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A. Datasets Details and Evaluation Protocols

We evaluate ASM together with several state-of-the-art UDA algorithms on both classification and
segmentation tasks. We use MNIST [8]-USPS [7]-SVHN [12] benchmarks to evaluate ASM on
one-shot cross domain classification task, where MNIST (M) and USPS (U) contain images of
hand-writing digits from 0 to 9 while SVHN (S) captures some images of the house number in
the wild. We select three adaptation tasks, i.e., M → S, U → S and M → U , to evaluate ASM.
Following the experimental setting in [17, 9, 11], we use all the source domain data in the first two
tasks while randomly selecting 2,000 images from MNIST in task M → U . We use the classification
accuracy as the evaluation metric.

For one-shot cross-domain segmentation task, we evaluate ASM on two benchmarks, i.e., SYN-
THIA [15]→ Cityscapes [5] and GTA5 [14]→ Cityscapes. Cityscapes is a real-world dataset with
5,000 street scenes which are divided into a training set with 2,975 images, a validation set with
500 images and a testing set with 1,525 images. We use Cityscapes as the one-shot target domain.
GTA5 contains 24,966 high-resolution images, automatically annotated into 19 classes. The dataset
is rendered from a modern computer game, Grand Theft Auto V, with labels fully compatible with
those of Cityscapes. SYNTHIA contains 9,400 synthetic images compatible with the Cityscapes
annotated classes. We use SYNTHIA or GTA5 as the source domain in evaluation. In terms of
the evaluation metrics, we leverage Insertion over Union (IoU) to measure the performance of the
compared methods.

B. Experimental Setup Details

We use PyTorch [13] as well as PaddlePaddle for our implementation, both achieving similar
performance. The training process is composed of two stages. In the first stage, we use source
images and style images to train the RAIN module. In the second stage, we fix RAIN and train the
task model within the ASM framework. For classification task, we employ ResNet-18 [6] as the
backbone and SGD [3] as the optimizer, with a weight decay of 5e-4. We train the network for a total
of 30k iterations, with the first 600 as the warm-up stage [1] during which the learning rate increases
linearly from 0 to the initial value. Then the learning rate is divided by ten at 10k and 20k iterations.
We resize the input images to 64 × 64 and the batch size is set to 64. For segmentation task, we
leverage ResNet-101 [6]-based DeepLab-v2 [4] as the backbone of segmentor. To reduce the memory
footprint, we resize the original image to 1, 280 × 720 and random crop 960 × 480 as the input.
We use SGD [3] with a momentum of 0.9 and a weight decay of 5e-4 as the optimizer. The initial
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Table 1: Adaptation from SYNTHIA [15] to Cityscapes [5]. We present per-class IoU and mean IoU
for evaluation. ASM and state-of-the-art domain adaptation methods are compared.

SYNTHIA→ Cityscapes

M
et

h.

#T
S

ro
ad

si
de

.

bu
il.

lig
ht

si
gn

ve
ge

.

sk
y

pe
rs

.

ri
de

r

ca
r

bu
s

m
ot

or

bi
ke

m
Io

U

ga
in

Source only — — 55.6 23.8 74.6 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 38.6 —
Fully supervised — — 95.1 72.9 87.3 46.7 57.2 87.1 92.1 74.2 35.0 92.1 49.3 53.2 68.8 70.1 31.5

UDA

AdaptSeg [16] A All 84.3 42.7 77.5 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7 8.1
CLAN [10] A All 81.3 37.0 80.1 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 47.8 9.2
ADVENT [18] A+E All 85.6 42.2 79.7 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 48.0 9.4
CBST [20] P All 53.6 23.7 75.0 23.5 26.3 84.8 74.7 67.2 17.5 84.5 28.4 15.2 55.8 48.4 9.8

One-shot UDA

AdaptSeg [16] A One 64.1 25.6 75.3 4.7 2.7 77.0 70.0 52.2 20.6 51.3 22.4 19.9 22.3 39.1 0.5
CLAN [10] A One 68.3 26.9 72.2 5.1 5.3 75.9 71.4 54.8 18.4 65.3 19.2 22.1 20.7 40.4 1.8
ADVENT [18] A+E One 65.7 22.3 69.2 2.9 3.3 76.9 69.2 55.4 21.4 77.3 17.4 21.4 16.7 39.9 1.3
CBST [20] P One 59.6 24.1 72.9 5.5 13.8 72.2 69.8 55.3 21.1 57.1 17.4 13.8 18.5 38.5 -0.1
OST [2] A One 75.3 31.6 72.1 12.3 9.3 76.1 71.1 51.1 17.7 68.9 19.0 26.3 25.4 42.8 4.7
ASM (Ours) A One 73.5 29.0 75.2 10.9 10.1 78.1 73.2 56.0 23.7 76.9 23.3 24.7 18.2 44.1 6.0

learning rates for SGD is set to 2.5e-4 and is decayed by a poly policy, where the initial learning rate
is multiplied by (1 − iter

max_iter )
power with power = 0.9. We train the network for a total of 100k

iterations, with the first 5k as the warm-up stage like in classification task.In our best model, we set
hyper-parameters λ = 2e − 4, λs = 1.0, λk = 1.0, λr = 5.0, respectively. The searching depth
n in each iteration is set to 5 in classification task and 2 in segmentation task. Although the inner
loop runs n times within each training step, we decreased the training epochs (outer loop) in order to
guarantee that ASM has a similar number of back-propagation with the baseline. It not only ensures
a fair comparison but also reduces the computational overhead.

C. Additional Experimental Results

Result on SYNTHIA→ Cityscapes task. We compare our method with several recent UDA and
OSUDA methods, including CBST [20], AdaptSeg [16], CLAN [10], ADVENT [18], OST [2] and
CycleGAN [19]. For a clear comparison, we also report the segmentation result when using the
source data only or using all the labeled target data to train the model. As we can observe, there is a
large performance gap (38.6% vs 70.1%) between the two approaches.

We evaluate these methods under the conventional UDA settings that all the unlabeled target data
are available. As shown in Table 1, these conventional UDA strategies can give a huge boost to the
source-only baseline, bringing at least 8% improvement in terms of mIoU. However, when testing
under the One-shot UDA setting, all the competitors deteriorate significantly in such a data-scarce
scenario. Some of them even yield worse mIoU than the source only baseline due to the overfitting
to the One-shot target sample. Besides the UDA methods, we also compare our method with state-
of-the-art one-shot style transfer methods, e.g., OST [2] and CycleGAN [19]. To fairly compare
these methods with ASM, we additionally train a ResNet-101-based segmentor upon the generated
samples from OST or CycleGAN. We find that both CycleGAN and OST can improve the mIoU over
the source only baseline, proofing that the style transfer is a robust strategy facing the data-scarce
scenario. Furthermore, ASM boosts the mIoU to a new benchmark of 44.1%, which demonstrates
the advantage of our adversarial scheme in ASM over the sequential combination of style transfer
and segmentation like OST and CycleGAN.

Variant Study on Different Search Depth. The search depth n is a key hyper-parameter in ASM
training process. In this variant experiment we test our model using a varying n over a range {1, 5,
10, 20} for the classification task and a varying n over a range {1, 2, 3, 4} for the segmentation task.
Since the inner loop runs n times within each training step, to ensure a fair comparison, we decrease
the training epochs (outer loop) in order to guarantee that ASM has same number of back-propagation
in each experiment. The results are reported in Fig. 1(a) and (b). AS we can see, the best depth
choices for cross-domain classification and segmentation tasks are n = 2 and n = 5, respectively.
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Figure 1: a: Classification performance in terms of accuracy when using different search depth. b:
Segmentation performance in terms of mIoU when using different search depth. c: A sweep of
performance over varying fraction of unlabeled target samples.

Leveraging a very large or very small depth would do harm to the performance for both tasks. On the
one hand, when using n = 1, ASM would degrade into a baseline that uses only anchor styles during
the training process, which deactivates the DE facto adversarial paradigm. One the other hand, a very
large search depth would lead G to generate many unreasonable styles that are excessively deviated
from the target distribution. Based on this variant study, we respectively choose n = 2 and n = 5 for
classification and segmentation tasks.

Variant Study on Different Amount of Target Sample. Although the proposed ASM mainly aims
at OSUDA problem, we evaluate it under zero-shot UDA (ZSUDA) and few-shot UDA (FSUDA)
setting to evaluate its robustness in this experiment, where less or more than one samples are available
during the adversarial training. Specifically, the percentage of the unlabeled target sample varies
over a range {0, 25, 50, 100}. Note that the anchor style for ASM is initialized randomly under
the ZSUDA setting. As we can observe in Fig. 1 (c), on the one hand, ASM outperforms OST
in all ZSUDA or FSUDA cases. On the other hand, ASM can bring a huge boost to the accuracy
comparing to ZSUDA when given a sole sample, indicating that ASM is able to capitalize on the
sole target sample for domain adaptation. Finally, we find that increasing the sample number is still a
very effective way to improve classification accuracy. Such performance gap between OSUDA and
FSUDA provides both opportunities and challenges for the future research on OSUDA problem.

More Visualization Results of the Searched Stylized Images. We show more visualization results
of the searched stylized images by ASM in Fig. 2 and Fig. 3, respectively.

Source Images Searched Stylized Images by ASM (search depth = 4) Anchor-Style ImagesSole Target Image

Figure 2: Visualization of the searched stylized image sequence by ASM in cross-domain classifica-
tion task.
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Source Images Searched Stylized Images by ASM (search depth = 4) Anchor-Style ImagesSole Target Image

Figure 3: Visualization of the searched stylized image sequence by ASM in cross-domain segmenta-
tion task.
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