
Figure 6: Inductive biases define what data is OOD. A conceptual visualization of two distribu-
tions in the image space (shown in yellow and red), training CelebA data is shown with crosses, and
other images are shown with circles. The distribution shown in yellow could represent inductive
biases of a human: it assigns high likelihood to all images of human faces, regardless of small levels
of noise, and small brightness changes. The second distribution, shown in red, could represent a
normalizing flow: it assigns high likelihood to all smooth structured images, including images from
SVHN and ImageNet. Both distributions assign the same likelihood to the training set, but their
high-probability sets are different.

Appendix outline

This appendix is organized as follows.

• In Section A, we provide additional discussion and a formal statement of the argument
presented in Section 4.

• In Section B, we show that normalizing flows can be trained to assign high likelihood to the
target data and low likelihood to a given OOD dataset.

• In Section C, we provide the hyperparameters that we used for the experiments in this paper.
• In Section D, we report the log-likelihood histograms and OOD detection AUROC scores

for the baseline RealNVP and Glow models on various datasets.
• In Section E, we explain the visualization procedure that we use to visualize the latent

representations and coupling layers of normalizing flows.
• In Section F, we provide additional latent representation visualizations.
• In Section G, we explain the different masking strategies for coupling layers of normalizing

flows.
• In Section H, we provide additional coupling layer visualizations.
• In Section I, we provide additional details on the experiments of Section 7.
• In Section J, we provide samples from baseline models on various datasets. We also discuss

an experiment on resampling parts of the latent variables corresponding to different images
with normalizing flows.

• In Section K, we provide additional details and results for the experiments on image
embeddings and tabular data from Section 8.

A Maximum likelihood objective is agnostic to what data is OOD

In Section 4 we argued that the maximum likelihood objective by itself does not define out-of-
distribution detection prefromance of a normalizing flow. Instead, it is the inductive biases of the flow
that define what data will be assigned with high or low likelihood. We illustrate this point in Figure 6.

The yellow and red shaded regions illustrate the high-probability regions of two distributions defined
on the image space X . The distribution in yellow assigns high likelihood to the train (CelebA) images
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corrupted by a small level of noise, or brightness adjustments. This distribution represents how a
human could describe the target dataset. The red distribution on the other hand assigns high likelihood
to all structured images including those from ImageNet and SVHN, but does not support noisy train
images. The red distribution represents a distribution learned by normalizing flow.

For simplicity, we could think that the distributions are uniform on the highlighted sets, and the sets
have the same volume. Then, both distributions assign equally high likelihood to the training data,
but the split of the data into in-distribution and OOD is different. As both distributions provide the
same density to the target data, the value of the maximum likelihood objective in Equation (1) would
be the same for the corresponding models.

More generally, for any distribution that only assigns finite density to the train set, we can construct
another distribution that assigns the same density to the train data, but also high density to a given set
of (OOD) datapoints. In particular, the new distribution will achieve the same value of the maximum
likeihood objective in Equation (1). We formalize our reasoning in the following simple proposition.
Proposition 1. Let p(·) be a probability density on the space X , and let D = {xi}Ni=1 be the training

dataset, where xi 2 X for i = 1, . . . , N . Assume for simplicity that p is upper bounded: for any x
p(x)  u. Let DOOD be an arbitraty finite set of points. Then, for any c � 0 there exists a distribution

with density p0(·) such that p0(x) = p(x) for all x 2 D, and p0(x0) � c for all x0 2 DOOD.

Proof. Consider the set S(r) = [xi2DB(xi, r), where B(x, r) is a ball of radius r centered at x.
The probability mass of this set P (S(r)) =

R
x2S(r) p(x)dx. As r ! 0, the volume V (S(r)) of the

set S(r) goes to zero. We have

P (S(r)) =
Z

x2S(r)
p(x)dx  V (S(r)) · u r!0���! 0. (4)

Hence, there exists r0 such that P (S(r0))  1
2 .

Now, define the a neighborhood of the set DOOD as

SOOD = [x02DOODB(x, r̂), (5)

where r̂ is selected so that the total volume of set SOOD is 1/2c. Then, we can define a new density p0

by redistributing the mass in p(·) from outside the set S(r0) to the neighborhood SOOD as follows:

p0(x) =

8
<

:

p(x), if x 2 S(r0),
2c ·

�
1 � P (S(r0))

�
, if x 2 SOOD,

0, otherwise.
(6)

The density p0(·) integrates to one, coincides with p on the training data, and assigns density of at
least c to points in DOOD.

B Flows have capacity to distinguish datasets

Normalizing flows are unable to detect OOD image data when trained to maximize likelihood on the
train set. It is natural to ask whether these models are at all capable of distinguishing different image
datasets. In this section we demonstrate the following:

Observation: Flows can assign high likelihood to the train data and low likelihood to a given
OOD dataset if they are explicitly trained to do so.
Relevance to OOD detection: While flows have sufficient capacity to distinguish different
data, they are biased towards learning solutions that assign high likelihood to all structured
data and consequently fail to detect OOD inputs.

We introduce an objective that encouraged the flow to maximize likelihood on the target dataset and
to minimize likelihood on a specific OOD dataset. The objective we used is

1

ND

X

x2D
log p(x) � 1

NOOD

X

x2DOOD

log p(x) · I[log p(x) > c], (7)
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(a) CIFAR ", SVHN # (b) SVHN ", CIFAR # (c) CIFAR ", CelebA # (d) CelebA ", CIFAR #

(e) Fashion ", MNIST # (f) MNIST ", Fashion #

Figure 7: Negative training. The histograms of log-likelihood for RealNVP when in training
likelihood is maximized on one dataset and minimized on another dataset: (a) maximized on
CIFAR, minimized on SVHN; (b) maximized on SVHN, minimized on CIFAR; (c) maximized on
CIFAR, minimized on CelebA; (d) maximized on CelebA, minimized on CIFAR. (e) maximized on
FashionMNIST, minimized on MNIST; (f) maximized on MNIST, minimized on FashionMNIST;

where I[·] is an indicator function and the constant c allows us to encourage the flow to only push
the likelihood of OOD data to a threshold rather than decreasing it to �1; ND is the number of
train datapoints and NOOD =

P
x2DOOD

I[log p(x) > c] is the number of OOD datapoints that have
likelihood above the threshold c.

We trained a RealNVP flow with the objective (7) using different pairs of target and OOD datasets:
CIFAR-10 vs CelebA, CIFAR-10 vs SVHN and FashionMNIST vs MNIST. We present the results in
Figure 7. In each case, the flow is able to push the likelihood of the OOD dataset to very low values,
and simultaneously maximize the likelihood on the target dataset creating a clear separation between
the two.

Hyper-parameters For the flow architecture and training used the same hyper-parameters as we
did for the baselines, described in Appendix C. For CelebA, CIFAR and SVHN models we set
c = �100000, and for MNIST, FashionMNIST and NotMNIST we set c = �30000.

Connection with prior work Flows can be used as classifiers separating different classes of the
same dataset [30, 20, 1], which further highlights the fact that flows can distinguish images based on
their contents when trained to do so. A similar experiment for the PixelCNN model [31] was presented
in Hendrycks et al. [15]. The authors maximized the likelihood of CIFAR-10 and minimized the
likelihood of the TinyImages dataset [45]. In their experiments, this procedure consistently led to
CIFAR-10 having higher likelihood than any of the other benchmark datasets. In Figures 7, for each
experiment in addition to the two datasets that were used in training we show the log-likelihood
distribution on another OOD dataset. For example, when we train the flow to separate CIFAR-10
from CelebA (panels c, d), the flow successfully does so but assigns SVHN with likelihood similar
to that of CIFAR. When we train the flow to separate CIFAR-10 from SVHN (panels c, d), the
flow successfully does so but assigns CelebA with likelihood similar to that of CIFAR. Similar
observations can be made for MNIST, FashionMNIST and notMNIST. At least for normalizing flows,
minimizing the likelihood on a single OOD dataset does not lead to all the other OOD datasets
achieving low-likelihood.

C Details of the experiments

RealNVP For all RealNVP models, we generally follow the architecture design of Dinh et al.
[10]. We use multi-scale architecture where after a block of coupling layers half of the variables
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Figure 8: Baseline log-likelihoods. The histograms of log-likelihood for RealNVP and Glow
models trained on various datasets. Both flows consistently assign similar or higher likelihood to
OOD data compared to the target dataset. The likelihood distribution for train and test sets of the
target data is typically very similar.

are factored out and copied forward directly to the latent representation. Each scale consists of 3
coupling layers with checkerboard mask, followed by a squeeze operation and 3 coupling layers
with channel-wise mask (see Figure 9). For the st-network we use deep convolutional residual
networks with additional skip connections following Dinh et al. [10]. In all experiments, we use
Adam optimizer. On grayscale images (MNIST, FashionMNIST), we used 2 scales in RealNVP,
6 blocks in residual st-network, learning rate 5⇥10�5, batch size 32 and trained model for 80 epochs.
On CIFAR-10, CelebA and SVHN, we used 3 scales, 8 blocks in st-network, learning rate 10�4,
batch size 32, weight decay 5⇥ 10�5 and trained the model for 100 epochs. On ImageNet, we used 5
scales, 2 blocks in st-network, learning rate 10�3, batch size 64, weight decay 5 ⇥ 10�5 and trained
the model for 42 epochs. On CelebA 64 ⇥ 64, we used 4 scales, 4 blocks in st-network, learning rate
10�4, batch size 64, weight decay 5 ⇥ 10�5 and trained the model for 100 epochs.

Glow We follow the training details of Nalisnick et al. [29] for multi-scale Glow models. Each
scale consists of a sequence of actnorm, invertible 1 ⇥ 1 convolution and coupling layers [23]. The
squeeze operation is applied before each scale, and half of the variables are factored out after each
scale. In all experiments, we use RMSprop optimizer. On grayscale images (MNIST, FashionMNIST),
we used 2 scales with 16 coupling layers, a 3-layer Highway network with 200 hidden units for
st-network, learning rate 5 ⇥ 10�5, batch size 32 and trained model for 80 epochs. On color images
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(a) Squeeze layer (b) CB mask (c) CW mask (d) Hor. mask

Figure 9: Squeeze layers and masks. (a): A squeeze layer squeezes an image of size c ⇥ h ⇥ w
into 4c ⇥ h/2 ⇥ w/2. The first panel shows the mask, where each color corresponds to a channel
added by the squeeze layer (for visual clarity we show the mask for a 12 ⇥ 12 image). The second
panel shows a 1 ⇥ 28 ⇥ 28 MNIST digit, and the last panel shows the 4 channels produced by the
squeeze layer. The colors of the boundaries of the channel visualizations correspond to the colors of
the pixels in the mask. Each channel produced by the squeeze layer is a subsampled version of the
input image. (b)-(d): Checkerboard, channel-wise and horizontal masks applied to the same input
image. Masked regions are shown in red. Channel-wise mask is obtained by applying a squeeze
layer and masking two of the channels (e.g. the last two); here we show the masked pixels in the
un-squeezed image. Masks are typically alternated: in the subsequent layers the masked and observed
positions are swapped.

(CIFAR-10, CelebA, SVHN), we used 3 scales with 8 coupling layers, a 3-layer Highway network
with 400 hidden units for st-network, learning rate 5 ⇥ 10�5, batch size 32 and trained model for 80
epochs.

D Baseline models likelihood distributions and AUROC scores

In Figure 8, we plot the histograms of the log likelihoods on in-distribution and out-of-distribution
datasets RealNVP and Glow models. In Table 1 we report AUROC scores for OOD detection with
these models. As reported in prior work, Glow and RealNVP consistently fail at OOD detection.

OOD data OOD data

Model Train data CelebA CIFAR-10 Data SVHN MNIST Fashion NotMNIST

RealNVP
CelebA – 67.7 6.3 MNIST – 99.99 99.99

CIFAR-10 56.0 – 6.0 Fashion 10.8 – 72.1
SVHN 99.0 98.4 –

Glow
CelebA – 69.1 6.4 MNIST – 99.96 100.0

CIFAR-10 52.9 – 5.5 Fashion 13.3 – 80.2
SVHN 99.9 99.1 –

Table 1: Baseline AUROC. AUROC scores on OOD detection for RealNVP and Glow models
trained on various image data. Flows consistently assign higher likelihoods to OOD dataset except
when trained on MNIST and SVHN. The AUROC scores for RealNVP and Glow are close.

E Visualization implementation

Normalizing flows such as RealNVP and Glow consist of a sequence of coupling layers which change
the content of the input and squeeze layers (see Figure 9) which reshape it. Due to the presence
of squeeze layers, the latent representations of the flow have a different shape compared to the
input. In order to visualize latent representations, we revert all squeezing operations of the flow
and visualize unsqueeze(z). Similarly, for visualization of coupling layer activations and scale and
shift parameters predicted by st-network, we revert all squeezing operations and join all factored out
tensors in the case of multi-scale architecture (i.e., we feed the corresponding tensor through inverse
sub-flow without applying coupling layers or invertible convolutions).
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(c) RealNVP trained on CelebA

Figure 10: Latent spaces. Visualization of latent representations for RealNVP and Glow models
on in-distribution and out-of-distribution inputs. Rows 1-3 in (a) and (b): original images, latent
representations, latent representation averaged over 40 samples of dequantization noise for RealNVP
and Glow model trained on FashionMNIST and using MNIST for OOD data. Row 4 in (a): latent
representations for batch normalization in train mode. Rows 1-4 in (c): original images, latent
representations, the blue channel of the latent representation, and the latent representations for batch
normalization in train mode for a RealNVP model trained on CelebA and using SVHN as OOD data.
For both dataset pairs, we can recognize the shape of the input image in the latent representations.
The flow represents images based on their graphical appearance rather than semantic content.

F Additional latent representation visualizations

in Figure 10, we plot additional latent representations for RealNVP and Glow trained on FashionM-
NIST with MNIST as OOD dataset, RealNVP trained on CelebA with SVHN as OOD. The results
agree with Section 5: we can recognize edges from the original inputs in their latent representations.
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(a) RealNVP trained on FashionMNIST

(b) Glow trained on FashionMNIST

(c) RealNVP trained on CelebA

Figure 11: Coupling layer visualizations. Visualization of intermediate coupling layer activa-
tions and st-network predictions for (a): RealNVP trained on FashionMNIST; (b): Glow trained
on FashionMNIST; (c): RealNVP trained on CelebA. The top half of each subfigure shows the
visualizations for an in-distribution image (FashionMNIST or CelebA) while the bottom half shows
the visualizations for an OOD image (MNIST or SVHN). For all models, the shape of the input both
for in- and out-of-distribution image is clearly visible in s and t predictions of the coupling layers.
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F.1 Receptive fields of latent representations

Figure 12: Receptive fields of latent represen-
tations. Visualization of the Jacobian dzi

dx for two
different coordinates in the latent space. We use
RealNVP trained on FashionMNIST and the latent
representations are computed for an in-distribution
input.

To further analyze latent representations learned
by normalizing flow, we study the receptive
fields of each coordinate in the latent represen-
tation. To do so, we compute and visualize the
Jacobian dzi

dx for different latent coordinates zi
of an in-distribution FashionMNIST image and
show the visulization for two coordinates in Fig-
ure 12. For most latent coordinates the receptive
field is limited to the neighbouring pixels as we
show in Fig. 12 left. However, coordinates zi
corresponding to the edges in the input image
are weakly affected by longer range dependen-
cies from other pixels near the edges (Fig. 12
right).

G Masking strategies

In Figure 9, we visualize checkerboard, channel-wise masks and horizontal masks on a single-channel
image. The checkerboard and channel-wise masks are commonly used in RealNVP, Glow and other
coupling layer-based flows for image data. We use the horizontal mask to better understand the
transformations learned by the coupling layers in Section 6.

H Additional coupling layer visualizations

In Figure 11, we plot additional visualizations of coupling layer activations and scale s and shift
t parameters predicted by st-networks. In Figure 13 we visualize the coupling layer activations
for the small flow with horizontal mask from Section 6.2 on several additional OOD inputs. These
visualizations provide additional empirical support for Section 6.

Figure 13: Coupling layer co-adaptation. Visualization of intermediate coupling layer activations,
as well as scales s and shifts t predicted by each coupling layer of a RealNVP model with a horizontal
mask on out-of-distribution MNIST inputs. Although RealNVP was trained on FashionMNIST, the
st-networks are able to correctly predict the bottom half of MNIST digits in the second coupling
layer due to coupling layer co-adaptation.

I Changing biases in flow models for better OOD detection

I.1 Cycle-mask

In Section 6 we identified two mechanisms through which normalizing flows learn to predict masked
pixels from observed pixels on OOD data: leveraging local color correlations and coupling layer
co-adaptation. We reduce the applicability of these mechanisms with cycle-mask: a new masking
strategy for the coupling layers illustrated in Figure 14.
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Figure 14: Cycle-mask. A new sequence of masks for coupling layers in RealNVP that we evaluate
in Section 7. We separate the input image space of size c ⇥ h ⇥ w into four quadrants of size
c ⇥ h/2 ⇥ w/2 each. Each coupling layer transforms one quadrant based on the previous quadrant.
Cycle-mask prevents co-adaptation between subsequent coupling layers discussed in Section 6: the
information from a quadrant has to propagate through four coupling layers before reaching the same
quadrant.
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Figure 15: Effect of masking strategy The first two rows show log likelihood distribution for
RealNVP models trained on FashionMNIST and CelebA with (a) checkerboard mask; (b) horizontal
mask; and (c) cycle-mask. The third and the fourth rows show samples produced by the corresponding
models.

21



C
el

eb
A

LL
s

�15000 �12000 �9000 �6000

0.0

0.0001

0.0002

0.0003

0.0004

0.0005

CelebA

CIFAR

SVHN

(a) Baseline
�15000 �12000 �9000 �6000

0.0

0.0001

0.0002

0.0003

0.0004

(b) l = 150

�15000 �12000 �9000 �6000

0.0

0.0001

0.0002

0.0003

0.0004

(c) l = 80

�15000 �12000 �9000

0.0

0.0001

0.0002

0.0003

0.0004

(d) l = 30

C
el

eb
A

(e) Baseline (f) l = 30 (g) l = 80 (h) l = 150

Fa
sh

io
nM

N
IS

T

(i) Baseline (j) l = 10 (k) l = 50 (l) l = 100

(m) RealNVP with l = 10 trained on FashionMNIST

Figure 16: Effect of st-network capacity. The first row shows the histogram of log likelihoods
for a RealNVP model trained on CelebA dataset: (a) for a baseline model, and (b)-(d) for models
with different bottleneck dimensions l in st-network. The second and third rows show samples
from RealNVP model trained on CelebA and FashionMNIST respectively: (e) and (i) for baseline
models, and (f)-(h) and (j)-(l) for models with different bottleneck dimensions l. In (m), we show the
visualization of the coupling layer activations and st-network predictions for a RealNVP model trained
on FashionMNIST with a bottleneck of dimension l = 10. The top half shows the visualizations for
an in-distribution FashionMNIST image while the bottom half shows the visualizations for an OOD
MNIST image. st-network with restricted capacity cannot accurately predict masked pixels of the
OOD image in the intermediate coupling layers. Moreover, in the middle coupling layers for the
MNIST input the activations resemble FashionMNIST images in s and t predictions.
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With cycle-mask, the coupling layers do not have access to neighbouring pixels when predicting
the masked pixels, similarly to the horizontal mask. Furthermore, cycle mask reduce the effect
of coupling layer co-adaptation: the information about a part of the image has to travel through 4
coupling layers before it can be used to update the same part of the image.

Changing masking strategy In Figure 15 we show the log-likelihood histograms and samples for
a RealNVP of a fixed size with checkerboard, horizontal and cycle-mask.

Changing the architecture of st-networks In Figure 16, we show likelihood distributions, sam-
ples and coupling layer visualization for RealNVP model with st-network with a bottleneck trained
on FashionMNIST and CelebA datasets. The considered bottleneck dimensions for FashionMNIST
are {10, 50, 100}, and for CelebA the dimensions are {30, 80, 150}. In the baseline RealNVP model,
we use a standard deep convolutional residual network without additional skip connections from the
intermediate layers to the output which were used in Dinh et al. [10].

J Samples

In Figure 18, we show samples for RealNVP and Glow models trained on CelebA, CIFAR-10, SVHN,
FashionMNIST and MNIST, and a RealNVP model trained on ImageNet 64⇥64 and CelebA 64⇥64.

J.1 Latent variable resampling

To further understand the structure of the latent representations learned by the flow, we study the
effect of resampling part of the latent representations corresponding to images from different datasets
from the base Gaussian distribution. In Figure 17, using a RealNVP model trained on CelebA
we compute the latent representations corresponding to input images from CelebA, SVHN, and
CIFAR-10 datasets, and randomly re-sample the subset of latent variables corresponding to a 10⇥ 10
square in the center of the image (to find the corresponding latent variables we apply the squeeze
layers from the flow to the 32 ⇥ 32 mask). We then invert the flow and compute the reconstructed
images from the altered latent representations.

Both for in-distribution and out-of-distribution data, the model almost ideally preserves the part of the
image other than the center, confirming the alignment between the latent space and the original input
space discussed in Section 5. The model adds a face to the resampled part of the image, preserving
the consistency with the background to some extent.

(a) Celeb-A (b) CIFAR-10 (c) SVHN

Figure 17: Latent variable resampling. Original images (top row) and reconstructions with the
latent variables corresponding to a 10 ⇥ 10 square in the center of the image randomly re-sampled
for a RealNVP model trained on Celeb-A (bottom row). The model adds faces (as it was trained
Celeb-A) to the part of the image that is being re-sampled.
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(a) RNVP, CelebA (b) RNVP, CIFAR-10 (c) RNVP, SVHN (d) RNVP, FashionM-
NIST

(e) RNVP, MNIST (f) RNVP, CelebA-HQ (g) RNVP, ImageNet (h) Glow, CelebA

(i) Glow, CIFAR-10 (j) Glow, SVHN (k) Glow, Fashion (l) Glow, MNIST

Figure 18: Baseline Samples. Samples from baseline RealNVP and Glow models. For ImageNet
and CelebA-HQ we used datasets with (64 ⇥ 64) definition.

K Out-of-distribution detection on tabular data

(a) Image embeddings

Train data OOD data

CelebA CIFAR-10 SVHN

CelebA – 99.99 99.99
CIFAR-10 99.99 – 73.31

SVHN 100.0 99.98 –

(b) Tabular data

Train class (OOD class) Dataset

HEPMASS MINIBOONE

Background (Signal) 83.78 72.71
Signal (Background) 70.73 87.56

Table 2: Image embedding and UCI AUROC. (a): AUROC scores on OOD detection for RealNVP
model trained on image embeddings extracted from EfficientNet. The model is trained on one of the
embedding datasets while the remaining two are considered OOD. The models consistenly assign
higher likelihood to in-distribution data, and in particular AUROC scores are significantly better
compared to flows trained on the original images (see Table 1). (b): AUROC scores on OOD detection
for RealNVP trained on one class of Hepmass and Miniboone datasets while the other class is treated
as OOD data.

K.1 Model

We use RealNVP with 8 coupling layers, fully-connected st-network and masks which split input
vector by half in an alternating manner. For UCI experiments, we use 1 hidden layer and 256 hidden
units in st-networks, learning rate 10�4, batch size 32 and train the model for 100 epochs. For image
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Figure 19: UCI datasets. The histograms of log-likelihood for RealNVP on Hepmass and Miniboone
tabular datasets when trained on one class and the other class is viewed as OOD. The train and test
likelihood distributions are almost identical when trained on either class, and the OOD class receives
lower likelihoods on average. There is however a significant overlap between the likelihoods for in-
and out-of-distribution data.

embeddings experiments, we use 3 hidden layer and 512 hidden units in st-networks, learning rate
10�3, batch size 1024 and train the model for 120 epochs. For all experiments, we use the AdamW
optimizer [25] and weight decay 10�3.

K.2 EfficientNet embeddings

We train RealNVP model on image embeddings for CIFAR-10, CelebA and SVHN extracted from
EfficientNet train on ImageNet, and report AUROC scores in Table 2(a).

K.3 UCI datasets

In this experiment, we use 2 UCI classification datasets which were used for unsupervised modeling
in prior works on normalizing flows [32, 11, 14]: HEPMASS [2] and MINIBOONE [36]. HEPMASS
and MINIBOONE are both binary classification datasets originating from physics, and the two classes
represent background and signal. We follow data preprocessing steps of Papamakarios et al. [32].
We filter features which have too many reoccurring values, after that the dimenionality of the data
is 15 for HEPMASS and 50 for MINIBOONE. For HEPMASS, we use the “1000” dataset which
contains subset of particle signal with mass 1000. For MINIBOONE data, for each class we take a
random split of 10% for a test set.

To test OOD detection performance, for each dataset we train a model on one class while treating
the second class as OOD data. We plot the resulting train, test and OOD likelihood distributions for
each dataset in Figure 19. We also report AUROC scores for each setup in Table 2(b). While test
and OOD likelihoods overlap, the in-distribution class has higher average likelihood in all cases, and
AUROC values are ranging between 70% and 87% which is a significantly better result compared to
the results for image benchmarks reported in Nalisnick et al. [29].
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