations, we set parameters for random sampling (7"), random scaling (s), random
jitter (¢), and random rotation (6). The best results are presented in bold.

Methods (#Param)  {T} {T,s,e} {T,s,e,m} {T,s,ea} {T,s,es} {T,s,€3,0}

PointNet™™ (1.7M)  96.6 71.7 67.3 47.2 35.7 25.8
DGCNN (1.9M) 97.1 83.6 79.1 68.0 54.8 35.4
DeepWDC (0.96M)  96.9 94.8 91.0 85.3 71.9 55.2




4.3 Ablation Study

We analyzed DeepWDC by evaluating each of its component. First, we examined the role of the
diffusion invariance term in (). As shown in Figl[a), DeepWDC without the diffusion invariance
term delivers low accuracy with increased variance, whereas using E[Lg] + d;/}}g yields stable
and accurate results. We can interpret the proposed diffusion invariance term as distributional
regularization, where a group of pixels in the feature space is forced to match a Gaussian density.

There is a canonical isomorphism between the Wasserstein Gaussian subspace and positive semi-
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(a) Effectiveness of the diffusion invariance term  (b) Classification results with different dimensionality

Figure 4: Effectiveness of the proposed DeepWDC. (a) The blue curve represents the results of
using both diffusion invariance E[Lg] and intrinsic distance terms W, , in (@), whereas the red
curve represents using the intrinsic distance term alone. The plot depicts the average accuracy with
m =+ 0.20. (b) Curves show classification results with different dimensionality of the proposed
DeepWDC. Both experiments are conducted on 2D image classification tasks on CIFAR10.

definite matrix space (L6) (i.e., ngg(]Rd) = Symj). Thus, the dimensionality of the covariance
matrices is another key factor for accurate classification. We set up an experiment by testing different
dimensions of d = 16,64, 128 and ranks r = 8,32. As shown in FigH|b), setting dimension
dim(P, 4) = d(d + 1)/2 ~ 8K, d = 128 with rank-32 label measures produced the best result.

5 Conclusion

In this paper, we proposed a novel classification method, called DeepWDC, where input data and
labels are represented as probability measures to address severe perturbations in input data. DeepWDC
can output the optimal label measure in terms of diffusion invariance, where the label measures
are stationary and become equivalent to Gaussian measures. Experimental results verified that
DeepWDC significantly outperforms state-of-the-art classification methods on both 2D and 3D data
in the presence of various types of perturbations.
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Broader Impact

The proposed framework can considerably enhance conventional classification methods, of which
performance is very sensitive to various types of perturbations (e.g., rotations, impulse noise, and
down-scaling). The proposed Wasserstein distributional classifier represents both input data and
target labels as probability measures and its diffusion invariant property prevents the classifier from
being affected by severe perturbations. Hence, various research fields under real-world environments
can benefit from exploiting our framework to obtain accurate classification results.
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